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Abstract: Despite the importance of hypercholesterolemia in children, it is overlooked, and there are
currently few metabolomics-based approaches available to understand its molecular mechanisms.
Children from a birth cohort had their cholesterol levels measured with the aim of identifying the
metabolites for the molecular biological pathways of childhood hypercholesterolemia. One hundred
and twenty-five children were enrolled and stratified into three groups according to cholesterol
levels (acceptable, <170 mg/dL, n = 42; borderline, 170–200 mg/dL, n = 52; and high, >200 mg/dL,
n = 31). Plasma metabolomic profiles were obtained by using 1H-nuclear magnetic resonance
(NMR) spectroscopy, and partial least squares-discriminant analysis (PLS-DA) was applied using
the MetaboAnalyst 5.0 platform. Metabolites significantly associated with different cholesterol
statuses were identified, and random forest classifier models were used to rank the importance of
these metabolites. Their associations with serum lipid profile and functional metabolic pathways
related to hypercholesterolemia were also assessed. Cholesterol level was significantly positively
correlated with LDL-C and Apo-B level, as well as HDL-C and Apo-A1 level separately, whereas
HDL-C was negatively correlated with triglyceride level (p < 0.01). Eight metabolites including
tyrosine, glutamic acid, ornithine, lysine, alanine, creatinine, oxoglutaric acid, and creatine were
significantly associated with the different statuses of cholesterol level. Among them, glutamic
acid and tyrosine had the highest importance for different cholesterol statuses using random forest
regression models. Carbohydrate and amino acid metabolisms were significantly associated with
different cholesterol statuses, with glutamic acid being involved in all amino acid metabolic pathways
(FDR-adjusted p < 0.01). Hypercholesterolemia is a significant health concern among children, with
up to 25% having high cholesterol levels. Glutamic acid and tyrosine are crucial amino acids in
lipid metabolism, with glutamic-acid-related amino acid metabolism playing a significant role in
regulating cholesterol levels.

Keywords: childhood hypercholesterolemia; glutamic acid; tyrosine; metabolomics

1. Introduction

Dyslipidemia is a medical condition characterized by abnormal levels of lipids in
the blood, such as cholesterol and triglycerides. It is also known as one of the strongest
risk factors for cardiovascular disease, with the increasing fact that atherosclerosis begins
in childhood. In clinics, there is growing attention regarding recognizing and treating of
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dyslipidemia in childhood to prevent or delay cardiovascular events in adulthood [1–3].
The management of dyslipidemia in childhood typically involves lifestyle changes such
as increased physical activity, a healthy diet, and weight management. However, early
detection and intervention are crucial in managing dyslipidemia in childhood.

Total cholesterol, the sum of non–high-density lipoprotein cholesterol (non–HDL-C)
and HDL cholesterol (HDL-C), is the most often discussed factor for pediatric dyslipi-
demia [4]. Other lipid markers, such as low-density lipoprotein (LDL) cholesterol, triglyc-
erides, and apolipoprotein B (Apo-B), are also important in the diagnosis and management
of dyslipidemia. Elevated levels of LDL cholesterol and triglycerides, as well as low levels
of HDL cholesterol, are associated with an increased risk of cardiovascular disease [5].
Elevated levels of Apo-B are strongly associated with an increased risk of cardiovascular
disease, and some experts argue that Apo-B may be a more accurate predictor of cardio-
vascular risk than LDL cholesterol [6]. Screening of lipid profiles and early intervention
in childhood can help prevent or delay the onset of dyslipidemia and reduce the risk of
cardiovascular disease and other complications later in life.

In clinical practice, attention has been given to a hereditary form of pediatric hyper-
cholesterolemia known as familial hypercholesterolemia. This condition is commonly
inherited in an autosomal dominant pattern and is believed to affect approximately 1 in
250 individuals globally, rendering it one of the most frequently occurring genetic disor-
ders [7]. Familial hypercholesterolemia is the result of mutations in genes responsible for
the production of receptors that facilitate the removal of cholesterol from the bloodstream,
leading to excessively high levels of cholesterol in the blood from birth. A recent study has
explored the molecular characteristics of this genetic pediatric hypercholesterolemia [8].
However, the molecular mechanism of hypercholesterolemia in healthy children from birth
remains understudied.

Despite the few reports, several molecular pathways have been implicated in the
development of hypercholesterolemia. One major key mechanism of hypercholesterolemia
involves the overproduction of low-density lipoprotein particles by the liver, which can
lead to an accumulation of cholesterol in the blood [9]. In addition, chronic inflammation
can lead to changes in lipid metabolism, including alterations in the production of oxidized
lipids and changes in the composition of lipoproteins [10]. There is also growing evidence
suggesting an association between specific amino acids and hypercholesterolemia. For
example, increased levels of branched-chain amino acids (BCAAs), linked to insulin resis-
tance, have reported to be associated with an increased risk of hypercholesterolemia and
cardiovascular disease [11]. Holistically, the molecular mechanisms underlying hyperc-
holesterolemia are complex and involve multiple pathways and factors.

A new platform of metabolomics has emerged as a powerful tool for studying human
health, allowing for the simultaneous measurement of thousands of small molecules in
biological samples, such as blood, urine, and tissue [12]. This technology has created oppor-
tunities to understand the underlying molecular mechanisms of various human diseases. It
has also been applied to a wide range of health conditions, including metabolic disorders,
cardiovascular disease, cancer, and neurological disorders, providing novel insights into
disease mechanisms and identifying new biomarkers for diagnosis and therapy [13].

Metabolomics is utilized to analyze the specific biochemical molecules and metabolic
pathways of an organism. Nuclear magnetic resonance (NMR) spectroscopy is a powerful
analytical technique used in metabolomics research, known for its high reproducibility and
ability to provide high-throughput molecular identification. Blood contains a wide range of
metabolically active compounds and is commonly used to estimate the body’s cholesterol
status, making it suitable for investigating the systemic biological metabolism and lipids.

This study aimed to identify the metabolic signatures of different cholesterol statuses
and their relationship with the lipid profile in children using 1H-NMR spectroscopy. A
comprehensive investigation of using a metabolomics-based approach and further func-
tional pathway analysis can not only gain insight into the molecular mechanism of lipid
metabolism but also provide potential health strategies for childhood hypercholesterolemia.
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2. Materials and Methods
2.1. Study Population

A prospective cross-sectional controlled study was conducted to investigate the
metabolomic profiles of blood in children with cholesterol levels. Children recruited in a
birth cohort launched in Taiwan and who had completed a 7-year follow-up period since
birth were enrolled into this study. Blood samples were obtained at the age of 7 years old.
Children with any chronic health conditions including congenital heart disease, congenital
chromosome or genetic anomaly, and endocrine disorders such as diabetes or thyroid dis-
ease were excluded. In addition, to minimize the potential con-founding effects of genetic
familial hypercholesterolemia, children with a family health history of early heart disease
or hypercholesterolemia were excluded from the study. Based on the guidelines from
the American College of Cardiology (ACC), these children were stratified into 3 groups
according to cholesterol level (acceptable, <170 mg/dL; borderline, 170–200 mg/dL; and
high, >200 mg/dL) [14]. Information regarding demographic data including the children’s
age, sex, and body mass index (BMI) was collected.

2.2. Serum Cholesterol and Lipid Profile Measurement

Blood samples were collected at the outpatient clinics after the subjects had fasted for
at least 8 hours. The collected samples were frozen immediately and stored at −80 ◦C until
required. Total cholesterol concentrations as well as triglyceride, low-density lipoprotein
(LDL), and high-density lipoprotein (HDL) levels were measured by an automated enzy-
matic colorimetric assay (Hitachi LST 008, Tokyo, Japan). Apolipoprotein A1 (Apo-A1) and
Apo-B levels were measured using an immunoturbidimetric assay with an automatic bio-
chemical analyzer. Serum adiponectin and leptin levels were measured by enzyme-linked
immunosorbent assay (ELISA) (Tecan Sunrise, Mannedorf, Switzerland).

2.3. H–NMR Spectroscopy

As previously described [15], plasma samples were prepared prior to spectrum acqui-
sition. The prepared 500 µL plasma was mixed with 500 µL phosphate buffer containing
0.08% 3-(trimethylsilyl)-propionic-2,2,3,3-d4 acid sodium salt (TSP) as an internal chemical
shift reference. A standard 5mm NMR tube was later filled with an aliquot of 600 µL of the
mixed preparation for analysis. 1H-NMR spectra were obtained from a Bruker Advance
600 MHz spectrometer (Bruker-Biospin GmbH, Karlsruhe, Germany) at the Chang Gung
Healthy Aging Research Center, Taoyuan, Taiwan.

2.4. NMR Data Processing and Analysis

The raw 1H-NMR spectra were processed using NMRProcFlow online software to
calibrate ppm, correct baseline, bucket spectra, and normalize data. Spectra bucketing was
applied using intelligent bucketing and variable size bucketing. Chenomx NMR Suite 9.0
professional software (Chenomx Inc., Edmonton, AB, Canada) was then utilized to identify
metabolites. According to previously established NMR data analysis methods [16], general-
ized log transformation (glog) and Pareto scaling were applied to the 1H-NMR spectra data.
Partial least squares-discriminant analysis (PLS-DA) in MetaboAnalyst (version 5.0) was
used for identifying the metabolites used for discrimination between the groups. Metabo-
lites with a variable importance in projection (VIP) score ≥ 1.0 with a p-value < 0.05 were
considered significant. Functional metabolic pathways were pictured based on the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database.

2.5. Statistical Analysis

Comparisons of baseline characteristics between groups with different cholesterol sta-
tuses were performed with univariable parametric and non-parametric tests as appropriate.
Differences in metabolites were assessed by Mann–Whitney U test on the MetaboAnalyst
web server. A false discovery rate (FDR) of 5% was applied for correcting for multiple com-
parisons. The correlation coefficients between blood metabolites and serum lipid profiles
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were calculated using Spearman’s rank correlation test in R software (Lucent Technologies,
Murray Hill, NJ, USA, version 4.2.1). Random forest classifier models were used to rank
features with the largest contribution toward metabolite and demographic data with the
Boruta feature selection algorithm by a 20-fold stratified cross-validation testing procedure.
Statistical analysis was performed using the Statistical Package for the Social Sciences (SPSS
Statistics for Windows Version 20.0; Armonk, NY, USA). All statistical hypothesis tests
were 2-tailed and a p-value < 0.05 was considered significant.

3. Results
3.1. Population Characteristics

A total of 125 subjects were enrolled into this study, including 42, 52, and 31 children
with acceptable, borderline, and high levels of cholesterol, respectively. Table 1 shows the
baseline characteristics among different cholesterol status groups. There was a significantly
higher ratio of female children with high cholesterol levels. Lipid profiles including TG,
LDL, HDL, Apo-A1, and Apo-B were significantly increased with increasing cholesterol
levels (p < 0.01). However, no significant differences were observed in age, height, weight,
and BMI in children with different cholesterol statuses.

Table 1. Baseline characteristics of 125 children in relation to different status of cholesterol level.

Characteristics Acceptable
(n = 42)

Borderline
(n = 52)

High
(n = 31) p-Values

Age (yr) 7.12 ± 0.25 7.20 ± 0.31 7.12 ± 0.06 0.683
Sex, male 27 (64.3%) 31 (60.8%) 11 (35.5%) 0.031

Height (m) 1.23 ± 0.06 1.24 ± 0.05 1.23 ± 0.06 0.829
Weight (kg) 24.92 ± 6.77 25.08 ± 5.31 23.96 ± 5.63 0.574

BMI (kg/m2) 16.33 ± 3.52 16.29 ± 2.50 15.82 ± 2.84 0.406
Obesity 5 (12%) 7 (13%) 6 (19%) 0.648

Lipid profile
Cholesterol 151.64 ± 16.92 185.25 ± 8.48 223.72 ± 21.45 <0.001

TG 47.55 ± 22.68 57.60 ± 36.90 69.28 ± 34.86 0.010
LDL 82.92 ± 14.46 103.9 ± 14.92 130.28 ± 12.48 <0.001
HDL 52.33 ± 9.10 60.99 ±12.74 68.89 ± 13.22 <0.001

Apo-A1 134.64 ± 18.05 148.85 ± 18.42 165.48 ± 20.95 <0.001
Apo-B 56.95 ± 9.92 70.87 ±9.47 87.17 ± 11.02 <0.001

Adiponectin 21.62 + 12.02 20.53 ± 9.17 23.51 ± 10.30 0.275
Leptin 5.07 ± 7.03 6.25 ± 8.58 5.53 ± 5.93 0.571

Data shown are mean ± s.d. or number (%) of patients as appropriate. BMI, body mass index; m, meter; kg,
kilogram; TG, triglyceride; LDL, low-density lipoprotein; HDL, high-density lipoprotein; Apo, apolipoprotein.
All p-values < 0.05, which is in bold, are significant.

3.2. Identification of Blood Metabolites for the Different Cholesterol Statuses
1H-NMR data from plasma samples were collected and analyzed. One thousand

buckets varied across NMR spectrum, 93 buckets of which corresponded to 39 known
metabolites that were identified using the Chenomx NMR Suite. PLS-DA was used to
identify metabolites discriminated between groups, and the results are shown in Table
S1. Although the p-value of the permutation test between groups showed no significant
differences, the PLS-DA score plots still characterized the differential expressing metabolites
(Figure S1). Metabolites selected by using a cutoff of FDR-adjusted p-value < 0.05 are shown
in Table 2 alongside the expression level of VIP score and fold change. Among them, eight
metabolites, tyrosine, glutamic acid, ornithine, lysine, alanine, creatinine, oxoglutaric acid,
and creatine, were significantly higher in both the high and borderline cholesterol level
group than in the acceptable cholesterol level group (FDR-adjusted p < 0.05).



Nutrients 2023, 15, 1726 5 of 10

Table 2. The VIP score and fold change of metabolites significantly differentially expressed between
children with different cholesterol levels.

High vs. Acceptable Borderline vs.
Acceptable High vs. Borderline

Metabolites
Chemical Shift,

ppm
(Multiplicity)

VIP
Score *

Fold
Change † p ‡ VIP

Score
Fold
Change p VIP

Score
Fold

Change p

Tyrosine 6.860−6.917(dt) 2.26 1.16 0.000 1.62 1.14 0.004 0.85 1.02 0.455
Glutamic acid 2.094−2.130(m) 1.47 1.08 0.001 1.37 1.10 0.002 0.70 0.98 0.774

Ornithine 3.041−3.075(t) 1.65 1.10 0.004 1.73 1.13 0.001 0.75 0.98 0.646
Lysine 3.010−3.030(t) 1.30 1.07 0.007 1.33 1.09 0.003 0.66 0.98 0.683

Alanine 1.455−1.490(q) 1.69 1.14 0.013 1.86 1.18 0.002 0.64 0.96 0.612
Creatinine 3.036−3.041(s) 1.16 1.06 0.013 1.26 1.08 0.004 0.60 0.98 0.571
Lactic acid 1.304−1.340(t) 1.79 1.14 0.020 0.99 1.12 0.168 1.10 1.02 0.434

Oxoglutaric acid 2.980−3.010(dt) 1.10 1.06 0.024 1.24 1.08 0.005 0.76 0.98 0.568
L-Acetylcarnitine 3.182−3.187(d) 1.22 1.08 0.029 0.87 1.06 0.079 0.99 1.01 0.648

Creatine 3.917−3.926(s) 1.18 1.08 0.044 1.31 1.11 0.013 0.68 0.97 0.661
Serine 3.937−3.957(q) 0.85 1.05 0.085 1.36 1.11 0.005 1.13 0.94 0.219

Glucose 4.622−4.656(d) 0.85 1.05 0.099 1.04 1.07 0.026 0.85 0.98 0.563
Pyruvic acid 2.358−2.372(s) 0.71 1.06 0.301 1.69 1.17 0.005 1.48 0.91 0.134

Proline 3.309−3.339(m) 0.60 1.04 0.359 1.89 1.18 0.001 2.00 0.88 0.031

* VIP scores were obtained from PLS-DA. † Fold changes were calculated by dividing the value of metabolites
in children with high or borderline levels of cholesterol by those in children with acceptable levels and those in
children with high levels of cholesterol by those in children with borderline levels. VIP, variable importance in
projection; ppm, parts per million. Multiplicity, dt, doublet of triplet; m, multiplet; t, triplet; q, quartet; s, singlet;
d, doublet. ‡ All FDR-adjusted p-values < 0.05; those in bold are significant.

3.3. Correlation between Blood Metabolites and Lipid Profiles

Cholesterol level was strongly positively correlated with LDL-C and Apo-B levels,
as well as HDL-C and Apo-A1 level separately (p < 0.01). By contrast, HDL-C level was
negatively correlated with triglyceride level (p < 0.01). Tyrosine, oxoglutaric acid, ornithine,
lysine, and glutamic acid showed strong positive correlations with cholesterol, as well as
LDL-C and Apo-B level but not HDL-C and Apo-A1 (Figure 1A, p < 0.01).

Random forest regression models were performed to discriminate children with dif-
ferent cholesterol statuses based on the significantly differentially expressed metabolites
only (Figure 1B) or a combination with baseline characteristics (Figure 1C). Among the
five strongly cholesterol-correlated metabolites, glutamic acid and tyrosine appeared to
have the highest importance in terms of different cholesterol status. However, potential
confounding variables including age, sex, BMI, weight, and height were ranked in the
lowest importance quartile.

3.4. Metabolic Pathway and Function Analysis

The metabolic functional pathways related to cholesterol level are shown in Table 3.
Amino acid metabolisms, including arginine and proline metabolism, alanine, aspartate,
and glutamate metabolism, and arginine biosynthesis, were significantly associated with
cholesterol status (FDR adjusted p < 0.01). Notably, glutamic acid was involved in all
these amino acid metabolic pathways. Figure 2 illustrates a composite representation
of significant metabolites and their potential functional pathways, elucidating the pro-
posed molecular mechanisms. Cholesterol-related metabolites associated with metabolic
pathways appeared to link to TCA cycle metabolism.
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Figure 1. Heatmap of Spearman’s rank correlations of metabolites significantly differentially expressed
within different statuses of cholesterol level with lipid profile levels (A). Color intensity represents the
magnitude of correlation. + symbol means a p-value < 0.05; ++ symbol means a p-value < 0.01. Markers for
differentiating children with different cholesterol statuses identified from random forest classifiers based on
the significantly differentially expressed metabolites with metabolite profile only (B) or a combination with
baseline characteristics (C). Markers are ranked in descending order of their importance to the accuracy of
the model. The boxes represent the 25th–75th percentiles, and black lines indicate the mean.

Table 3. Metabolic and functional pathway of metabolites associated with different statuses of
cholesterol level.

Pathway Names Total Hits Matched Metabolites RawP FDR Function

Arginine and proline
metabolism 38 5 Creatine, Proline, Pyruvate

Glutamic acid, Ornithine 1.700 × 10−5 0.001 Amino acid metabolism

Alanine, aspartate, and
glutamate metabolism 28 4 Alanine, Glutamic acid,

Pyruvate, Oxoglutaric acid 1.016 × 10−4 0.003 Amino acid metabolism

Arginine biosynthesis 14 3 Glutamic acid, Ornithine,
Oxoglutaric acid 2.507 × 10−4 0.005 Amino acid metabolism

D-Glutamine and
D-glutamate metabolism 6 2 Glutamic acid,

Oxoglutaric acid 1.282 × 10−3 0.021 Amino acid metabolism

Glycolysis/
gluconeogenesis 26 3 Pyruvate, Lactic acid,

Glucose 1.669 × 10−3 0.023 Carbohydrate metabolism

Butanoate metabolism 15 2 Glutamic acid,
Oxoglutaric acid 8.538 × 10−3 0.102 Carbohydrate metabolism

Citrate cycle (TCA cycle) 20 2 Oxoglutaric acid, Pyruvate 1.502 × 10−2 0.157 Carbohydrate metabolism

Total is the total number of compounds in the pathway; Hits is the number actually matched from the user
uploaded data; RawP is the original p-value calculated from the enrichment analysis; false discovery rate (FDR) is
the portion of false positives above the user-specified score threshold. TCA, tricarboxylic acid.
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4. Discussion

Hypercholesterolemia is commonly noted in adults with obesity or metabolic syn-
drome, and it is a serious health concern. Of note, there is increased prevalence of hyperc-
holesterolemia in the pediatric population and several studies have reported the increased
risk of further cardiovascular diseases in these children [17,18]. A cross-sectional survey of
the prevalence of hypercholesterolemia revealed a significantly increased rate (from 6.2%
to 13.8%) in school-age children in Taiwan from 1996 to 2006 [19], which is consistent with
approximately 10~13% of children who suffered from hypercholesterolemia in two large
national surveys in America about a decade ago [20,21]. However, in this study, up to 25%
of 7-year-old children had high cholesterol levels (≥200 mg/dL). The changes in lifestyle
and dietary habit in the last decade may particularly explain this finding; however, there
remains an increase in public concerns regarding hypercholesterolemia in children.

The total level of cholesterol varies by age and sex [22]. As in this study, a higher
cholesterol level has been reported in girls including school-age children and adoles-
cents [18,20,21]. During puberty, sexual and other physical maturation occurs as a result
of hormonal changes; in parallel with this, there is a decrease in plasma total cholesterol
levels in young adults [18]. After age 20, the total cholesterol level in plasma increases
progressively and more rapidly in men, accounting for higher total cholesterol levels than
their female counterparts [14]. Despite debate, sex hormones drive changes in regulating
lipoprotein metabolism, playing a role in the hypercholesterolemia in children [23].

A lipid profile is a panel of blood tests used to assess several cholesterol health
parameters. Total cholesterol is defined as the sum of HDL-C, LDL-C, and very low density
lipoprotein (VLDL)-C and is strongly associated with these lipid parameters as in this study.
Furthermore, LDL is a high-Apo-B-containing lipoprotein, whereas HDL is rich in Apo-A1;
this is the reason why cholesterol was correlated with LDL-C and Apo-B and with HDL-C
and Apo-A1 separately in this study. Apart from cholesterol, triglyceride is a type of fat
converted by any excess calories from foods and mostly stored in fat cells for a longer-term
energy source. A strong inverse correlation for triglyceride with HDL-C levels in this study
further supports that hypertriglyceridemia leads to HDL-C consumption via increasing
unstable TG-rich HDL particles, which are the more susceptible to clearance [24].

Several studies have targeted the metabolic mechanism of hyperlipidemia and amino acids
have been reported as important endogenous signaling molecules of lipid metabolism [25,26].
In this study, glutamic-acid-related amino acid metabolisms were strongly associated with
hypercholesterolemia. Glutamic acid, a by-product of branched-chain amino acid (BCAAs)
catabolism, has been shown to be increased in obesity, especially in the visceral area [27–29].
Increased visceral fat accumulation is acknowledged as a risk factor for dyslipidemia
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through the development of insulin resistance [30], which contributes to the strong positive
correlation between glutamic acid and cholesterol level in this study.

Apart from glutamic acid, tyrosine, a nonessential amino acid synthesized in the body,
was also an important amino acid strongly associated with hypercholesterolemia in this
study. A longitudinal analysis revealed a relationship between tyrosine metabolism and
insulin resistance in obese children [31], leading to the high level of cholesterol in plasma.
In addition, many studies have clarified that dietary tyrosine causes hypercholesterolemia
in rodents, probably through the ability of tyrosine to influence liver metabolism towards
the increased synthesis of lipids [32–34].

Carbohydrate and amino acid metabolism are both confluent to the energy-producing
TCA cycle, which is also a crucial step in the metabolism of fat [35]. Glucose is metabolized
through glycolysis to form acetyl-CoA, which is a precursor of the biosynthesis to choles-
terol. Clinically, a diet high in refined carbohydrates and added sugars can lead to weight
gain with a risk for hypercholesterolemia [36]. Carbohydrate metabolism was observed to
be involved in the metabolic pathway related to the different statuses of cholesterol level in
this study, suggesting that the regulation of high carbohydrate intake may be responsible
for the metabolism of lipids altering the cholesterol levels.

The limitation of this study is primarily attributed to the small sample size and
the relatively low sensitivity of NMR-based metabolomic analysis technique employed.
However, 1H-NMR spectroscopy not only ensures a high analytical reproducibility but also
a combination with the utilization of the PLS-DA method for metabolomic analysis has been
shown to be efficient in identifying a wide range of metabolites associated with variations in
cholesterol levels with a high degree of precision. Despite the lack of genetic confirmation
for the potential existence of familial hypercholesterolemia, it is relatively low in prevalence
and an extreme exclusion by family healthy history minimized its influence on the analytic
results in this study. Furthermore, an age-matched design in this study eliminates the
largest variability for metabolic profiles among different age groups. Most importantly, the
selection of pre-pubertal age children in this study is expected to provide credible results
for avoiding the influence of puberty on lipid profiles in relation to hypercholesterolemia.

In conclusion, this study found that as many as 25% of children had high levels of
cholesterol (>200 mg/dL), highlighting the significance of hypercholesterolemia as a health
concern among the pediatric population. Amino acid and carbohydrate metabolism are
both significantly involved in lipid metabolism. However, glutamic acid and tyrosine
are the most important amino acids associated with hypercholesterolemia. The metabolic
pathways related to glutamic acid appear to be strongly associated with different cholesterol
statuses, suggesting that amino acids play a crucial role in regulating lipid metabolism.
Nonetheless, further functional studies in independent larger cohorts are warranted to
investigate these associations more comprehensively.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu15071726/s1, Figure S1: PLS-DA score plots from the analysis
of plasma 1H-NMR spectra between high and acceptable levels of cholesterol (A), between borderline
and acceptable levels of cholesterol (B), and between high and borderline levels of cholesterol (C). 1,
acceptable cholesterol level; 2, borderline cholesterol level; 3, high cholesterol level; x axis, component
1 (% of total variance); y axis, component 2 (% of total variance); Table S1: PLS-DA parameters and
permutation test for distinguishing between children with different statuses of cholesterol level.
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