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Abstract: The aim of this study was to investigate the potential protective effects of walnut oligopep-
tides (WOPs) on indomethacin-induced gastric ulcers in rats. The rats were divided into the following
groups: normal group, model group, omeprazole group (0.02 g/kg), and WOPs groups (0.22, 0.44,
and 0.88 g/kg, respectively). After receiving gavage once per day for 30 consecutive days, the rats
were injected intraperitoneally with indomethacin 48 mg/kg to induce gastric ulcers. Then, the serum
inflammatory cytokines and gastric prostaglandin E2 (PGE2), oxidative stress-related indicators,
and the RNA expression of COX-1 and COX-2 were measured. The results revealed that WOPs
confer significant gastroprotection on gastric ulcers caused by indomethacin, regulating inflammatory
cytokines, oxidative stress, and prostaglandins synthesis, and enhancing the expression of COX-1 and
COX-2 in gastric tissue, thus exerting its protective effect on gastric mucosa. The gastroprotective
mechanism may be related to the involvement of the arachidonic acid metabolism and upregulation
of tryptophan, phenylalanine, tyrosine, and alpha-Linolenic acid metabolism synthesis in vivo.

Keywords: walnut oligopeptides; gastric ulcer; indomethacin; prostaglandin E2; arachidonic acid
metabolism

1. Introduction

Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most commonly used medica-
tions in the world. This category includes aspirin, indomethacin, diclofenac, and ibuprofen,
which are widely used for arthritis, inflammation, pain, fever treatment, and cardiovascular
protection due to their powerful anti-inflammatory, anti-pyrogenic, and anti-thrombotic
properties [1]. However, NSAIDs have various adverse effects on the gastrointestinal tract,
liver, nervous, urinary tract, blood, and cardiovascular system, especially those occurring
in the stomach. These effects can lead to issues, such as gastric mucosal erosion, ulcer,
hemorrhage, and perforation [2]. In recent decades, with the increasing clinical applica-
tion range and dosage, the incidence rate of NSAIDs-related gastric ulcer is also on the
rise [3]. The annual incidence rate of NSAID-related upper gastrointestinal clinical events
is 2.7~4.5%, and among patients taking NSAIDs, the incidence of gastric ulcers is about
four times that of duodenal ulcers [4,5]. The pathophysiology of a gastric ulcer induced
by NSAIDs has mostly been ascribed to its inhibition of both isoforms of cyclooxygenases
(COX-1 and -2) expression via interference with the metabolism of arachidonic acid (AA),
reducing the synthesis of gastric mucosal protective factor prostaglandins (PGs) [5,6].

According to its pathogenic mechanism, various drugs, including COX-2 selective
inhibitors (e.g., celecoxib), acid inhibitors (e.g., proton pump inhibitor (PPI)), mucosal
protective agents (e.g., bismuth and teprenone), and prostaglandin derivatives (e.g., miso-
prostol), were adopted to prevent or treat NSAIDs-induced gastric ulcers [5,7]. However,
these treatments have certain limitations and varying degrees of side effects: misoprostol
can cause diarrhea, abdominal pain, and cramping, which can limit its use, and sucralfate
has limited effectiveness in preventing gastrointestinal complications and can interfere
with the absorption of other medications [8]. Additionally, the long-term use of PPI has

Nutrients 2023, 15, 1675. https://doi.org/10.3390/nu15071675 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu15071675
https://doi.org/10.3390/nu15071675
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0003-3914-5840
https://doi.org/10.3390/nu15071675
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu15071675?type=check_update&version=2


Nutrients 2023, 15, 1675 2 of 19

been associated with an increased risk of infections, dysbiosis, hypomagnesemia, and
osteoporosis, while chronic PPI use may interfere with the absorption of other drugs, such
as clopidogrel, which is used to prevent blood clots [8]. Moreover, Boghossian, T. A. et al.
found that even with on-demand PPI use rather than once-daily PPI treatment, a signifi-
cant proportion of people were reluctant to continue taking these medications due to the
recovery of gastrointestinal symptoms [9]. Therefore, it is of great significance to find new
agents with few adverse effects to protect against gastric injury induced by NSAIDs. In
recent years, bioactive peptides have attracted increasing attention due to their multiple
physiological functions, such as immunomodulatory, antimicrobial, hormone regulation,
antioxidant properties, etc. [10]. Studies have shown that a variety of bioactive peptides
are able to protect against gastric mucosal injury caused by alcohol through mechanisms
mainly related to the inhibition of alcohol-induced oxidative stress and the accumulation
of inflammatory factors, indicating that bioactive peptides have huge promise in protecting
against gastrointestinal injury and are beneficial to health [11–13]. Walnut oligopeptides
(WOPs), which have characteristics such as a low molecular weight, high absorption,
bioavailability, and safety, are extracted from walnut protein by using biological enzyme
hydrolysis technology. Studies have found that WOPs have numerous potential physiologi-
cal functions, including anti-fatigue [14], improved anti-oxidation capacity [15], improved
aging-related learning and memory impairment [16], and the inhibition of cell apoptosis of
spleen tissue induced by ionizing radiation in mice [17]. However, the effect of WOPs on
NSAID-related gastric ulcers is rarely reported. In addition, among the commonly used
NSAIDs, including aspirin, indomethacin nabumetone, and ibuprofen, indomethacin is
often chosen as the inducer of gastrointestinal injury due to its higher potential for inducing
serious gastrointestinal toxicity compared to other NSAIDs [18]. Therefore, this study was
designed to investigate the beneficial effects of WOPs on indomethacin-induced gastric
ulcers and the possible mechanism involved.

2. Materials and Methods
2.1. Preparation and Identification of WOPs

The WOPs sample was a mixture of small molecular peptides derived from enzymatic
hydrolysis of walnut (Juglans Regia L.) protein, provided by Jilin Taigu Biological Engineer-
ing Co., Ltd. (Jilin, China). Briefly, walnut protein was hydrolyzed with various proteases
after cleaning, mincing, and homogenization. Next, nanofiltration, freeze concentration,
decolorization, purification, and spray drying were carried out to extract peptide powder.
Then, the oligopeptides sample was purified via high-performance liquid chromatography
(HPLC, Agilent, CA, USA) using a Phenomenex C18 column (10 mm × 250 mm). The
molecular weight distribution was measured by LDI-1700 matrix-assisted laser desorp-
tion ionization time-of-flight mass spectrometry (MALDI-TOF-MS, Liner Scientific Inc.,
Reno, NV, USA), and the free amino acids amount of WOPs sample was analyzed by the
automatic amino acid analyzer (Hitachi, Tokyo, Japan). The results of WOPs identifica-
tion showed that the content of oligopeptides with molecular weights between 180 and
1000Da was 86.5%; the amino acid composition has been reported in detail in our previous
studies [14,15,17].

2.2. Chemicals and Reagents

Indomethacin was purchased from Sigma Chemical Co. (St. Louis, MO, USA).
Omeprazole was manufactured by Hunan Dino Pharmaceutical Limited by Share Ltd. (Hu-
nan, China). The Enzyme-linked immunosorbent assay (ELISA) kits including prostaglandin
E2 (PGE2), interleukin (IL)-1β, tumor necrosis factor α (TNF-α) and interleukin (IL)-17A
were purchased from Capital Bio Corporation (Beijing, China). The glutathione (GSH),
superoxide dismutase (SOD), malondialdehyde (MDA), nitric oxide (NO), and myeloper-
oxidase (MPO) kits were manufactured by Nanjing Jiancheng Bioengineering Institute
(Nanjing, China).
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2.3. Animals and Experimental Design

A total of 60 male Sprague Dawley rats weighing 180-220 g were purchased from the
Department of Laboratory Animal Science, Peking University. The rats were housed in
a barrier-level animal room with a temperature range of 22 ± 2 ◦C, relative humidity of
50–60%, and day/night alternation time of 12 h:12 h. The experiment was reviewed and
approved by the Ethics Committee of Peking University Health Science Center (LA2018234),
and all animals were treated according to the Principles of Laboratory Animal Care and the
guidelines of the Peking University Animal Research Committee.

After one week of adaptive feeding, based on the body weight, SD rats were randomly
assigned to six groups, with ten rats per group. The normal and model groups received (i.g.)
distilled water. The omeprazole group received (i.g.) omeprazole (0.02 g/kg body weight,
dissolved in distilled water) as a reference of anti-ulcer drug [19,20]. The WOPs groups
received (i.g.) various doses of WOPs (0.22, 0.44, and 0.88 g/kg body weight, dissolved
in distilled water). The dose of WOPs was selected according to our previous studies and
preliminary experiment [14,17]. Daily intragastric gavage intervention with a volume of
1 mL/100 g was performed for 30 days, and the body weight and food intake of rats was
recorded once a week using electronic scales.

2.4. Indomethacin-Induced Gastric Ulcer

On day 30, all rats were fasted for 24 h but drank water freely. Then, the rats were
injected once intraperitoneally (i.p.) with freshly prepared indomethacin at a dose of
48 mg/kg body weight in 1% tewwn80 to induce ulceration, while rats in the normal
group received only vehicle (no indomethacin) in an identical manner [21–23]. Rats were
sacrificed 1 h post-indomethacin injection, blood samples were obtained via femoral artery,
and then serum was obtained at 3000 rpm centrifugation for 15 min. The gastric tissue of
each rat was immediately removed for further analysis.

2.5. Evaluation of Gastric Mucosal Injury

The gastric tissue was opened along the greater curvature, and then rinsed slightly
with ice-cold 0.9% sodium chloride solution. The mucosal damage was measured and
expressed as the gastric ulcer index (GUI), which was scored as described previously by
Guth with some modifications: 0 point, no damage; 1 point, spot erosion or erosion length
<1 mm; 2 points, erosion length between 1 and 2 mm; 3 points, erosion length between
2 and 3 mm; 4 points, erosion length between 3 and 4 mm. The erosion length longer than
4 mm was segmented scored. The erosion width was larger than 2 mm, the score was
doubled [24,25].

2.6. Transmission Electron Micrograph Analysis of Gastric Injury

The standardized specimens of gastric tissues (three per group) were fixed into glu-
taraldehyde at 4 ◦C for 2 h, fixed with 1% osmium tetroxide for 1.5 h, and stained with
uranium dioxide acetate at room temperature for 1 h. A 15 min gradient dehydration pro-
cess was performed with various concentrations of ethanol. Then, samples were immersed
in epoxy resin and acetone for 2h, embedded, and polymerized with epoxy resin. The
slices were made by ultra-thin microtome (Leica EM UC6) and dyed with uranium acetate
and lead citrate. Investigation was carried out using a JEM-100CXII transmission electron
microscope (JEOL Ltd., Tokyo, Japan) and representative images were presented.

2.7. Biochemical Assay of Serum and Gastric Tissues

After evaluation of the GUI, serum TNF-α, IL-1β, IL-17A activities, and gastric tis-
sue PGE2, SOD, NO, GSH, MPO, and MDA levels were detected according to the kits
instructions, as listed in Section 2.2.
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2.8. Expression of COX-1 and COX-2 mRNA by RT-PCR

Total RNA was extracted from 50 mg of rat gastric tissue (6 per group) using Trigol
reagent (Genview, Beijing, China). RNA was used to prepare cDNA using the Toyobo
reverse transcription kit. An equal amount of cDNA was used for PCR amplification by the
ABI PRISM 7500 real-time PCR analysis system, and specific forward and reverse primers
for COX-1, COX-2, and internal standard GAPDH were adopted. The primer prepara-
tion sequences were as follows: for GAPDH, Forward 5′- GTATCGGACGCCTGGTTAC
-3′ and Reverse 5′- CTGTGCCGTTGAACTTGCC-3′; for COX-1, Forward 5′- GGAGGT-
GTTTGGGTTGCT -3′ and Reverse 5′- CCTATAAGGATGAGGCGAGT-3′; for COX-2, For-
ward 5′- GGGTAATCCCATCTGTTCTC -3′ and Reverse 5′- ACTTGCGTTGATGGTGGC
-3′. The cycling conditions were pre-denaturation at 94 ◦C for 2 min, denaturing at 94 ◦C for
30 s, annealing at 58 ◦C for 30 s, and extension at 72 ◦C for 30 s for each primer set, and then
a final extension at 72 ◦C for 10 min. Next, the products were dissolved in a 2% agarose gel
and electrophoresed at a voltage of 5V/cm for 30 min, and the electrophoresis bands of the
PCR products were documented under a gel imaging system (LiuYi Biotechnology Co., Ltd.,
Beijing, China). Finally, the relative amount of mRNA was normalized against GAPDH
levels, and the fold change for each mRNA was counted according to the comparative cycle
threshold (44Ct) method.

2.9. Untargeted Metabolomics

The plasma samples from the model group, omeprazole group, and WOPs-HG (0.88 g/kg
body weight) group were collected (6 per group) for untargeted metabolomics analysis. The
metabolites were extracted from the samples according to the experimental procedures, and
Waters 2D UPLC (waters, USA) tandem with high-resolution mass spectrometer Q Exactive
HF (Thermo Fisher Scientific, USA) was used for metabolite separation and detection. The
column used was a BEH C18 column (1.7 µm 2.1 ∗ 100 mm, Waters, USA). The positive
ionization mode mobile phase was aqueous solution containing 0.1% formic acid in water
(liquid A) and 100% methanol containing 0.1% formic acid (liquid B), and the negative
ionization mode mobile phase was 10 mM ammonia formate in water (liquid A) and 95%
methanol containing 10 mM ammonia formate (liquid B). (Liquid A) and 95% methanol
containing 10 mM formic acid ammonia (Liquid B). Primary and secondary mass spectrometry
data acquisition was performed using a Q Exactive HF mass spectrometer (Thermo Fisher
Scientific, Waltham, USA). The scan mass-to-nucleus ratio range was 70~1050, the primary
resolution was 120,000, the AGC was 3e6, and the maximum injection time was 100 ms.
Top3 were selected for fragmentation according to the parent ion intensity, and secondary
information was collected with a secondary resolution of 30,000, an AGC of 1 × 105 a
maximum injection time of 50 ms, and the stepped nce set to 20, 40, 60 eV. Next, the data
obtained by LC-MS/MS were processed using Compound Discoverer 3.0 (Thermo Fisher
Scientific, USA) software. The original multivariate data were analyzed according to principal
component analysis (PCA) to reduce the dimensionality of the observed variables in the data
set. The differential metabolites were screened by combined analysis of Partial Least Squares
Method-Discriminant Analysis (PLS-DA), values of Variable Importance in Projection (VIP),
the fold change obtained from univariate analysis, and Student’s t-test. Significant differences
in metabolites were defined as metabolites with VIP>1, fold change ≥1.2 or ≤0.83, and
p < 0.05 (Student’s t-test). Furthermore, pathway enrichment analysis was performed using
the KEGG (http://www.genome.jp/kegg/, accessed on 18 October 2022) and MetaboAnalyst
(http://www.metaboanalyst.ca/, accessed on 18 October 2022) databases.

2.10. Statistical Analysis

Data are presented as mean ± SEM for bar and line graphs. SPSS24.0 software
was used for statistical analysis. Comparison between multiple groups was statistically
analyzed using the one-way analysis of variance (ANOVA) test with least significant
difference (LSD) methods. A value of p < 0.05 was considered a statistically significant
difference.

http://www.genome.jp/kegg/
http://www.metaboanalyst.ca/
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3. Results
3.1. Body Weight and Food Intake

Over the experimental period, the weight gain of the rats in each group reflected
normal growth. However, there was no significant change in the body weight, food intake,
or food utilization between the groups (p > 0.05) (Table 1).

Table 1. Effects of WOPs on body weight, food intake, and food utilization in rats.

Groups Number
Body Weight (g) Food Intake

(G)
Food Utilization

(%)Initial Final

Normal 10 221.00 ± 12.83 399.25 ± 18.21 650.00 ± 63.51 27.54 ± 4.34
Model 10 217.67 ± 8.23 387.33 ± 26.31 665.31 ± 49.19 25.74 ± 5.44

Omeprazole 10 210.58 ± 14.00 379.50 ± 41.84 651.00 ± 59.62 25.90 ± 6.77
WOPs 0.22 g/kg 10 214.78 ± 12.94 382.11 ± 27.54 665.25 ± 69.42 25.28 ± 3.62
WOPs 0.44 g/kg 10 212.62 ± 12.05 394.23 ± 37.72 681.19 ± 43.83 26.61 ± 4.57
WOPs 0.88 g/kg 10 215.73 ± 9.17 379.73 ± 32.63 678.84 ± 21.29 24.15 ± 4.79

WOPs—walnut oligopeptides.

3.2. Effect of WOPs on Macroscopic Gastric Mucosal Injury

As shown in Figure 1a, no macroscopic lesion was observed in the normal group
(group N), whereas the rats in the model group treated with indomethacin at a dose of
48 mg/kg exhibited serious gastric mucosal injury in the form of linear or striped bleeding
bands. However, in the omeprazole group, the observed gastric mucosal damage was the
lightest among all the groups, and most of the rats had no inflammatory reaction or injury
(group O). The three WOPs pretreatment groups (WL, WM, and WH groups, respectively)
showed medium to slight gastric mucosal damage compared to the model group, and the
WOPs-HG (0.88 g/kg body weight) group exhibited the lightest gastric mucosa injury.

The outcomes shown in Figure 1b highlight that the GUI was significantly increased
in the model group compared with the omeprazole group and the three groups of WOPs
(p < 0.05 or p < 0.01). While the GUI of the omeprazole group was obviously lower than
that of the WOPs-LG and WOPs-MG groups (p < 0.05 or p < 0.01), no statistical difference
was observed between the omeprazole and WOPs-HG groups (p > 0.05).

3.3. Transmission Electron Micrograph Images of Gastric Injuries

The normal group showed a clear cell structure with round nuclei and a basically
uniform distribution of chromatin in the nucleus, the mitochondria were abundant in
the cytoplasm, and there were many stacked rough endoplasmic reticulum in the cells
(N in Figure 2). However, the structure of the gastric mucosa cells in the model control
group was disordered, the chromatin was sparse, the mitochondria were swollen, the
lysosomes increased, and the rough endoplasmic reticulum decreased and vesicled (M
in Figure 2). In the omeprazole (O in Figure 2) and WOPs pretreated groups (WL–WH
in Figure 2), the transmission electron micrographs revealed that with the increase in the
intervention dose, the cell structure of the gastric mucosa gradually approached the normal
state, exhibiting that the degree of cell swelling decreased, the nucleus morphology became
regular, the chromatin in the nucleus was uniform, and the rough endoplasmic reticulum
was abundant.
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Figure 1. Effect of WOPs on gross appearances of gastric mucosal (a) and gastric ulcer index (b) in
indomethacin-induced gastric ulcer in rats. N, normal group; M, model control group; O, omeprazole
group (0.02 g/kg); WL, WOPs 0.22 g/kg; WM, WOPs 0.44 g/kg; WH, WOPs 0.88 g/kg. Significance
was represented as * p < 0.05, # p < 0.01; b represents comparison with the model group and c refers
to comparison with the omeprazole group; 10 per group. GUI, gastric ulcer index; WOPs, walnut
oligopeptides.

3.4. Effect of WOPs on the PGE2 Contents

The gastric prostaglandin E2 (PGE2) levels were obviously reduced in the model,
omeprazole, and WOPs 0.22 and 0.44 g/kg groups compared to the normal group of
rats (p < 0.01) (Figure 3). However, in the medium- and high-dose groups of WOPs
(0.44 and 0.88 g/kg), the PGE2 levels were remarkably elevated compared to the model
and omeprazole groups (p < 0.05 or p < 0.01). The findings indicated that pretreatment with
WOPs could enhance the PGE2 deficiency caused by indomethacin in gastric mucosa.
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Figure 3. Effects of WOPs on PGE2 synthesis in gastric tissue of indomethacin-induced rats. Signifi-
cance was represented as * p < 0.05, # p < 0.01; a represents comparison with the normal group, b
refers to comparison with the model group, and c refers to comparison with the omeprazole group;
10 per group. PGE2—prostaglandin E2; WOPs—walnut oligopeptides.

3.5. Effects of WOPs on the NO and MPO Levels

The contents of nitric oxide (NO) (Figure 4a) and myeloperoxidase (MPO) (Figure 4b)
were remarkably elevated in the model group compared to the normal group (p < 0.01).
In contrast, in the WOPs-treated group, the levels of NO and MPO were markedly de-
clined compared with the model group (p < 0.01), except for the NO level in the WOPs
0.22 g/kg group. The MPO level in the WOPs pretreatment groups (0.44 and 0.88 g/kg)
was markedly decreased in comparison with that of the omeprazole group (p < 0.01), but
the NO levels were not significantly different (p > 0.05). These findings indicated that the
WOPs pretreatment could prevent indomethacin-induced gastric ulcers to a certain extent.
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3.6. Effect of WOPs on Indomethacin-Induced Oxidative Stress

As presented in Figure 5, indomethacin triggered a decrease in superoxide dismutase
(SOD) and reduced the glutathione (GSH) levels and there was an increase in the malon-
dialdehyde (MDA) levels in the model group compared with the normal group (p < 0.01,
p < 0.05, and p < 0.01, respectively). Compared with the model group, the levels of SOD and
GSH were markedly elevated, and the MDA level significantly decreased when the rats
were orally administrated omeprazole and WOPs (0.22, 0.44, and 0.88 g/kg) (p < 0.05 or
p < 0.01), except for the GSH content in the WOPs 0.22g/kg group. However, there was no
obvious difference between the omeprazole and WOPs groups (p > 0.05).
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Figure 5. Effects of WOPs on SOD (a), GSH (b), MDA (c) levels in indomethacin-treated
rats. Significance was represented as * p < 0.05, # p < 0.01; a—compared with normal group,
b—compared with model group; 10 per group. SOD—superoxide dismutase; GSH—reduced glu-
tathione; MDA—malondialdehyde; WOPs—walnut oligopeptides.

3.7. Effect of WOPs on the Release of Inflammatory Cytokines

As shown in Figure 6, the TNF-α, IL-17A, and IL-1β levels in the model group rats
were markedly greater than those in the normal group rats (p < 0.05, p < 0.01, and p < 0.05,
respectively), which indicated that indomethacin caused an overreaction of the inflamma-
tory cells. The TNF-α, IL-17A, and IL-1β levels were obviously decreased in the WOPs
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pretreatment group compared with the model group (p < 0.05 or p < 0.01), except for the
levels of TNF-α and IL-1β in the WOPs 0.22g/kg group.
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b—compared with model group; 10 per group. Tumor necrosis factor α—TNF-α; interleukin (IL)-
17A—IL-17A; interleukin (IL)-1β—IL-1β; WOPs—walnut oligopeptides.
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3.8. Effect of WOPs on mRNA Expression of COX-1 and COX-2 in Gastric Tissue

Both COX-1 and COX-2 are the core enzymes of the arachidonic acid metabolism,
which are considered to be the primary regulators of NSAIDs-induced gastric ulcers. The
expression levels of COX-1 (Figure 7a) and COX-2 (Figure 7b) were markedly suppressed
in the model group compared to the normal group (p < 0.01 and p < 0.05, respectively).
In contrast, the mRNA expression of COX-1 and COX-2 was significantly higher in the
omeprazole and three WOPs pretreatment (0.22, 0.44, and 0.88 g/kg) groups than in the
model group (p < 0.05 or p < 0.01).
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with the model group; 6 per group. COX—cyclooxygenase; WOPs—walnut oligopeptides.

3.9. Effect of WOPs on Plasma Metabolism in Rats

We deleted the number of compounds with a relative peak area coefficient of variation
of 30% or less in the quality control sample; 1320 metabolites (positive ion mode) and
460 metabolites (negative ion mode) with identification information were reserved.
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3.9.1. Screening for Differential Metabolites

As shown in Figure 8, the separation between the model, omeprazole, and WOPs-HG
groups was not significant in the PCA score plot. A further analysis by PLS-DA revealed
that the values of R2Y(cum) were 1 or close to 1, Q2(cum) were higher than 0.5, and Q2 was
less than 0. This demonstrated that the model was stable and reliable, and the model had a
good prediction effect (Table 2).

Nutrients 2023, 15, x FOR PEER REVIEW 12 of 19 
 

 

Q2 was less than 0. This demonstrated that the model was stable and reliable, and the 
model had a good prediction effect (Table 2). 

 
(a) (b) 

Figure 8. Score chart of PCA analysis model. (a) Positive ion mode; (b) negative ion mode. PC1 
represents the first principal component, PC2 refers to the second principal component, and the 
number in parentheses is the score of the principal component, which represents the percentage of 
the overall variance explained for the specific principal component. The ellipses are 95% confidence 
intervals. Each point represents one sample, with six samples per group, and different groups are 
labeled with different colors. 

Table 2. The PLS-DA model parameters. 

Mode Group A R2Y(cum) Q2(cum) R2 Q2 
Positive WOPs-H vs. Model 3 1 0.77 (0.0, 0.94) (0.0, −0.74) 
Positive WOPs-H vs. Omeprazole 3 1 0.83 (0.0, 0.95) (0.0, −0.90) 
Negative WOPs-H vs. Model 3 1 0.67 (0.0, 0.93) (0.0, −0.77) 
Negative WOPs-H vs. Omeprazole 3 1 0.86 (0.0, 0.94) (0.0, −0.99) 

A means the principal component number; R2Y(cum) refers to the interpretation rate for Y matrix; 
Q2(cum) represents the predictive ability. R2 and Q2 are the intercepts of the Y axis of the regression 
line during permutation experiment. 

Based on the PLS-DA, the further analyzed results of the fold changes and t-tests 
were adopted to screen for differential metabolites, according to the conditions described 
in Section 2.9. The volcano map of the screened differential metabolites is presented in 
Figure 9. There were 357 differential metabolites in the positive ion mode and 99 differen-
tial metabolites in the negative ion mode between the WOPs-HG group and the model 
group. Meanwhile, there were 373 differential metabolites in the positive ion mode and 
120 differential metabolites in the negative ion mode between the WOPs-HG group and 
the omeprazole group. 

Figure 8. Score chart of PCA analysis model. (a) Positive ion mode; (b) negative ion mode. PC1 rep-
resents the first principal component, PC2 refers to the second principal component, and the number
in parentheses is the score of the principal component, which represents the percentage of the overall
variance explained for the specific principal component. The ellipses are 95% confidence intervals.
Each point represents one sample, with six samples per group, and different groups are labeled with
different colors.

Table 2. The PLS-DA model parameters.

Mode Group A R2Y(cum) Q2(cum) R2 Q2

Positive WOPs-H vs. Model 3 1 0.77 (0.0, 0.94) (0.0, −0.74)
Positive WOPs-H vs. Omeprazole 3 1 0.83 (0.0, 0.95) (0.0, −0.90)
Negative WOPs-H vs. Model 3 1 0.67 (0.0, 0.93) (0.0, −0.77)
Negative WOPs-H vs. Omeprazole 3 1 0.86 (0.0, 0.94) (0.0, −0.99)

A means the principal component number; R2Y(cum) refers to the interpretation rate for Y matrix; Q2(cum)
represents the predictive ability. R2 and Q2 are the intercepts of the Y axis of the regression line during permutation
experiment.

Based on the PLS-DA, the further analyzed results of the fold changes and t-tests
were adopted to screen for differential metabolites, according to the conditions described
in Section 2.9. The volcano map of the screened differential metabolites is presented in
Figure 9. There were 357 differential metabolites in the positive ion mode and 99 differ-
ential metabolites in the negative ion mode between the WOPs-HG group and the model
group. Meanwhile, there were 373 differential metabolites in the positive ion mode and
120 differential metabolites in the negative ion mode between the WOPs-HG group and the
omeprazole group.
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3.9.2. Differential Metabolite Analysis

The results of the enrichment analysis of the KEGG database revealed eleven path-
ways that were significantly enriched between the WOPs-HG group and the model group
(Figure 10a,b), including the tryptophan metabolism, pantothenate and CoA biosynthesis,
beta-Alanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, thiamine
metabolism, alpha-Linolenic acid metabolism, porphyrin and chlorophyll metabolism,
phenylalanine metabolism, arachidonic acid metabolism, metabolic pathways, and biosyn-
thesis of secondary metabolites. Eleven pathways were also significantly enriched between
the WOPs-HG group and the omeprazole group (Figure 10c,d), including the metabolic
pathways, tryptophan metabolism, alpha-Linolenic acid metabolism, ascorbate and al-
darate metabolism, benzoate degradation, microbial metabolism in diverse environments,
purine metabolism, biosynthesis of secondary metabolites, phenylalanine, and tyrosine
and thiamine metabolism.
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Figure 10. Bubble plots for metabolic pathway enrichment analysis. (a) Positive ion mode (WOPs-HG
group vs. model group); (b) negative ion mode (WOPs-HG group vs. model group); (c) positive
ion mode (WOPs-HG group vs. omeprazole group); (d) negative ion mode (WOPs-HG group vs.
omeprazole group). X-axis enrichment factor (RichFactor) is the number of differential metabolites
annotated to the pathway divided by all identified metabolites annotated on the pathway. The larger
the value, the greater the proportion of differential metabolites. The dot size represents the number
of differential metabolites annotated to this pathway.

4. Discussion

Indomethacin is commonly applied in the clinical therapy of inflammatory diseases
such as rheumatoid arthritis and osteoarthritis, but it has been reported to induce gas-
trointestinal side effects in both rats and humans [26]. In this study, indomethacin was
chosen to induce gastric ulcers in rats at a dose of 48 mg/kg, and the maximum injury
was observed 1 h after the indomethacin injection. Based on the United States Food and
Drug Administration recommendation, this dose in rats would be considered a high dose
when converted to the human equivalent through normalization to the body surface area
(BSA). This is about 7.78 mg/kg, which equates to a 467 mg dose of indomethacin for a
60 kg person [27].
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Most nonselective NSAIDs are weakly acidic, relatively nonionized, and lipophilic
in gastric juice, which can cause cytotoxic effects, leading to cell death and destroying
the integrity of the epithelial cell layer [28]. In this study, the rats were treated intraperi-
toneally with 48mg/kg indomethacin for 1 h, and it was found that an indomethacin
treatment-induced severe gastric mucosa injury exhibited linear and cord-like bleeding
bands, and caused an increase in the ulcer index in the gastric tissues of rats in the model
group, whereas the omeprazole and WOPs pretreatment ensured less gastric lesions and a
significant reduction in the ulcer indices. In addition, no significant difference in the GUI
was observed between the WOPs 0.88 g/kg group and the omeprazole group (Figure 1).
This result shows that WOPs supplementation, especially at a high dose of 0.88 g/kg, could
protect from gastric ulceration in rats challenged with indomethacin.

The deleterious action of NSAIDs is largely due to decreased prostaglandin (PGs)
synthesis as a result of cyclooxygenase (COX) suppression [29]. PGs play critical roles
in maintaining the integrity of the gastric mucosa and protecting it from damage. The
cytoprotective actions of PGs were first reported by Andre Robert in 1979 [30]. Robert
provided experimental evidence that PGs exhibit protective effects against gastric mucosal
lesions induced by necrotizing substances, including ethanol, acids, concentrated bile, and
even boiling water. The gastric protective effects of prostaglandins are mainly realized by
the regulation of mucosal blood flow, gastric mucus and bicarbonate synthesis, epithelial
cell proliferation, and the inhibition of the leukocyte aggregation and direct cytotoxic
injury [4,31]. PGs mainly include PGA, PGF, PGI, and PGE. PGE2 is the most important
of the PGs, with the highest content in the human gastrointestinal tract. In this study, the
results indicated that the PGE2 levels in the gastric tissues of the rats in the model group
were greatly decreased compared with the normal rats, suggesting that indomethacin
induced the inactivation of prostaglandin synthase and thus decreased prostaglandin
biosynthesis. However, the levels of PGE2 in the WOPs pretreatment groups (0.44 and
0.88 g/kg) were higher than those in the model and omeprazole groups. The result
suggested that PGE2 is involved in the beneficial influence of WOPs on indomethacin-
induced gastric mucosal damage.

NSAID-induced gastric ulcers also demonstrate enormous nitric oxide (NO) genera-
tion, leading to a pervasive elevated susceptibility to mucosal lesions [32]. The inducible
nitric oxide synthase can release large amounts of NO when activated by harmful factors,
inducing a vascular microcirculation disturbance and accelerating the formation of a gastric
ulcer [33,34]. Additionally, neutrophil infiltration is a key process in the development of
gastric mucosal lesions. NSAIDs can inhibit COX activity, promoting arachidonic acid
metabolism under the action of lipoxygenase (LOX). It leads to the production of leukotriene
B4, leukotriene C4, and leukotriene D4 in large quantities, causing neutrophil aggregation
and infiltration, thus aggravating gastric mucosal injury [35]. Myeloperoxidase (MPO)
determination has been widely used as an important parameter of neutrophil infiltration.
In our study, pretreatment with WOPs significantly inhibited the elevation of the MPO
and NO levels caused by indomethacin compared with the model group. In addition, the
inhibitory influence of the WOPs 0.44 and 0.88 g/kg on the MPO level was higher than that
of omeprazole. The results indicated that WOPs can protect against indomethacin-related
gastric ulcers by increasing the synthesis of PGE2 and reducing the MPO and NO levels.

An NSAIDs-induced deleterious action was always accompanied by the excessive
generation of oxygen free radicals and proinflammatory factors, such as superoxide radical
anions, hydroxyl radicals, tumor necrosis factor α (TNF-α), and interleukin (IL)-1β (IL-
1β) [36]. These mechanisms, in combination with those linked to PG inhibition, influence
the pathogenesis of gastric mucosal injury associated with gastrointestinal damage caused
by NSAIDs [37]. Oxidative stress participates in the development of an NSAIDs-related
gastric ulcer via a prostaglandin-independent mechanism [5]. In particular, indomethacin
causes gastric injury by decreasing the content of antioxidants (e.g., SOD and GSH) and
increasing lipid peroxidation products (e.g., MDA) [38]. SOD and GSH are important
enzymes that scavenge superoxide anion radicals and protect cells from oxidative dam-
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age [39]. MDA cross-links DNA and proteins, disturbs cell division, and destroys the
structure and function of proteins and enzymes [40]. Our study demonstrated that treat-
ment with 48mg/kg indomethacin remarkably decreased the levels of SOD and GSH, while
it elevated the levels of TNF-α, IL-17A, IL-1β, and MDA in the model group rats. However,
WOPs pretreatment could greatly decrease those antioxidants and elevate the inflammatory
cytokines. According to these results, WOPs displayed an obvious beneficial effect of an
indomethacin-induced oxidative stress imbalance and excessive inflammatory reaction of
gastric mucosa.

COX is a rate-limiting enzyme in the eicosanoids synthesis. Its two isoforms, COX-
1 and COX-2, are critical enzymes in the metabolism of arachidonic acid to the intermediate
prostaglandins [41]. COX-1 exists in most tissues and its expression is basically constant.
It is mainly responsible for the synthesis of PGs, which maintain gastric integrity and
promote ulcer healing. The inhibition of COX-1 activity can decrease PGs synthesis in
gastric mucosa, lead to the reduction in gastric mucosal defiance function, and cause
gastric mucosal erosion, ulcer, and other injuries [18]. COX-2 is an inducible rate-limiting
enzyme. Its expression is commonly low under basal conditions, but it can be expressed
after stimulation by pathological reactions [41,42]. Both COX-1 and COX-2 play a critical
role in the synthesis of PGs. Standard NSAIDs have significant inhibitory effects on COX-
1 and COX-2, such as indomethacin or ibuprofen [43]. Our project outcomes indicated that
the mRNA expression of COX-1 and COX-2 was obviously downregulated in the model
group compared to the normal group of rats. Notably, administration with omeprazole and
WOPs remarkably upregulated the mRNA expression of COX-1 and COX-2 in comparison
with that of the model group. The result suggested that WOPs had a positive effect on the
prevention of indomethacin-induced gastric ulcers, which may be attributed to prompting
the synthesis of the gastric mucosal protective factor PGE2 by increasing the COX-1 and
COX-2 expression of gastric tissue. There are two main metabolic pathways of arachidonic
acid (AA) in vivo: the synthesis of PGs, prostacyclin, and thromboxane A2 (TXA2) catalyzed
by cyclooxygenase (COX) and the production of leukotriene B4 (LTB4), leukotriene C4
(LTC4), and leukotriene D4 (LTD4) catalyzed by lipoxygenase (LOX) [44]. The diagram of
the metabolic pathway enriched by the KEGG metabolic pathway showed that WOPs could
be involved in arachidonic acid metabolism by downregulating the production of LCT4.
In addition, the metabolic results indicated that WOPs could upregulate the expression of
tryptophan, phenylalanine, tyrosine, and alpha-Linolenic acid, which may be one of the
mechanisms of its gastroprotective effect.

5. Conclusions

WOPs pretreatment could protect the gastric mucosa from indomethacin-induced
injury. Its gastroprotective effects may be a result of its attenuation of the severity of
the gastric mucosal damage caused by aggressive factors and its improvement in the
morphological structure of gastric mucosa cells, its enhancement of the oxidative stress
capacity, and its suppression of an excessive inflammatory reaction, as well as the lipid
peroxidation marker altered by risk factors. WOPs could enhance the COX-1 and COX-2 ex-
pression of gastric tissues in rats, improving the synthesis of prostaglandins. Moreover, the
metabolomics results indicated that WOPs are involved in the arachidonic acid, tryptophan,
phenylalanine, tyrosine, and alpha-Linolenic acid metabolism, exerting a protective effect
on gastric mucosa. This study reported the beneficial effects of WOPs on indomethacin-
induced gastric ulcers and confirmed a better gastroprotective effect at a dose of 0.88 g/kg,
providing an important perspective for the application of WOPs in gastric ulcers associated
with NSAIDs. Further studies are needed to investigate the potential protective role of
WOPs on ulcerative lesions occurring in the lower intestinal tract and determine the optimal
supplemental dose of WOPs in humans and its clinical applications.
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