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Abstract: Cardiovascular diseases (CVD) are the leading cause of death worldwide. Since the
establishment of the “lipid hypothesis”, according to which, cholesterol level is directly correlated
to the risk of CVD, many different lipid-lowering agents have been introduced in clinical practice.
A majority of these drugs, in addition to their lipid-lowering properties, may also exhibit some
anti-inflammatory and immunomodulatory activities. This hypothesis was based on the observation
that a decrease in lipid levels occurs along with a decrease in inflammation. Insufficient reduction
in the inflammation during treatment with lipid-lowering drugs could be one of the explanations
for treatment failure and recurrent CVD events. Thus, the aim of this narrative review was to
evaluate the anti-inflammatory properties of currently available lipid-lowering medications including
statins, ezetimibe, bile acid sequestrants (BAS), proprotein convertase subtilisin/kexin type 9 (PCSK9)
inhibitors, fibrates, omega-3 fatty acids, and niacin, as well as dietary supplements and novel drugs
used in modern times.

Keywords: inflammation; cardiovascular risk; atherosclerosis; immunomodulation; C-reactive protein;
high-sensitivity C-reactive protein

1. Introduction

According to the World Health Organization’s (WHO) Global Health Estimates, is-
chemic heart disease (IHD) was the leading cause of death in 2019, accounting for 16% of
all deaths worldwide [1]. Moreover, IHD was the condition with the highest increase in the
number of deaths observed in the period from 2000 (2 million deaths) to 2019 (8.9 million
deaths) [1]. Atherosclerosis is the main pathological process leading to the development
of IHD, as well as many other cardiovascular diseases (CVD) such as carotid, vertebral,
and renal artery stenosis; chronic ischemia of the lower limbs; chronic intestinal ischemia;
etc. [2]. Atherosclerosis is characterized by the presence of cholesterol deposits in arterial
walls; however, it is believed that the key feature of this process is chronic inflammation
and that low-density lipoproteins (LDL) play a crucial role in its cascade. However, the
association between LDL levels and risk for CVD occurrence is not yet completely under-
stood given that in clinical practice, an increase in lipid levels is not always accompanied by
a higher atherosclerotic burden and vice versa [3]. In that light, it has been shown that some
other measures such as high-density lipoprotein (HDL) cholesterol and the level of HDL
apolipoprotein AI and its ratio to apolipoprotein B (Apo B/A-I ratio) could represent better
markers of atherosclerotic burden [3,4]. Despite this, it should be emphasized that data on
the levels of different lipid parameters, including LDL, provide only partial information
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about the association between lipid profile and cardiovascular risk. In addition, lipopro-
teins may go through a range of modifications that alter their atherogenicity; however,
measurement of these modified lipoproteins has not yet been introduced in routine clinical
practice [5].

During the atherosclerotic process, cholesterol-rich particles penetrate the wall of
arterial blood vessels, which results in subendothelial accumulation and retention of LDL,
leading to their oxidization and/or modification [6]. Those oxidized LDL play a pivotal
role in the formation of atherosclerotic plaque [7]. Based on the level of their oxidation,
oxidized LDLs can be categorized as minimally modified LDL or extensively oxidized
LDL [8]. In response to their presence, vascular smooth muscle cells produce mediators
involved in the accumulation of monocytes. Oxidized LDL can also take part in this
process. Following the recruitment of leukocytes and monocytes in the arterial wall, the
next step in the atherosclerotic cascade is the transformation of monocytes into macrophage
foam cells [7]. As a result, endothelial dysfunction occurs, resulting in the formation of
atherosclerotic plaque, which consists of lipid particles, leukocytes, and calcium [9]. Their
presence in the arterial wall is associated with the secretion of different immune mediators.
So far, the role of inflammatory biomarkers such as interleukin (IL)-1β, tumor necrosis
factor (TNF)-α, C-reactive protein (CRP), and IL-6 in the atherosclerotic process has been
demonstrated [10–13]. As a result, systemic inflammation occurs, and the most commonly
used indicator of its level is high-sensitivity CRP (hsCRP).

Since the establishment of the “lipid hypothesis” [14], according to which choles-
terol level is directly correlated to the risk of CVD, many different lipid-lowering agents
have been introduced in clinical practice. Interestingly, it has been shown that the major-
ity of these drugs, in addition to their lipid-lowering properties, may also exhibit some
anti-inflammatory and immunomodulatory activities. This hypothesis was based on the
observation that a decrease in lipid levels occurs along with a decrease in inflammation.
However, it is still not elucidated whether these changes in inflammation levels are driven
by the lipid-lowering therapy itself or whether they are the result of LDL reduction and a
consequent reverse in atherosclerosis. An insufficient reduction in inflammation during
treatment with lipid-lowering drugs could be one of the explanations for treatment failure
and recurrent CVD events [9]. In line with this, Tuñón et al., in their position paper [15],
stated that the impact of the decrease in lipid levels on inflammation status is indepen-
dent of the use of lipid-lowering therapy. On the other hand, the CANTOS trial tried to
propose the proof of concept that modification of the inflammatory pathways themselves,
specifically, the IL-6 signaling pathway, could impact the cardiovascular outcomes [13].
Therefore, the development of new treatment modalities with improved anti-inflammatory
performances is an area of increasing interest in IHD.

Based on the aforementioned findings, the aim of the present narrative review is to
evaluate the anti-inflammatory properties of currently available lipid-lowering medications.

2. Statins

Statins are the most commonly prescribed lipid-lowering drugs [16]. Currently, seven
statins are available on the market: lovastatin, simvastatin, pravastatin, fluvastatin, ator-
vastatin, rosuvastatin, and pitavastatin [17]. They are usually divided into generations
depending on their origin. Representatives of the first generation are isolated from fungal
metabolites such as lovastatin, pravastatin, and simvastatin. Synthetic compounds such
as atorvastatin, cerivastatin, fluvastatin, pitavastatin, and rosuvastatin represent statins of
later generations [16]. Depending on their ability to dissolve in water or lipid-containing
media, statins can be divided into hydrophilic (rosuvastatin and pravastatin) or lipophilic
(simvastatin, fluvastatin, pitavastatin, lovastatin, atorvastatin) categories [18–21].

Due to safety concerns regarding the increased risk of rhabdomyolysis, cerivastatin is
the only statin withdrawn from the worldwide markets [22].

The lipid-lowering mechanism of action of statins is well known. Statins are re-
versible and competitive inhibitors of the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-
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CoA) reductase enzyme. This enzyme is responsible for the conversion of 3-hydroxy-3-
methylglutaryl-coenzyme A to mevalonate, the rate-limiting step in de novo cholesterol
synthesis [23]. A consequence of HMG-CoA reductase enzyme inhibition is decreased
mevalonate and cholesterol synthesis, which leads to a compensatory increase in the
number of hepatic LDL receptors on the hepatocyte cell surface, uptake of LDL, and its
precursors from circulation [16,23,24]. Additionally, statin consumption may inhibit the
synthesis of apolipoprotein B-100 (apoB-100) and decrease the synthesis and secretion of
triglyceride-rich particles [24,25]. Statins have a modest impact on increasing high-density
lipoprotein cholesterol (HDL-C) concentration, while they have no effect on lipoprotein(a)
(Lp(a)) concentration and size or density of LDL [25].

Studies have shown that the impact of statins on human health is beyond simple
LDL lowering, which is also named “statin pleiotropy” [26,27]. So far, statins exhibited
anti-inflammatory effects and benefits in diseases related to inflammation: atherosclero-
sis [28], chronic heart failure [29], sepsis [30], COVID-19 [31], diabetic nephropathy [32],
gastric cancer [33,34], Alzheimer’s diseases [35], bone disorders [36], and autoimmune
diseases [37]. Meta-analysis of 15 randomized controlled trials provided evidence that
lipophilic statins pose more pleiotropic effects compared to hydrophilic statins due to easier
penetration into the cell membranes [38].

Having in mind the association between elevated cholesterol and CVD, it is often
difficult to separate the LDL-C-lowering effects of statins from their pleiotropic effects.
Nevertheless, through the impact of statins on several factors of inflammation, beneficial
statin effects independent of cholesterol reduction may be observed [39]. By considering
the mechanism of action of statins, part of their pleotropic effects may be explained as
well. Mevalonic acid is synthesized by HMG-CoA reductase and is the precursor of
numerous metabolites such as the isoprenoid intermediates farnesylpyrophosphate (FPP)
and geranylgeranylpyrophosphate (GGPP) [39,40]. When HMG-CoA reductase is blocked,
decreased synthesis of isoprenoids and prenylation of small proteins are observed [40].
This evidence may be a possible explanation for the numerous anti-inflammatory effects of
statins beyond their lipid-lowering characteristics.

The anti-inflammatory effects of statins can be observed through all the phases of
formation, progression, and complications of atherosclerosis [41]. One of the first steps in
atherosclerotic lesions is the accumulation of monocytes and macrophages in the arterial
walls [42]. Statins can impact the adhesion and migration of inflammatory cells by dimin-
ishing the expression of integrin dimer CD11, vascular cell adhesion molecule (VCAM), and
leukocyte-function antigen-1 (LFA-1) [42–44]. The next step in atherosclerosis is leukocyte
migration to subendothelial sites in a process regulated by chemokines [41]. The protective
role of statins in this step can be observed through reduced expression of the chemokine
monocyte chemoattractant protein-1 (MCP-1), IL-8, which is regulated on activation by
normally T-cell expressed and secreted (RANTES) on endothelial cells (ECs) and smooth
muscle cells (SMCs) [45–47]. Another anti-inflammatory benefit of statins is their ability
to reduce the expression of interferon (INF)-γ-induced major histocompatibility complex
molecules class II (MHC II) [48].

So far, the correlation between increased levels of the inflammatory marker, CRP,
and cardiovascular risk is well described [49]. CRP is an acute-phase reactant, and its
production from hepatocytes is stimulated by IL-6, IL-1, and TNF-α [50]. Besides hep-
atocytes, there is evidence that CRP can be secreted locally by macrophages and artery
smooth muscle cells involved in inflammation [51]. Numerous clinical trials have been
designed to elucidate details of CRP and statin interaction nature and consequences [52–56].
Several mechanisms of statin-induced reduction in CRP have been proposed. One of the
possibilities is the impact of statins on decreasing oxidized LDL (oxLDL) and, therefore,
decreased concentration of inflammatory mediators [50]. Recently it has been proposed
that the impact of statins on the serum apolipoprotein A-I (apoA-I) levels may be a con-
tributing factor in reducing hsCRP levels [57]. Namely, by increasing apoA-I levels, statins
decrease the expression of E-selectin, intracellular adhesion molecule-1 (ICAM-1), and
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VCAM-1 and consequently decrease inflammation [57]. Another proposed mechanism
in combating local inflammation is decreased protein prenylation as a consequence of
the ability of statins to decrease oxLDL [39]. As a result of decreased protein prenylation
reduction in TNF and IL-6 levels is observed [58]. Interestingly, dual effects of statins were
observed regarding the effect on IL-1 levels. On one side there are studies describing the
ability of statins to decrease cytokine production such as IL-1 in monocytes in patients
with hypercholesterolemia [59–61]. The other side of the medal is presented in studies that
showed the ability of simvastatin to promote IL-1β activation [62,63]. So far, questions
regarding the precise mechanism of statin and IL-1 expression remained open. Besides
described mechanisms, even the possibility of direct interactions between statin molecules
and CRP are suggested [64].

The impact of statins on nuceleotide-binding and oligomerization domain-like re-
ceptor family pyrin domain-containing 3 (NLRP3) inflammasome is under investigation.
Studies have shown greater effects of lipophilic statins on NLRP3 complexes compared to
hydrophilic statins due to their differences in chemistry and pharmacokinetics [39]. NLRP3
inflammasomes are cytosolic proteins, secreted by numerous immune cells and responsible
for the activation of caspase-1 which releases IL-1β and IL-18 [65]. Nowadays, cholesterol is
marked as an important NLRP3 activator [66]. Depending on the discussed representative
of statin, dual impact, both activation or inhibition on NLRP3 has been described [39].
So far, several studies provided insight into molecular mechanisms of statins inflamma-
some activation including an increase in ATP release, ROS production, and lysosomal
rupture [67–69]. On the other hand, the downregulation of NLRP3 by atorvastatin, and
rosuvastatin is also stated [60,70,71].

Another possible anti-inflammatory mechanism of statins is their impact on the down-
regulation of nuclear factor-kappa B (NF-kB) and activator protein-1, transcription factors
that influence inflammatory cytokines [39,72]. According to one of the hypotheses, the
ability of statins to scavenge free oxygen radicals and to stimulate nitric oxide production
leads to the stabilization of NF-kB inhibitor protein, IkBα [73,74]. During the years, studies
in vitro, in vivo animal models, as well as in humans provided solid evidence regarding
atorvastatin, fluvastatin, lovastatin, pravastatin, and simvastatin anti-inflammatory ef-
fects based on inhibition of NF-kB [75–80]. As a result of NF-kB inhibition, a shift to an
anti-inflammatory response is obvious.

Another anti-inflammatory characteristic of statins that is independent of their lipid-
lowering effects is their ability to decrease the expression of toll-like receptors (TLRs) 2
and 4 on immune cells and prevent lipopolysaccharide (LPS)-induced activation of mono-
cytes, mononuclear cells, and endothelial cells [39,81]. As a result, the statins may lead to
atherosclerotic plaque stabilization [39]. Depending on the analyzed study, several potential
mechanisms on how statin impacts TLR-signaling pathways have been proposed: inhibi-
tion of protein prenylation, direct or indirect NF-kB inhibition, inhibition of MyD88/NF-kB
pathway, enhancement of anti-inflammatory response elements [82–86]. Besides the previ-
ously discussed mechanisms, an additional mechanism of statin on inflammatory pathways
is suggested, such as reduction in transforming growth factor (TGF)-β signaling in T cells,
suppression of human dendritic cell maturation induced by oxLDL, disruption of T cell ac-
tivation, and induction of T regulatory cells [87,88]. To unmask full molecular mechanisms
and the multifaced anti-inflammatory nature of statins, further studies are needed.

3. Ezetimibe

Ezetimibe is an inhibitor of intestinal and biliary cholesterol absorption [24]. Ezetimibe
inhibits cholesterol transport protein Niemann-Pick C1-like protein 1 (NPC1L1) at the
level of the brush border of the small intestine [24,89,90]. As a consequence of decreased
cholesterol delivery, the liver increases LDL receptor expression and clearance of LDL
from the blood [24]. According to the latest European Guidelines on Dyslipidemia, in
the case when LDL-C level is not achieved with the maximum tolerated dose of statin,
a combination with ezetimibe is recommended [24]. An alleviating circumstance is the
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availability of ezetimibe generic products [91]. So far, ezetimibe has proved its efficiency
in LDL-C reduction as a monotherapy [92] and in combination with statins [93], bile acid
sequestrants [94], or bempedoic acid [24].

So far, studies have described the impact of ezetimibe monotherapy in reducing CRP
as statistically nonsignificant compared with placebo [95,96]. A more effective reduction
in CRP level was observed in a combination of ezetimibe with statins [96,97]. It was
suggested that the ezetimibe effect on lowering CRP is not associated with improved anti-
inflammatory function, and it may contribute to LDL reduction [98,99]. It was hypothesized
that in order to achieve a decreased synthesis of inflammatory markers, such as CRP, a
reduction in LDL of over 30% must be reached [97].

The effect of ezetimibe on several other parameters of inflammation was also inves-
tigated. It was shown that ezetimibe reduces the size of adipocytes, accumulation of
pro-inflammatory cytokines, serum levels of free fatty acids, and the expression of the
TNF-α [100,101]. Simvastatin and ezetimibe in combination reduced IL-18 levels and the
expression of IL-1b [102]. A study that compared simvastatin, simvastatin/ezetimibe, and
rosuvastatin at equivalent doses showed significant and similar reductions in plasma 8-Epi
prostaglandin F2α (8-epiPGF2α), oxLDL, and lipoprotein-associated phospholipase A2
(Lp-PLA2) activity in patients with primary hypercholesterolemia [59]. Coadministration of
simvastatin and ezetimibe resulted in a lower impact on transcription factor NF-kB binding
activity compared to simvastatin monotherapy [103]. Considering that NF-kB activation
is dependent not only on oxidated LDL cholesterol concentration but also on cytokines,
free fatty acids, and molecules included in intracellular defense [103], this result may be
additional proof of statin anti-inflammatory action beyond the lipid-lowering effects.

On the other hand, ezetimibe led to the degradation of IkB and, consequently, suppres-
sion of NF-kB activation via the mitogen-activated protein kinase (MAPK) pathway. These
findings implied that there is a possibility of ezetimibe use in the therapy of inflammatory
diseases [101]. The impact of ezetimibe on the Rho-associated coiled-coil-containing protein
kinase (ROCK) was also monitored. It was suggested that statins reduced ROCK more
significantly compared to statins and ezetimibe in combination [99].

The impact of ezetimibe on the endothelium was also investigated [104–106]. Sev-
eral studies have investigated statin therapy versus statins with ezetimibe and have
provided evidence of no difference in endothelial function [98,104,106–110]. It was sug-
gested that in the absence of hypercholesterolemia, ezetimibe has no impact on endothelial
function [104,108–110]. Furthermore, studies with better results on endothelial function
achieved with statins alone were published [98,104,110]. These findings imply once again
the possibility of a statin-specific pleiotropic anti-inflammatory effect. On the other hand,
one comparative study described the beneficial effect on impaired endothelial function
of atorvastatin and ezetimibe compared to atorvastatin alone [111]. It can be observed
that ezetimibe may reduce inflammation in combination with statins, but the effect on
endothelial function and its mechanisms remains unresolved.

4. Bile Acid Sequestrants (BAS)

BAS are traditional LDL-C-lowering drugs. They bind bile acids in the intestinal tract,
increasing their fecal excretion and reducing enterohepatic circulation. As bile acids are
the end products of cholesterol metabolism in the liver, the described process leads to
increased bile acid synthesis and consequent serum LDL-C lowering and up-regulation of
LDL receptors [112]. In addition, BAS glucose-lowering effect is very well established [113].
The three most frequently used medications from this group are cholestyramine, colestipol,
and colesevelam. They can be used as monotherapy or in combination with other LDL-
C lowering drugs. Recent large meta-analysis of 9 randomized trials and 1324 patients
showed a 16.2% stronger reduction in LDL-C in patients treated with a statin and BAS
than with statin alone [114]. The other pooled analysis of 3 randomized clinical trials of
combined statin and colesevelam therapy demonstrated an additional 9.2% lowering of
LDL-C in patients on combined therapy. The same analysis reported a significant hsCRP
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decrease (median change−23.3%) [115]. Colesevelam as monotherapy also demonstrated a
reduction in hsCRP but failed to demonstrate IL-6 and TNF-α reduction [116]. One animal
model suggests a possible BAS role in atherosclerosis stabilization in combination with
brown fat activation [117].

Treatment with BAS can reduce the bioavailability of some anionic medications and
vitamins [118]. However, colesevelam, because of its higher affinity for bile acids, can
avoid these side effects [119]. It is not known whether their influence on the absorption of
fat-soluble vitamins affects the potential anti-inflammatory properties of these medications.
On the other hand, it is well established that high-dose vitamin E supplementation increases
all-cause mortality [120], whereas paradoxically, supplementation with low doses in combi-
nation with other agents correlates with decreased all-cause mortality, while vitamin E in
any dose combined with other agents also correlates with decreased mortality but only in
disease-free populations [121]. These findings leave the issue of vitamin E supplementation
in BAS treated patients still questionable.

5. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors

PCSK9 inhibitors are a heterogeneous group of medications used for the reduction
in serum levels of LDL-C [24,122]. Currently, three agents from this group (alirocumab,
evolocumab, and inclisiran) have received approval from the European Medicines Agency
(EMA) and the U.S. Food and Drug Administration (USFDA) for the treatment of pri-
mary hypercholesterolemia or mixed dyslipidemia. Alirocumab and evolocumab are
monoclonal antibodies for PCSK9 [122], while inclisiran is a synthetic small interfering
RNA (siRNA) that, in a specific process, cleaves PCSK9 messenger RNA in the hepato-
cytes [123]. Both mechanisms lead to the up-regulation of LDL receptors and improved
LDL clearance [123,124]. Several other agents that inhibit PCSK9 with similar or different
mechanisms of action are under investigation, including anti-PCSK9 vaccines [125] and
small oral anti-PCSK9 molecules [126]. Serum LDL-C reduction rates vary among trials
investigating PCSK9 inhibitors on top of maximally tolerated statin therapy, but according
to a recent large meta-analysis of 48 randomized trials, this rate is consistently between
50 and 65% concerning different agents and different dosage regiments [127]. Each of
the three agents also significantly reduces the risk of cardiovascular events based on the
FOURIER, the ODYSSEY OUTCOMES, and pooled analysis of the results of ORION-9, -10,
and -11 trials [128–130].

Although PCSK9 inhibitors are relatively new medications, a substantial amount is
already known about their possible pleiotropic effects, primarily anti-inflammatory effects.
The association between inflammation, LDL-C levels, and atherosclerosis has been very
well established. Moreover, there is evidence suggesting that PCSK9 levels are associated
with the severity of coronary artery disease and positively correlate with the levels of in-
flammatory biomarkers including white blood cell, hsCRP, and fibrinogen [131]. Although
traditional LDL-C-lowering drugs, especially statins, have shown a significant reduction
in hsCRP, a similar relationship has not been demonstrated in randomized trials that in-
vestigated PCSK9 inhibitors [132–134]. Accurate mechanisms of anti-inflammatory effects
of PCSK9 inhibition in atherosclerosis are still poorly elucidated. Most evidence is from
experimental models and a small clinical trial with familial hypercholesterolemia patients,
and they suggest impaired monocyte adherence and migration in the atherosclerotic plaque
by reducing expression of the ICAM-1 in ECs and C-C chemokine receptor 2 (CCR2) in
monocytes [135,136]. The last also showed down-regulation of pro-inflammatory TNF and
up-regulation of anti-inflammatory IL-10 [136]. Furthermore, PCSK9 siRNA induces inhibi-
tion of PCSK9, and inflammatory mediators involved in the pathogenesis of atherosclerosis
IL-1α, IL-6, and TNF-α in oxLDL-stimulated THP-1-derived macrophages via suppression
of NF-κB nuclear translocation [137].

There are several studies based on different imaging methods aiming to support that
PCSK9 inhibitors reduce arterial wall inflammation and atherosclerosis burden by modi-
fying atherosclerotic plaque characteristics [138–145]. Initially, the ATHEROREMO-IVUS
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study using intravascular ultrasound virtual histology imaging for coronary atherosclerotic
plaque characterization showed that PCSK9 levels were associated with the size of plaque
necrotic core, even independently of serum LDL-C levels and concomitant statin ther-
apy [138]. Afterward, many studies using different intravascular imaging techniques such
as intravascular ultrasound, near-infrared spectroscopy, and optical coherence tomography
almost unequivocally demonstrated that PCSK9 inhibitors positively affect all analyzed his-
tological characteristics of atherosclerotic plaque including atheroma volume, lipid core bur-
den index, fibrous cap thickness, lipid arc, macrophage accumulation, etc. [139–142]; only
the ODYSSEY J-IVUS trial failed to confirm that treatment with alirocumab for 36 weeks
after acute coronary syndrome reduces atheroma volume [143]. One small study that
used nuclear magnetic resonance for evaluating carotid atherosclerotic plaque composi-
tion showed that treatment with alirocumab led to plaque stabilization [144]. Another
small study investigating 18F-fluoro-2-deoxy-d-glucose (FDG) uptake in three large arteries
(right and left carotid artery and aorta) demonstrated that long-term treatment with PCSK9
inhibitors reduces arterial FDG uptake independently of serum LDL-C levels [145].

There is rising evidence regarding the role of PCSK9 in other types of inflammation,
including autoimmune diseases such as systemic lupus erythematosus (SLE), in which
elevated serum levels of PCSK9 are associated with higher disease activity [146,147]; pso-
riasis, which is related to increased serum PCSK9 levels and higher PCSK9 expression
in psoriatic lesions than in disease-free skin [148,149]; and HIV infection [150,151]. Data
regarding sepsis and septic shock are conflicting. While some authors suggest that ele-
vated PCSK9 levels in septic patients inhibit hepatocyte bacterial endotoxin clearance and
promote multiple organ failure [152], the others point to higher mortality in patients with
septic shock and lower PCSK9 levels [153], which is also supported by the results of a
PCSK9 loss-of-function genotype study [154]. Initial clinical investigations with PCSK9
inhibitors in some of these conditions are promising. Recent studies also indicate elevated
PCSK9 levels in many types of cancers, including gastric, colorectal, hepatocellular, breast,
and thyroid cancers, and the potential role of PCSK9 in cancer biology [155,156]. Some
beneficial effects of anti-PCSK9 immunization are suggested in experimental models of
colorectal and breast cancer [157,158]. Moreover, data confirm that PCSK9 inhibition using
alirocumab or evolocumab potentiates immune checkpoint inhibition therapy, specifically
anti-PD1 antibody treatment, in mouse models of cancers [159]. Nonetheless, clinical data
are lacking, and well-designed investigations in different cancer populations are required.

6. Novel LDL-C Lowering Drugs

The EMA and the USFDA approved three more LDL-C lowering drugs: bempe-
doic acid, as an alternative for the treatment of primary hypercholesterolemia or mixed
dyslipidemia; lomitapide; and evinacumab for the treatment of homozygous familial
hypercholesterolemia (HoFH). There is strong evidence supporting the LDL-C lowering
efficacy of these medications; however, the data regarding their role in inflammation are
still insufficient, and further investigations are warranted.

Pooled analysis of 4 CLEAR randomized trials of Bempedoic acid in patients with
hypercholesterolemia and atherosclerotic cardiovascular disease (ASCVD) or with heterozy-
gous familial hypercholesterolemia or with both on statin therapy or in statin-intolerant
patients showed 17.8% LDL-C reduction in patients on a statin and 24.5% if they were
statin-intolerant. Furthermore, the same analyses demonstrated a significant reduction in
hsCRP (18.1% in patients on a statin and 27.4% in statin-intolerant patients), indicating a
strong anti-inflammatory effect [160]. This effect is mainly related to the direct activation of
AMP-activated protein kinase (AMPK). Initial animal model studies suggest a potential
favorable impact of this drug on the pathogenesis of atherosclerosis [161,162]. Recently pub-
lished results of the CLEAR outcome trial reported a beneficial effect of Bempedoic acid on
the reduction in major adverse cardiovascular events, including death from cardiovascular
causes, nonfatal myocardial infarction, nonfatal stroke, or coronary revascularization [163].
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Treatment with lomitapide has led to significant LDL-C reduction (38% at week 78) in
HoFH patients, according to a pivotal trial [164]. Long-term follow-up of these patients con-
firmed maintained lowering of LDL-C and, also, a progressive decrease in median hsCRP
levels [165]. Observational studies of HoFH patients treated with lomitapide reported
similar results indicating a steady reduction in LDL-C [166,167]. There are minimal data
suggesting a protective lomitapide effect in ASCVD. One case series of six HoFH patients
on long-term lomitapide therapy showed carotid intima-media thickness stabilization or
regression [168]. In addition, recent studies emphasize the potential anti-cancer effects of
lomitapide [169,170].

Records from the ELIPSE HoFH trial of evinacumab with combined lipid-lowering
treatment shows a 49% LDL-C reduction compared to combined lipid-lowering treatment
alone. A significant reduction was achieved in all analyzed secondary outcomes, including
apolipoprotein B (apoB), TG, Lp(a), and apolipoprotein C-III (apoC-III) [171]. Similar
trends have been obtained in a small real-world clinical practice trial [172]. On the other
hand, there are no data confirming the role of evinacumab in inflammation so far, and data
regarding atherosclerosis are rare but promising. Treatment with evinacumab reduced
atherosclerotic lesion area and necrotic content in APOE*3Leiden.CETP mice [173]. In two
patients treated with evinacumab, major atherosclerotic plaque regression was proven by
using coronary computed tomography angiography (CCTA) [174]. Furthermore, there
is strong evidence suggesting a relationship between ASCVD and high angiopoietin-like
protein 3 (ANGPL3) levels [173,175,176].

7. Fibrates

Fibrates are fibric acid derivate agents, a type of amphipathic carboxylic acid that is
currently widely used in patients with dyslipidemia. The USFDA approved the indications
of fibrates for usage as an adjunct to dietary modifications in patients with primary hyperc-
holesterolemia, mixed dyslipidemia, and severe hypertriglyceridemia. Recently, fenofibrate
has emerged as a potential adjunct therapy for patients with primary biliary cholangitis
who experience an inadequate response to standard therapy [177]. This is confirmed by
a meta-analysis of 20 studies with 4783 participants [178], but it is still unapproved by
the USFDA. A recent study showed that pemafibrate, which is fundamentally different in
structure from other currently available fibrates, may lower incidence of nonalcoholic fatty
liver disease [179]. Moreover, pemafibrate treatment in these patients is effective to control
hepatic inflammation in the short term [180]. The latest European Society of Cardiology
(ESC) guidelines recommended statin treatment as the first drug of choice for reducing
CVD risk in high-risk adults with hypertriglyceridemia, while fibrates may be considered
for usage in combination with statins in high-risk patients and in primary prevention in in-
dividuals who are at the target levels of LDL-C with elevated TG levels [24,181]. Although
it is well known that fibrates have beneficial effects on lipid profile, they do not reduce
CVD risk, which was recently confirmed in the PROMINENT clinical trial, which included
more than ten thousand patients with high risk for CVD. Even though pemafibrate reduced
TG, VLDL, and cholesterol remnant levels by 25–30%, incidence of cardiovascular events
was not reduced [179].

Fibrates act by binding to the nuclear hormone receptor peroxisome proliferator-
activated receptor (PPAR)-α. PPARα activation mediates changes in lipoprotein metabolism
by inducing PPARα-dependent gene transcription, particularly by upregulating lipoprotein
lipase, a key enzyme for TG-rich lipoprotein catabolism. Moreover, activation of PPARα
reduces insulin resistance and dyslipidemia [182]. PPARα has a modulating effect on
inflammation activity. Although it has been suggested that PPARα agonists may improve
cardiac performance through anti-inflammatory effects [183], this assumption requires fur-
ther evaluation. PPARα decreases the production of proinflammatory mediators (TNF-α,
IL-1, IL-6, and IL-8) and modulates the expression of adhesive and chemotactic molecules.
Furthermore, activation of PPARα can induce the production of anti-inflammatory agents,
such as IL-10 [184]. Although under certain conditions, PPARα has pro-inflammatory
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effects, it is well-accepted that PPARα is involved primarily in anti-inflammatory signal-
ing [183]. These effects of target receptor activation, as confirmed by in vitro and in vivo
studies of both acute and chronic inflammatory processes [183], may elucidate the potential
therapeutic use of fibrates in inflammatory disease. Furthermore, some fibrates (clofibrate,
fenofibrate, gemfibrozil, and ciprofibrate) [185], as well as fibrate metabolites (clofibric and
fenofibric acids), activate PPARγ, a participant in inflammatory reactions which inhibits
the activation of immune cells and the expression of inflammatory factors [186,187]. It is
proven that fenofibrate directly upregulates heme oxygenase-1, which contributes to the
anti-inflammatory effects in human vascular cells [188]. Fenofibrate and clofibrate activate
the gene coding for vanin-1, a protein with anti-inflammatory potential [189].

Fibrates have been evaluated in the context of many inflammatory states and diseases.
In the randomized controlled trial that enrolled diabetic patients with mixed dyslipi-
demia, fenofibrate reduced levels of CRP by about 21–28% [190]. The anti-inflammatory
effect of fenofibrate in metabolic syndrome is confirmed both in vitro and in an animal
model [185,191]. What is more, fenofibrate improves colitis in IL-10-deficient animals, sug-
gesting a possible therapeutic potential in inflammatory bowel disease [192]. Fenofibrate
has potential applications both in therapy and for the prevention of bronchial remodeling
in asthma [193,194], but that demands further research. The anti-inflammatory effects of
fenofibrate have been proposed as a potential explanation of proven protection against
diabetic retinopathy [195].

Pemafibrate, a novel selective PPARα modulator that was released in 2018, has su-
perior binding efficiency to PPARα and a favorable safety profile over fenofibrate [196].
Due to these facts and evidence of beneficial effects on inflammation, pemfibrate deserves
further evaluation in clinical settings.

Within the last few years, the majority of new synthetic fibrate derivatives have shown
many biological effects such as hypolipidemic, hypoglycemic, anti-inflammatory, analgesic,
antioxidant, and antiplatelet activities, which are mediated by, or independent of, PPAR
activation. In light of their anti-inflammatory potential, amide-based fibrates have been
evaluated in many preclinical studies; however, according to our knowledge, their effects
have not been examined in clinical settings [197].

Although fibrates, as synthetic PPAR agonists, have effects on inflammation, which are
well described and proven in preclinical studies, the benefits of these effects in humans need
more clinical evidence. Given that fibrates are considered to be “one more lost paradise in
lipid treatment” [198] and without evidence for CVD benefits [179], their anti-inflammatory
effects represent an area of special interest, which deserves further elucidation.

8. Omega-3 Fatty Acids

The beneficial effects of omega-3 fatty acids in lipid metabolism regulation are well
documented [199,200]. These polyunsaturated fatty acids are associated with decreased
plasma TG levels, probably through inhibiting VLDL production [201]. They include
alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA),
with the latter two being considered very-long-chain omega-3 fatty acids [202]. Although
they can be found in plants, the most significant source of omega-3 fatty acids is fatty
fish. Omega-3 and omega-6 polyunsaturated fatty acids represent constituents of the cell
membrane. The predominance of omega-3 fatty acids is associated with less inflamma-
tory conditions, while the predominance of omega-6 fatty acids leads to the promotion
of inflammatory activity [203]. In line with this, in a systematic review conducted by
Natto et al. [204], a relationship between omega-3 fatty acids and a decrease in the level
of the following pro-inflammatory mediators was observed: apoB, apoA-I, total choles-
terol (TC), and HDL-C. The same study also showed favorable effects of omega-3 fatty
acids on TNF-α [204]. Besides their anti-inflammatory effects, omega-3 fatty acids are
associated with antidysrhythmic, antiatherogenic, and antithrombotic activity, as well as
with a decrease in systolic and diastolic blood pressure levels and overall improvement of
endothelial activity [205].
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Icosapent ethyl (IPE) is a highly purified ethyl ester of EPA [206]. The MARINE and
the ANCHOR trials of IPE reported significant TG reduction in individuals with hyper-
triglyceridemia previously untreated or on statin therapy (33.1% and 21.5%, respectively)
and led to the registration of this drug [207,208]. The same trials demonstrated significant
differences in apoB levels between IPA and placebo groups after 12 weeks of treatment
(9.1% in the MARINE trial and 8.8% in the ANCHOR trial) [207,208]. Several years later,
the REDUCE-IT trial investigating cardiovascular effects of IPE in patients with hyper-
triglyceridemia and established CVD or diabetes and other risk factors, who were already
on statin therapy, showed 25% relative and 4.8% absolute reduction in primary composite
end point, including cardiovascular death, nonfatal myocardial infarction, nonfatal stroke,
coronary revascularization, or unstable angina, a key secondary end point, and other tested
end points, except death from any cause [209,210]. Similar trends were obtained in many
prespecified subgroups, such as patients with a prior myocardial infarction, a prior per-
cutaneous coronary intervention, or a previous coronary artery bypass graft (CABG) or
with chronic kidney disease [211–214]. Furthermore, the REDUCE-IT biomarker sub-study
showed a significant difference in serum levels of all tested inflammatory biomarkers
(IL-1β, IL-6, hsCRP, oxLDL, homocysteine, Lp(a), lipoprotein-associated phospholipase A2
(Lp-PLA2)) at each time point [215]. The subsequent EVAPORATE trial, which enrolled
80 subjects with hypertriglyceridemia and multidetector-computed tomography (MDCS),
confirmed that ASCVD demonstrated a clear benefit of IPE on atherosclerotic lesion sta-
bilization proven by a reduction in low-attenuation plaque (LAP) volume and fibrous
and fibro-fatty plaque volumes after 18 months of treatment [216]. This trial illuminated
potential mechanisms behind the impressive results of the REDUCE-IT trial.

A recent study researching the effects of IPE on a rat model of ulcerative colitis
has shown promising results in the reduction in different biohumoral, histologic, and
immunohistochemical parameters of inflammation, oxidative stress, and apoptosis in colon
tissue [217].

9. Lipid-Lowering Upplements

Currently, many different supplements are used for lipid-lowering purposes. More-
over, many combinations and dosage regiments are available. Anyway, their effectiveness
and safety are usually not properly tested and vary significantly. In this study, we dis-
cuss results from several small, randomized trials investigating the anti-inflammatory
effects of dietary LDL-C-lowering supplements. Red yeast rice monacolin K is proba-
bly the most frequently used agent from this group with the strongest evidence for its
effectiveness. A recent large meta-analysis of 5868 participants using red yeast rice demon-
strated significant LDL-C reduction [218]. Additionally, monacolin K showed a reduction
in hsCRP levels in the population with untreated moderate hypercholesterolemia. The
same trial demonstrated a decrease in levels of matrix metalloproteinases (MMPs) 2 and 9,
which are considered markers of atherosclerotic plaque stability [219]. Moreover, mona-
colin K in nutraceutical combination with phytosterols, hydroxytyrosol, and vitamin E
confirmed reduction in LDL-C and hsCRP levels in subjects with previously untreated hy-
percholesterolemia and low or moderate cardiovascular risk [220], while monacolin K-free
combination did not demonstrate analogous results [221]. Ferulic acid supplementation
reduced LDL-C, oxidized LDL-C, hsCRP, and TNF-α, as well as other lipids, oxidative
stress, and inflammatory biomarkers in hyperlipidemic subjects [222]. Likewise, eight
weeks of supplementation with barberry (Berberis integrrima) significantly lowered LDL-C,
CRP, and IL-6 levels in individuals with cardiovascular risk factors [223]. These effects
are potentially accomplished via the up-regulation of cell surface LDL receptor expression
through the PCSK9 inhibition pathway [224]. New concepts of symbiotic supplementation
showed some promising results in improving lipid profiles and decreasing inflammatory
biomarkers in hemodialysis patients [225]. On the other hand, a recently published study
of lipid-lowering and anti-inflammatory effects of different dietary supplements including
fish oil, cinnamon, garlic, turmeric, plant sterols, and red yeast rice failed to demonstrate
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a significant reduction in LDL-C and hsCRP levels compared to placebo and low-dose
Rosuvastatin in subjects with high 10-year risk for ASCVD after 28 days of treatment [226].

10. Conclusions

For a long time, cholesterol has been treated as the central point of ASCVD, and
therapeutic modalities have been directed to its lowering. Nevertheless, evidence emerges
that there is a significant interplay between lipid metabolism and immunity. The precise
underlying mechanisms are yet to be discovered. Elucidating steps in this cascade is of
particular interest considering the role of systemic inflammation in the formation of lipid
plaques and atherosclerosis. On the other side, it has been demonstrated that, besides their
impact on lipid levels, lipid-lowering drugs also express immunomodulatory activities by
decreasing lipid levels and through lipid-metabolism-independent pathways (Table 1). It is
still unknown how low lipid levels should be in order to achieve a satisfying decrease in
the risk of CVD events and if it is also beneficial to include some anti-inflammatory drugs
in the treatment. In this review, it was shown that statins demonstrate anti-inflammatory
effects through multiple different mechanisms; however, it is still a matter of debate as to
what extent these effects are driven by the drug itself. Positive anti-inflammatory effects of
ezetimibe have been documented in animal models, as well as when it was administered in
combination with statins. For PCSK9 inhibitors, there are some data suggesting possible
alterations in inflammatory marker levels; however, further studies should provide deeper
insight. Among omega-3 fatty acids, IPE offers promising results. On the other hand, the
role of some lipid-lowering drugs such as BAS, fibrates, novel lipid-lowering drugs, and
supplements in decreasing inflammation is questionable and requires further evaluation.
Thus, improving knowledge on these interactions could help in tailoring treatments with
lipid-lowering drugs and a consequent decrease in inflammation and the risk of new or
recurrent CVD events. These observations offer possibilities for further interventions in the
field of biomarkers of inflammation and the subsequent introduction of new lipid-lowering
treatment modalities. Considering that CVD are attributed to the highest disease burden at
the global level, even a small change in treatment effectiveness could have a large impact
at the population level. Therefore, further studies in this area are warranted.

Table 1. Impact of lipid-lowering drugs on selected inflammatory biomarkers.

Medication
Inflammatory Biomarkers

CRP or hsCRP IL-1 IL-6 TNF IL-10

Statins ↓ ↑↓ ↓ ↓ /
Ezetimibe ↔ / / / /

BAS ↓ / ↔ ↔ /
PCSK9i ↔ ↓ ↓ ↓ ↑

Bempedoic acid ↓ / / / /
Lomitapide ↓ / / / /
Evinacumab / / / / /

Fibrates ↓ ↓ ↓ ↓ ↑
Omega-3 fatty acids / / / ↓ /

Icosapent ethyl ↓ ↓ ↓ / /
↑—increased concentration; ↓—decreased concentration;/—no date available; ↔—no changes in the con-
centration; CRP—C—reactive protein; hsCRP—high-sensitivity C—reactive protein; IL-1—interleukin 1;
IL-6—interleukin 6; TNF—tumor necrosis factor; IL-10—interleukin 10; BAS—bile acid sequestrants;
PCSK9i—proprotein convertase subtilisin/kexin type 9 inhibitors.
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