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Abstract: The kidney is a crucial organ that eliminates metabolic waste and reabsorbs nutritious
elements. It also participates in the regulation of blood pressure, maintenance of electrolyte balance
and blood pH homeostasis, as well as erythropoiesis and vitamin D maturation. Due to such a heavy
workload, the kidney is an energy-demanding organ and is constantly exposed to endogenous and
exogenous insults, leading to the development of either acute kidney injury (AKI) or chronic kidney
disease (CKD). Nevertheless, there are no therapeutic managements to treat AKI or CKD effectively.
Therefore, novel therapeutic approaches for fighting kidney injury are urgently needed. This review
article discusses the role of α-lipoic acid (ALA) in preventing and treating kidney diseases. We focus
on various animal models of kidney injury by which the underlying renoprotective mechanisms
of ALA have been unraveled. The animal models covered include diabetic nephropathy, sepsis-
induced kidney injury, renal ischemic injury, unilateral ureteral obstruction, and kidney injuries
induced by folic acid and metals such as cisplatin, cadmium, and iron. We highlight the common
mechanisms of ALA’s renal protective actions that include decreasing oxidative damage, increasing
antioxidant capacities, counteracting inflammation, mitigating renal fibrosis, and attenuating nephron
cell death. It is by these mechanisms that ALA achieves its biological function of alleviating kidney
injury and improving kidney function. Nevertheless, we also point out that more comprehensive,
preclinical, and clinical studies will be needed to make ALA a better therapeutic agent for targeting
kidney disorders.

Keywords: lipoic acid; acute kidney injury; chronic kidney disease; diabetic kidney disease; diabetic
nephropathy; nephroprotection

1. Introduction

The kidney is a vital organ, participating in maintenance of electrolyte balance, blood
pH stability, removal of metabolic waste, and reabsorption of nutrients and minerals [1,2].
The kidney is also involved in erythropoiesis, vitamin D maturation, and blood pressure
regulation [3]. Under pathophysiological conditions such as fasting, long-term starvation,
and insulin resistance, the kidney can also regenerate glucose via gluconeogenesis using
precursor molecules such as glycerol, alanine, pyruvate, and lactate [4]. As such, the
kidney always has a heavy workload and is thus exposed to numerous risk factors that can
cause kidney disease or injuries. There are two types of kidney diseases: chronic kidney
disease (CKD) [5] and acute kidney injury (AKI) [6]. CKD occurs when there’s a gradual
decline in renal function for more than 3 months due to damage to glomerular filtration
and tubular injuries [7]. It has been projected that by 2040, CKD will become the fifth
leading cause of death worldwide [8]. On the other hand, AKI occurs when there’s a rapid
decline in renal function for less than 3 months, and this is indicated by acidosis, fluid
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overload, and abnormalities with electrolytes and hematology changes [7]. It is also known
that individuals with CKD can have an increased risk of AKI [8]. Currently, there are no
pharmaceutical products to cure AKI or CKD. While renal dialysis is often used to prevent
further damage to the kidneys and maintain their function, renal replacement may be the
last resort for patient survival. Therefore, if uncontrolled, AKI and CKD can lead to kidney
failure, which significantly increases morbidity and mortality [7,9]. Hence, there is an
unmet need in fighting kidney disease.

To fight kidney diseases, numerous therapeutic approaches have been explored [10–13].
These include exogenous and endogenous compounds, dietary manipulations, modulation
of metabolic pathways, stem cell approaches, and cell signaling processes [10,11,14–21]. In
this review article, we will focus on the role of lipoic acid in preventing and ameliorating
kidney injuries. In particular, we will focus on studies using animal models for exploring
the protective effects of lipoic acid on kidney injuries. These animal models of kidney
injury include diabetic kidney disease or diabetic nephropathy, renal ischemia-reperfusion
injury, sepsis-induced kidney injury, unilateral ureteral obstruction (UUO)-induced kidney
injury, cisplatin-induced kidney injury, cadmium-induced kidney injury, folic acid-induced
kidney injury, and iron-induced acute kidney injury (Figure 1).
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Figure 1. Animal models of kidney injury discussed in this article. These models include both acute
kidney injury and chronic kidney disease.

2. Alpha-Lipoic Acid

ALA is a naturally occurring dithiol compound [22]. It is a cofactor for α-ketoglutarate
dehydrogenase, branched-chain amino acid dehydrogenase, and pyruvate dehydroge-
nase [23–25] (Figure 2). Therefore, ALA is an energy modulator [26,27] (Figure 3). More-
over, due to its capability of exchanging thiol groups with other thiol-containing molecules,
such as glutathione and protein’s cysteine residues, ALA is also known as a redox mod-
ulator [26–28] (Figure 3). ALA is often referred to as a universal antioxidant because it
can act as an antioxidant in both lipophilic and hydrophilic settings to reduce byproducts
of oxidative metabolism, such as reactive oxygen species (ROS) and reactive nitrogen
species (RNS) (Figure 4) [29]. ALA can also chelate metals such as zinc, iron, and copper
and regenerate endogenous antioxidants—such as glutathione—and exogenous vitamin
antioxidants—such as vitamins C and E—with minimal side effects [30] (Figure 4). More
importantly, ALA can also inhibit inflammation by targeting NF-KB and decreasing the
release of inflammatory cytokines (Figure 4). Therefore, it has been demonstrated that
by scavenging oxygen free radicals, ALA could increase glomerular function and de-
crease renal inflammation [31]. Studies have also shown that treatment with ALA can
decrease acute kidney injury by lowering serum blood urea nitrogen, creatinine levels,
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tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β),
thereby decreasing endothelin-1 vasoconstriction, neutrophil diffusion, and inflammation
in the kidneys.
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Figure 2. Lipoic acid is a cofactor of mitochondrial 2-ketoacid dehydrogenase complex, including
pyruvate dehydrogenase complex, α-ketoglutarate dehydrogenase complex, and branched-chain
amino acid dehydrogenase complex. The E1 subunit is 2-ketoacid decarboxylase using TPP as a
cofactor; the E2 subunit is a dihydrolipoamide acyltransferase using lipoic acid as a cofactor; the
E3 subunit is a dihydrolipoamide dehydrogenase, which uses NAD+ as an electron acceptor for the
oxidation of the lipoyl group linked to the E2 subunit. E3 catalyzes the formation of the oxidized
form of lipoic acid and generates NADH in the meantime [32–34].
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3. Protective Roles of α-Lipoic Acid (ALA) in Kidney Injury

Kidney disorders can be induced by a number of insults, such as diabetes, ischemic
reperfusion, drug toxicity, contrast media, and medications [7]. If not controlled, AKI can
lead to renal failure with a 20% mortality rate [25]. AKI is characterized by an increase in
serum creatinine, oliguria, and the presence of kidney damage markers such as albuminuria,
electrolyte abnormalities due to tubular disorders, or structural damage seen in imaging
or histology [9]. ALA prophylaxis has been shown to decrease renal tubular injury scores,
urinary damage markers, serum creatinine structural damage, and increase glomerular
filtration [35]. In the following sections, we will discuss the nephroprotective effects and
the underlying protective mechanisms of ALA in a variety of animal models of kidney
injury, as indicated in Figure 1.

3.1. Diabetic Nephropathy

Diabetic nephropathy (DN), also known as diabetic kidney disease (DKD) [36–38],
is a major cause of CKD and end-stage kidney failure in diabetic patients [39–41]. It has
been well-established that mitochondrial dysfunction contributes to DKD, and the mito-
chondrion is a target for fighting DKD [42–44]. DN can be considered a microvascular
complication from type 1 or type 2 diabetes mellitus [7,41]. This diabetic kidney disease
is characterized by a decrease in glomerular filtration, proteinuria, and renal fibrosis [7].
Hyperglycemia increases oxidative stress, leading to the early overproduction of reactive
oxygen species (ROS) [45] and dysregulation of glutathione metabolic pathways [7]. Malon-
dialdehyde (MDA) is the end product of lipid peroxidation and has been commonly used
as a good marker of free radicals and oxidative stress [46–49]. Studies have shown that pre-
treatment with ALA decreased MDA content and ameliorated renal oxidative stress [32,50].
Lipoamide, a derivative of ALA, has been demonstrated to inhibit kidney fibrosis in di-
abetes by enhancing mitochondrial function and regulating the expression of activation
of transcriptional factor retinal X receptor alpha [51]. In a rat model of diabetes induced
by nicotinamide together with streptozotocin, a less time-consuming approach in creating
rodent models of diabetes [52], Dugbartey et al. have also demonstrated that ALA’s renal
protective mechanism involves activation of the renal cystathionine γ-lyase/hydrogen
sulfide system [53]. It has also been demonstrated that ALA has a synergistic effect on
attenuating serum levels of inflammatory cytokines and improving kidney function in
diabetic animals when combined with the angiotensin II receptor inhibitor valsartan [54].
Figure 5 shows compelling evidence of histological staining that ALA exhibits strong pro-
tective effects on diabetic kidneys in a type 2 diabetes animal model [55]. Another potential
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mechanism of ALA’s nephroprotection in diabetes is its ability to activate the Nrf2 signaling
pathway, leading to upregulation of the second-phase cytoprotective proteins such as heme
oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1) [56–58]. It should be
pointed out that while ALA is nephroprotective in diabetic kidney disease, it may impose
pro-oxidant or toxic effects and could fail to serve as an Nrf2 inducer under certain patho-
physiological conditions [59–61]. Additionally, while ALA has been thought to activate
insulin signaling pathways to combat diabetes [28] and has been shown to prevent high
fructose-induced cardiometabolic disorders and renal dysfunction [62], it has also been
reported that ALA could only attenuate proteinuria and oxidative stress without slowing
progression of diabetic renal failure [63].
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Figure 5. Protective effects of lipoic acid on diabetic kidney disease. Histological staining of the
kidney tissues derived from control, diabetic, and diabetic + lipoic acid treatment. This figure was
reproduced from reference [55]. For all the microscopic images, the amplification magnitude is
×800. (A) normal control group; (B) diabetic control group; (C) diabetic + ALA group. Glomerular
hypertrophy, mesangial region expansion, proliferation of mesangial cells, and inflammatory cell
filtration could also be observed in H&E staining. Disruption of glomerular basement membrane
and mesangial region expansion could also be observed in PAS staining. Additionally, collagen fiber
staining shows an increased intensity in the diabetic control group but exhibits a significant decrease
in ALA-treated animals. For PAS staining, the red arrow indicates thickening and deformation in the
glomerular basement membrane in the diabetic kidney. For Masson’s stained sections, the red arrows
indicate the increased intensity of collagen fiber stain in the diabetic kidney.

3.2. Sepsis-Induced Kidney Injury

Sepsis is potentially a life-threatening pathological condition due to an overdriving
inflammatory response to bacterial infection [64–66]. Severe sepsis can cause multi-organ
failures, with the kidney being the most-affected organ [67,68]. It has been estimated
that nearly 50% of septic patients would develop acute kidney injury, and there are no
effective treatments for septic AKI [69]. In this regard, numerous investigators have
comprehensively evaluated ALA’s protective and therapeutic values in sepsis-induced AKI
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modeled by injection of lipopolysaccharides, though cacal puncture and ligation (CPL)-
induced septic AKI have been occasionally used [22,70]. It has been demonstrated that ALA
can protect against septic kidney injury by enhancing autophagy [71]. Moreover, ALA may
also ameliorate sepsis-induced AKI by counteracting inflammation via inhibition of the
NF-KB signaling pathway [72], attenuating mitochondrial oxidative stress, and preserving
the type 3 Na+/H+ exchanger and aquaporin 2 expression in the kidney [73]. ALA can also
inhibit the release of tumor necrosis factor-α, interleukin (IL)-6, and IL-1β into the serum
and suppress the expression of inducible nitric oxide synthase [22] in septic AKI. Therefore,
ALA could be a promising natural product for the treatment of septic AKI.

3.3. Renal Ischemic Reperfusion

Ischemia occurs when there is a decrease in blood perfusion and the blood flow to
organs is reduced [74]; this is due to many causes, such as thrombi, trauma, and atheroscle-
rosis [75]. To prevent tissue damage and necrosis, ischemia is resolved by reperfusion [75].
Although ischemic reperfusion is essential to prevent tissue necrosis, it can also cause in-
flammation and an increase in reactive oxygen species and reactive nitrogen species [75–77].
Studies have shown that pretreatment of ALA can ameliorate damage to the kidneys, retina,
nervous system, liver, intestines, and more [75]. The underlying protective mechanisms of
ALA in renal ischemia reperfusion injury may be multifactorial, including counteracting
oxidative damage [32,75] and downregulation of channels, enzymes, and transporters, such
as aquaporins and sodium transporters, as well as sodium-potassium ATPase and nitric
oxide synthase isoforms [78]. ALA may also protect renal ischemia reperfusion injury by
mitigating neutrophil infiltration and inhibiting the release of inflammatory mediators [79].
Studies have also demonstrated that renal cortical structure damage induced by limb
ischemia-reperfusion injury can be ameliorated by ALA [80] and ALA, and when combined
with the xanthine oxidase inhibitor febuxostat, shows superior protective effects on renal
ischemia reperfusion injury [81]. ALA may also prevent renal dysfunction and kidney
injury by suppressing the overexpression of endothelin-1 in renal ischemia reperfusion
injury [82].

3.4. Unilateral Ureteral Obstruction (UUO)-Induced Kidney Injury

The unilateral ureteral obstruction (UUO) animal model of kidney injury has been
widely used to investigate the mechanisms of kidney injury and the therapeutic values
of numerous agents [83–87]. This model has certain advantages in that it is a nonuremic
normotensive disorder in the absence of any apparent inflammatory or toxic insult to
the kidneys [88]. Moreover, the UUO model of kidney injury is also a good model for
studying the pathophysiology of renal fibrosis [89–93]. Therefore, the UUO model of kidney
injury may closely mimic the underlying pathophysiology of human obstructive kidney
injury [94,95]. ALA has been shown to be renoprotective against UUO-induced kidney
injury [88]. Wongmekiat et al. have found that when ALA (60/mg/kg body weight) was
given to rats via i.p. injection two days before UUO induction and continued for a week
after UUO, UUO-induced renal dysfunction, oxidative stress, and production of nitric oxide
and transforming factor-1 were greatly attenuated by ALA treatment [88]. Additionally,
ALA has also been demonstrated to ameliorate the epithelial-mesenchymal transition in
a mouse model of UUO renal injury [96]. These studies thus demonstrate that ALA is
nephroprotective against UUO-induced kidney injury.

3.5. Cisplatin-Induced Nephrotoxicity

Cisplatin is a chemotherapy drug that treats cancer by entering the tumor cells, releas-
ing chloride ions, and becoming hydrated to crosslink with DNA and form DNA adducts
to inhibit tumor cell replication [97,98]. However, cisplatin medication has many side
effects, such as ototoxicity, neurotoxicity, nephrotoxicity, nausea, and vomiting [35,97–99].
Nephrotoxicity occurs because cisplatin is taken up by the proximal tubular cells and can
concentrate up to five times more than the cisplatin in the serum [35,97]. Cisplatin nephro-
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toxicity leads to decreased creatinine clearance, increased serum creatinine levels, increased
urea levels, increased urine output, and decreased glomerular filtration rate [100,101]. Cis-
platin also decreases the antioxidants glutathione S-transferase, glutathione peroxidase,
and superoxide dismutase, causing an elevation in ROS and oxidative markers such as
MDA derived from lipid peroxidation [35,100,102].

Proximal tubules in the kidneys contain large amounts of mitochondria [35]. Hy-
drolyzed cisplatin creates a metabolite with a positive charge, and this accumulates within
mitochondria due to mitochondria’s negatively charged molecules, creating high levels
of oxidative stress [35]. To manage this, mitochondria use endogenous antioxidants such
as lipoic acid to reduce ROS [35]. Studies have shown that ALA protects renal cells
against cisplatin’s toxicity [98], decreases structural proximal tubular damage, and in-
creases glomerular filtration in kidneys [99,103]. ALA has also been shown to lower plasma
creatinine levels and urine output, increase creatinine clearance and urine osmolality, and
normalize sodium excretion in cisplatin kidney injury [101].

3.6. Folic Acid-Induced Nephrotoxicity

High levels of folic acid can cause tubular damage by the detachment and dilation of
tubular cells [104], leading to cell death [105]. Ferroptosis is a type of cell death caused by
iron and lipid peroxidation that occurs during folic acid-induced AKI [106]. When large
amounts of iron are present in the body, ROS are generated, causing lipid peroxidation,
damaging the lipid membranes, and causing cell death [105]. It has been established that
ALA’s antioxidant effects resulted in renoprotection against folic acid-induced kidney dam-
age [105]. In the study by Li et al., there was no significant difference between low doses
and high doses of ALA, indicating that the benefits of ALA are not dose-dependent [105].
Furthermore, ALA may work by blocking p53 from causing ferroptosis and by upregulat-
ing ferritin and ferroportin iron exporters, thus preventing folic acid-induced AKI [105].
Figure 6 shows histologically the visualization of ALA protection against renal injury
induced by folic acid [105].
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Figure 6. Protective effects of lipoic acid on folic acid-induced kidney injury. Histological staining
of the kidney tissues derived from control, folic acid (FA), and folic acid + lipoic acid (LA). This
figure was reproduced from reference [105]. (A) Representative images of hematoxylin & eosin (H&E)
staining reflecting the histological changes in folic acid-induced acute kidney injury and low- and
high-ALA-treated animal groups. (B) Renal damage assessed by Periodic acid/Schiff staining in folic
acid-induced acute kidney injury and low- and high-ALA-treated animal groups.

3.7. Cadmium-Induced Nephrotoxicity

Cadmium is a naturally occurring toxic heavy metal that causes nephrotoxicity [104,107–109].
Cadmium-induced nephrotoxicity increases MDA levels, causing damage to renal mito-
chondria and the renal cortex [110]. Cadmium has also been shown to decrease glutathione
antioxidant (GSH), glutathione peroxidase, catalase, and superoxide dismutase (SOD) [110].
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Treatment with ALA functioned as an antioxidant to decrease MDA and apoptosis and
chelate cadmium to lower cadmium damage to the kidneys [111]. ALA also lowered
oxidative stress, promoted glutathione-related endogenous enzymes, and prevented mito-
chondrial apoptosis in cadmium-induced kidney injury [110–112].

3.8. Iron-Induced Acute Kidney Injury

Iron has been thought to contribute to both AKI and CKD [113–118]. Indeed, it has
been observed that renal tubules are exposed to elevated levels of iron in patients with kid-
ney disease, which is likely due to increased filtration of iron and iron-containing proteins
through the glomerular apparatus [114,117,119]. Iron can also aggravate diabetic kidney
disease by increasing oxidative stress [120,121]. Therefore, iron-induced animal models
of kidney injury have been a valuable tool in studying the mechanisms of iron-induced
kidney injury and testing the therapeutic effects of natural products or pharmaceutical
drugs [122–125]. In this regard, ALA has been shown to be nephroprotective in ion-induced
kidney injury [126,127]. In an iron-overloading rat model of kidney injury, ALA was found
to exhibit antioxidant effects by attenuating oxidative damage [128]. ALA was also found
to inhibit p38 MAPK signaling and NADPH oxidase 4 expression in iron-induced kidney
injury [127]. It should be noted that all of these protective effects of ALA in iron-induced
kidney injury may be partly due to its iron-chelating property [128–131], which lowers the
availability of free iron.

4. Miscellaneous

1. Aging is linked to functional decline in the kidneys [132,133]. It has been established
that there are numerous changes in the molecular, structural, and morphological levels
in the kidney [134,135]. In aging kidneys, there are increased levels of oxidative stress,
as reflected by increased lipid peroxidation, mitochondrial dysfunction, and decreased
levels of antioxidants, including superoxide dismutase, catalase, and glutathione peroxi-
dase [136–139]. Not surprisingly, ALA could alleviate all of these deleterious changes in
aged kidneys [136–138]. Additionally, ALA given as a dietary supplement has been shown
to be able to reverse age-related decline in kidney function and serum total proteins [140].
These studies demonstrate the protective and preventative effects of ALA on kidney aging.

2. Sleep apnea is a disorder that causes intermittent hypoxia, which can further cause
hypoxia-associated renal injury [141–144]. ALA has been found to be protective against
renal injury induced by sleep apnea hypoxia [145]. In a study using a mouse model of
sleep apnea, Abuyassin et al. have demonstrated that in the animals that underwent inter-
mittent hypoxia and were treated with an ALA-enhanced diet, renal oxidative stress and
inflammation were lower than those exposed to intermittent hypoxia only. Moreover, renal
cell death and tubular injury were also deceased in the intermittent hypoxia + ALA group,
and treatment with ALA mitigated intermittent hypoxia-induced glomerular hypertrophy
and decreased albuminuria [145]. Therefore, ALA is nephroprotective in hypoxia-related
kidney injury induced by sleep apnea.

3. Functional impairment of the kidneys is also a frequent disorder in the presence of
high blood pressure, also known as hypertension. It has been thought that renal damage
linked to hypertension is caused by oxidative stress [146–148]. In this regard, ALA has
also been tested for its antioxidant role in hypertension-induced kidney injury. Martinelli
et al. [149] have found that when spontaneous hypertensive rats with high blood pressure
were treated by a racemic mixture of ALA, renal oxidative damage was attenuated, with
a significant improvement in kidney function accompanied by ameliorated glomerular
and tubular injury. This study also indicates that when exogenous ALA is administered, a
racemic mixture of ALA is often used [149].

4. Chronic kidney disease (CKD) can be created by feeding animals with a high
concentration of adenine [150–152]. In fact, adenine-induced CKD is a popular model for
studying the pathophysiology of chronic kidney injury and the therapeutic effects of a
variety of natural products or drugs [153–155]. Nonetheless, the nephroprotective role
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of ALA has not been comprehensively evaluated in this animal model, which should be
investigated in the future. Additionally, the protective effects of ALA on each of the five
stages of chronic kidney disease [156–158] should also be studied in this animal model
of CKD.

5. IgA nephropathy (IgAN) is known to cause glomerulonephritis due to deposition
of IgA 1 [159–161] and is a prevalent chronic kidney disease [162–164]. Its major feature
is mesangial cells and mononuclear leukocyte infiltration in renal interstitial tissues and
the glomerulus. It has been demonstrated that oxidative stress-induced protein oxidation
and lipid peroxidation is one of the underlying pathogenic mechanisms [165–169]. While
animal models of IgAN are available for studying the pathogenesis of IgAN and exploring
therapeutic approaches [170,171], the potential effects of ALA in this kidney disorder have
not been evaluated. Nonetheless, it is conceivable that ALA would exhibit nephroprotective
effects in IgAN, given its powerful antioxidant capacity.

6. It is also worth noting that studies comparing the renoprotective effect of ALA
with other agents have also been conducted in recent years. For example, ALA was
compared with a traditional Chinese medicine Huangkui capsule in rats with diabetic
nephropathy [172]. The authors found that ALA is equivalent to the Huangkui capsule in
renoprotection against diabetic kidney injury, and both agents improve kidney function
by attenuating oxidative stress and downregulating the activation of the p38MAPK and
Akt pathways. ALA has also been compared with N-acetylcysteine (NAC) in one study,
whereby the authors found that NAC is better than ALA in protecting oxidative kidney
injury induced by the chemotherapeutic drug ifosfamide, which is highly toxic to the
kidney [173–176]. However, the authors used an NAC concentration (200 mg/kg) that
was twice that of ALA (100 mg/kg) [176]. Hence, the conclusion that NAC is more
renoprotective than ALA in this animal model of kidney injury may not be definitive.
It should also be noted that a recent report indicates that ALA can also minimize renal
toxicity induced by gold nanoparticles, which are often used as drug carriers [177]. In
fact, poly(lipoic acid) nanoparticles themselves can also be used as a therapeutic tool for
delivering active compounds [178].

5. Summary

In this article, we have reviewed the protective mechanisms of ALA in various animal
models of kidney injury. These models cover both AKI and CKD, which include DKD,
ischemia-reperfusion-induced kidney injury, sepsis-induced kidney injury, and kidney
disorders induced by UUO, cisplatin, cadmium, folic acid, and iron. Common underlying
mechanisms of ALA’s renoprotection are summarized in Figure 7.
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As further summarized in Table 1, these mechanisms include decreasing oxidative
stress, increasing endogenous antioxidant defense capacities, counteracting inflammation
by inhibiting NF-kB and release of inflammatory cytokines, mitigating renal fibrosis, and
decreasing cell death, such as apoptosis, ferroptosis, and necrosis. The eventual outcome
of ALA treatment, regardless of the kidney injury models and the protective mechanisms
unraveled, is the improvement of kidney function. Therefore, ALA is a promising agent
targeting kidney disorders.

Table 1. Mechanisms of ALA’s renal protection in various animal models of kidney injury discussed
in this review.

Model of Kidney Injury Mechanism Reference

Diabetic kidney injury
Activating Nrf2, decreasing
oxidative stress, enhancing mitochondrial
function, and inhibiting fibrosis

[7,29,50,51]

Sepsis-induced kidney
injury

Enhancing autophagy, inhibiting NF-KB,
attenuating mitochondrial oxidative stress,
inhibiting inflammatory cytokine release

[22,71–73]

Ischemia/reperfusion
injury

Counteracting oxidative stress,
downregulating Na-K-ATPase and NOS,
mitigating neutrophil infiltration,
inhibiting inflammation, and
suppressing endothelin-1 upregulation

[75,78–82]

UUO-induced kidney
injury

Attenuating oxidative stress,
decreasing nitric oxide production, decreasing
transforming factor-1 expression, and
ameliorating mesenchymal transition

[88,96]

Cisplatin-induced kidney
injury

Increasing glomerular filtration,
lowering plasma creatinine levels,
increasing creatinine clearance, and
attenuating oxidative damage

[98,99,101,103]

FA-induced kidney injury Blocking p53 from causing ferroptosis [105]

Cadmium-induced kidney
injury

Chelating cadmium,
decreasing oxidative stress,
elevating glutathione content, and
decreasing apoptosis

[108,110–112]

Iron-induced kidney
injury

Attenuating oxidative damage,
inhibiting p38 MAPK,
inhibiting NADPH oxidase4, and
chelating iron

[126–129]

6. Future Perspectives

Most studies discussed in this review article utilized systemic administration of ALA
in their studies of the protective effects of ALA on the respective animal models of kidney
injury. Systemic administration of ALA will certainly result in distribution of ALA to
the organs or tissues that may not need ALA, whereby excess ALA may pose deleterious
effects [59]. Therefore, future studies will need to focus on developing approaches by which
ALA will only be delivered to the kidneys. Such studies of target delivery of ALA to the
kidney will certainly provide more insights into the protective mechanisms of ALA in
different kidney injury models, elucidating both redox- and energy-modulatory properties
of ALA. In this regard, nanoparticle delivery or nanomedicines of ALA targeting the kidney
could be a promising approach [179–184]. Additionally, the combination of ALA with other
natural products in treating kidney injuries and preventing the AKI to CKD transition will
be interesting to investigate. Moreover, comprehensive preclinical and human studies are
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needed to evaluate the efficacy of ALA in the settings of AKI and CKD, as well as the AKI
to CKD transition.
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