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Abstract: Human milk oligosaccharides (HMOs) are one of the most abundant solid components in
a mother’s milk. Animal studies have confirmed a link between early life exposure to HMOs and
better cognitive outcomes in the offspring. Human studies on HMOs and associations with later
child cognition are scarce. In this preregistered longitudinal study, we investigated whether human
milk 2′-fucosyllactose, 3′-sialyllactose, 6′-sialyllactose, grouped fucosylated HMOs, and grouped
sialylated HMOs, assessed during the first twelve postnatal weeks, are associated with better child
executive functions at age three years. At infant age two, six, and twelve weeks, a sample of human
milk was collected by mothers who were exclusively (n = 45) or partially breastfeeding (n = 18).
HMO composition was analysed by use of porous graphitized carbon-ultra high-performance liquid
chromatography–mass spectrometry. Executive functions were assessed at age three years with
two executive function questionnaires independently filled in by mothers and their partners, and
four behavioural tasks. Multiple regression analyses were performed in R. Results indicated that
concentrations of 2′-fucosyllactose and grouped fucosylated HMOs were associated with better
executive functions, while concentrations of grouped sialylated HMOs were associated with worse
executive functions at age three years. Future studies on HMOs that sample frequently during the
first months of life and experimental HMO administration studies in exclusively formula-fed infants
can further reveal associations with child cognitive development and uncover potential causality and
sensitive periods.

Keywords: human milk oligosaccharides; executive functions; longitudinal; preschool

1. Introduction

Human milk is considered the best nutrition for an infant because of its beneficial
effects on child development and on maternal and child health [1]. For example, human
milk is shown to protect against infections during infancy and metabolic diseases in
later life [2]. Moreover, breastfeeding parameters, such as the initiation and duration of
breastfeeding, have been related to improved child neurodevelopment and cognition [2,3].
Increasing evidence also shows that not only breastfeeding parameters, but also specific
constituents of human milk, are related to child behavioural and cognitive outcomes
(for a review see de Weerth et al. [1]). This concept of human milk determining the
trajectory of development with long-term consequences for the phenotype is also known
as Lactocrine Programming [4–6]. Human milk oligosaccharides (HMOs) are the most
abundant solid component in human milk after lipids and lactose [7]. With respect to
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Lactocrine Programming, HMOs are of interest because of their potential beneficial effects
on child neurodevelopment [7,8]. However, to date, the few studies that investigated
HMOs’ associations with child cognition focused on general cognition and language, and
reached the age of 24 months [9–12]. The current study extends these first findings by
investigating, in a healthy community sample, the longitudinal associations between HMOs
in the first weeks of life and executive functions, which represent higher cognitive abilities,
at a child age of three years.

HMOs are complex carbohydrates made up of various combinations of five monosac-
charides (i.e., galactose, glucose, N-acetylglucosamine, fucose, and sialic acid). Based on
combinations of these monosaccharides, HMOs can be divided into three groups: neutral
core HMOs (containing only glucose, galactose, and N-acetylglucosamine residues), fucosy-
lated HMOs (containing a lactose or neutral core backbone, with one or more fucose units),
and sialylated HMOs (containing a lactose or neutral core backbone with one or more
sialic acid units) [13]. The HMO structure determines the HMO function and influence
on the body [14]. Women can secrete about 200 different structures of HMOs, though
10 individual HMOs make up over 70% of the total HMO concentration [15]. While HMO
composition remains mainly constant during the day and week, HMO composition does
change throughout lactation and varies greatly between women [15–17]. One of the most
important factors explaining variance in milk HMO composition is secretor status. Secretor
status is controlled by the FUT2 gene and refers to the presence or absence of water-soluble
ABO blood group antigens in a person’s bodily fluids, including breast milk. People who
secrete these antigens in their bodily fluids are referred to as secretors, while people who
do not are termed non-secretors. Maternal secretor status has been shown to affect levels of
HMOs with fucose-containing structures [18]. Mothers who are secretor-negative usually
produce none, or very low levels of 2′-fucosyllactose (2′FL), as opposed to secretor-positive
mothers [18].

Because the most important function of HMOs is to provide nutrients to specific
gut bacteria, the microbiota-gut-brain axis is a likely pathway through which HMOs can
ultimately exert effects on the brain and behaviour. Rodent and human studies have
shown that the microorganisms in our gut, or gut microbiota, are able to communicate
with the brain via the microbiota-gut-brain axis, which is the bi-directional communication
route between the gut microbiota and the brain [19,20]. Mainly bifidobacteria benefit from
HMOs; for example, Bifidobacterium longum subspecies infantis uses HMOs as metabolic
substrates [21–23]. The exact mechanism of how bifidobacteria can subsequently affect
brain development is still unclear. However, bifidobacteria are able to produce short-chain
fatty acids, which are able to cross the blood–brain barrier and exert positive effects on
the brain [24]. This proposed mechanism may explain associations between HMOs and
cognitive development.

HMOs have been causally related to long-term cognition in animal studies (for a
review on HMO administration in animal studies, see Docq et al. [25]). For example, 2′FL
administered at early ages (in combination with other components or HMOs) until the
end of the experiment (postnatal day 33) contributed to improved memory performance
and faster learning speed in adult pigs, compared to control pigs [26,27]. Furthermore,
sialylated HMOs, mainly 3′-sialyllactose (3′SL) and 6′-sialyllactose (6′SL), administered
at an early age until the end of the experiment (postnatal day 19 and 35) contributed to
better performance of rats and piglets in memory and learning tasks in adolescence and
older adulthood, compared to control animals [28,29]. In addition, Oliveros et al. [30,31]
administered 2′FL and 6′SL in rats in early life only and found an association with better
performance on learning tasks in adulthood. These positive effects of early-life HMO
administration on memory and learning in adulthood indicate that HMO consumption in
early life can exert lifelong effects on the cognition of mammals.

Mechanisms have been explored for several HMOs. The HMO 2′FL is known for
its specific stimulation of the growth of bifidobacteria in the gut [32]. Additionally, in
rat brains, 2′FL induced long-term potentiation (LTP) which is involved in learning and
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memory [33–35]. Next to that, deprivation of 6′SL affected cognitive functions, as seen by
reduced expression of important genes in the prefrontal cortex, a brain region that mediates
executive functions and memory [36]. Lastly, sialic acid has been suggested to play a key
role in neurodevelopment during the early postnatal stages, as it provides the building
blocks for brain gangliosides [37], which have been related to neurophysiological outcomes,
such as memory formation [8,37,38].

To our knowledge, no studies on the effects of HMO supplementation on cognition
have been performed in humans. However, observational human studies are emerging
that investigate longitudinal relations between HMOs, cognition, and related constructs.
One study found that 2′FL concentrations in milk samples collected at 1 month postpartum
were associated with better cognitive development at 24 months of age, as measured with
the Bayley Scales of Infant and Toddler Development [10]. Another longitudinal human
study found a positive association between 6′SL and better cognitive development scores
at 18 months of age, also measured with the Bayley Scales [9]. In addition, Cho et al.
found positive links between 3′SL concentration and a composite of cognition at multiple
ages (language in particular) in human infants [11]. Lastly, a large study in Malawi
participants found a positive link between grouped fucosylated and grouped sialylated
HMO concentrations in mothers’ milk collected at 6 months postpartum, and language at
child age 18 months [12]. To summarise, most human studies assessed HMO concentrations
only at one time point or at older ages (i.e., 6 months). Because HMO composition changes
over lactation and early life is known to be a sensitive period for future child development,
multiple samples in early life are required to obtain a more reliable picture of an infant’s
exposure to HMOs during the first months of life and its association with later child
cognitive development.

This prospective longitudinal study investigated, in a healthy Dutch community
sample, the associations between HMOs measured at infant age 2, 6, and 12 weeks, and
executive functions at child age 3. As inhibitory control is an important aspect of executive
functions and is essential for child mental health development [39,40], we also included
behavioural measures of inhibitory control. The study was preregistered on the Open
Science Framework (https://doi.org/10.17605/OSF.IO/H4ZTW, registered on 3 May 2022).
Based on the literature mentioned above, we selected specific HMOs (2′FL, 6′SL, and 3′SL)
and composed two HMO groups (fucosylated- and sialylated HMOs) for our study. We
hypothesized that 2′FL, 6′SL, 3′SL, grouped fucosylated HMOs, and grouped sialylated
HMOs would be positively associated with better executive functions and inhibitory con-
trol. With the goal of expanding our knowledge on HMOs, we exploratorily investigated
associations between child cognition and 21 other HMOs: 3′-fucosyllactose (3-FL), difu-
cosyllactose (DFL), di-/tri-fucosyllacto-N-hexaose (DF-/TF-LNH), four different isomers
of fucosyllacto-N-hexaose (F-LNH), isofucosyl-Lacto-N-hexaose I (IF-LNH-I), lacto-N-
difucohexaose I (LNDFH-I), lacto-N-difucosylhexaose II (LNDFH-II), lacto-N-fucopentaose
I (LNFP-I), lacto-N-fucopentaose II (LNFP-II), lacto-N-fucopentaose III (LNFP-III), lacto-N-
fucopentaose V (LNFP-V), lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT) com-
bined, lacto-N-hexaose (LNH), lacto-N-neohexaose (LNnH), para-lacto-N-hexaose (pLNH),
sialyllacto-N-tetraose-a (LSTa), sialyllacto-N-tetraose-b (LSTb), sialyllacto-N-tetraose C
(LST c), and three more HMO groups: non-fucosylated and non-sialylated HMOs, mono-
fucosylated HMOs, and di- and tri-fucosylated HMOs.

2. Materials and Methods
2.1. Participants

This study is part of the longitudinal BINGO study investigating early prenatal and
postpartum predictors of child development [41,42]. Participants were parents and their
children, recruited in the Netherlands during pregnancy in 2014/2015 (n = 88). Postnatal
exclusion criteria were pregnancy complications, birth weight <2500 g, gestational age at
birth <37 weeks, 5 min Apgar score <7, and congenital malformations [41]. After birth,
eleven participating families were excluded, either because inclusion criteria were not met,

https://doi.org/10.17605/OSF.IO/H4ZTW
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or withdrawal due to personal circumstances. After one drop-out during the first postnatal
year, 76 families were contacted at the 36-month measurement round (2017/2018) and
67 agreed to participate (see participant flowchart in Figure 1). Of these 67 participants,
4 mothers did not breastfeed during the first postnatal weeks and thus did not provide
milk samples, resulting in a total number of 63 participants for the current study. All the
analyses were first performed on data from exclusively breastfed children during the first
12 postnatal weeks (n = 45, including two infants who received one formula feeding a week)
to avoid potential effects of formula feeding on behaviour. Subsequently, the analyses were
repeated with the whole group of infants (n = 63), correcting for percentage breastfeeding
(see HMOs section).
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Figure 1. Flowchart of participant follow-up. Drop-outs are shown on the left side of the flowchart.
Participants who skipped the assessment round are shown on the right side of the flowchart.

The BINGO study was independently reviewed by the Ethics Committee of Social
Sciences (ECSW) of Radboud University, and no formal objection to this research was
made [ECSW2014-1003-189 and amendment: ECSW-2018-034]. The current study was
preregistered on the Open Science Framework: https://doi.org/10.17605/OSF.IO/H4ZTW,
registered on 3 May 2022.

2.2. Procedure

Mothers collected milk samples at two, six, and twelve weeks after delivery. Mothers
collected these samples (approximately 20 mL) into sterile collection cups by hand expres-
sion in the morning, before feeding the infant. Mothers were asked to wash their hands
before collection. In case breast pads or cream had been used, mothers were asked to also
wash their breasts before collection. The three mothers who collected milk via a pump
were asked to first boil the parts that come into contact with the milk. Samples were stored
in the participant’s freezer before they were collected with a portable freezer when the
infant was around 12–14 weeks. The samples were subsequently stored at −80 ◦C at the
Radboud University, and afterwards delivered to the lab of Food Chemistry of Wageningen
University for HMO content analysis.

At three years of age, mothers and their partners independently filled in online
questionnaires about their child’s executive functioning. In addition, home visits took
place, where child inhibitory control was assessed by a trained examiner through six
inhibitory control tasks. For more information on the procedure and content of the visit,
see Willemsen et al. [43].

https://doi.org/10.17605/OSF.IO/H4ZTW
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2.3. HMOs

The HMOs were extracted, purified by solid phase extraction, and quantified by using
porous graphitized carbon-ultra high-performance liquid chromatography–mass spectrom-
etry (PGC-UPLC-MS) and high-performance anion exchange chromatography with pulsed
amperometric detection (HPAEC-PAD) [44]. The following 24 different HMO structures
were determined: 2′FL, 3-FL, 6′SL, 3′SL, DF-TF-LNH, DFL, four different isomers of F-LNH,
IF-LNH-I, LNDFH-I, LNDFH-II, LNFP-I, LNFP-II, LNFP-III, LNFP-V, LNH, LNnH, pLNH,
LNT and LNnT combined, LST a, LST b, and LST c (see also Borewicz et al. [17] and
Gu et al. [45] for other analyses with these data).

The group of fucosylated HMOs consisted of 3-FL, 2′FL, LNFP-I, LNFP-II, LNFP-III,
LNFP-V, four isomers of F-LNH, IF-LNH-I, LNDFH-I, LNDFH-II, DFL, and DF-TF-LNH.
The group of sialylated HMOs consisted of 6′SL, 3′SL, LST a, LST b, and LST c. The
group of non-fucosylated and non-sialylated HMOs consisted of LNT and LNnT combined,
LNH, LNnH, and pLNH. The group of mono-fucosylated HMOs consisted of 3-FL, 2′FL,
LNFP-III, LNFP-II, LNFP-I, LNFP-V, four different isomers of F-LNH, and IF-LNH-I. The
Di- and Tri-fucosylated HMOs consist of LNDFH-I, LNDFH-II, DFL, and DF-TF-LNH.
The identification of different LNH isomers was not possible as the pure substances for
identifying LNH isomers were not commercially available during the time of wet analyses.
However, identification of LNH isomers was achieved based on mass-to-charge ratios of
peaks and was then compared to retention times in the literature. This allowed for relative
comparisons between the HMOs.

Due to naturally occurring differences in milk dilutions, HMO concentrations were
corrected for sample-to-sample variability by normalizing readout values for each time
point separately, using the Probabilistic Quotient Normalization (PQN) method in R, as
performed by Borewicz et al. [17]. Furthermore, corrections for estimated daily milk intake
were based on previous literature (480 g, 580 g, and 630 g at weeks two, six, and twelve,
respectively) [46]. The resulting variables were used as such for the exclusive breastfeeding
group (n = 45). For the total group (n = 63), in which also mothers were included who were
partially breastfeeding, these corrected values were further adjusted for the proportion
of human milk feedings. E.g., if the infant at 12 weeks received 30% formula and 70%
human milk, the corrected HMO concentrations at that time point were further adjusted by
multiplying by 0.7.

2.4. Executive Functions

Two questionnaires were used to measure child executive functioning. The Behavior
Rating Inventory of Executive Function-Preschool Version (BRIEF-P) is a commonly used
executive function questionnaire that measures general child executive functions and
does not differentiate between different situations. The Ratings of Everyday Executive
Functioning (REEF) is less commonly used and rates child executive functions in different
situations (e.g., executive functions around friends, during grocery shopping, or in the
community). Because of their different assessment methods, and because previous literature
showed different outcomes between the two questionnaires [43], we included both in
our research.

The BRIEF-P [47] is a 63-item questionnaire that assesses preschool-aged executive
functioning using a 3-point scale (option answers: ‘Never’, ‘Sometimes’, ‘Often’). Example
items are: “Overreacts to small problems” and ”Is easily overwhelmed or overstimulated
by typical daily activities.” Higher scores indicate worse executive functioning. To align
with our other executive functioning and inhibition measures, the outcome of the BRIEF-P
was reverse-coded. Consequently, higher scores on the BRIEF-P indicated better executive
functioning. The Cronbach’s alpha was 0.94 for mothers and 0.96 for partners.

The REEF [48] is a 77-item questionnaire that assesses preschool-age executive func-
tions using a 4-point scale (option answers: ‘Is not able’, ‘Never or almost never’, ‘Some-
times’, ‘Always or almost always’). This questionnaire assesses the child’s behaviour in
eight different scenarios, namely: how the child plays games, how the child plays games
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with others, how the child interacts with others, around the house, in the community, out
shopping, story time, and general skills and behaviours. Example items are: “Plays “Hide
and Go Seek” without cheating (e.g., does not peek when counting)” and ”Waits to pay
for items without complaint”. A higher score indicates better executive functioning. The
Cronbach’s alpha was 0.96 for mothers and 0.95 for partners.

As some partner reports were missing (n = 14 for the BRIEF-P and n = 15 for the
REEF), and they correlated significantly with maternal reports (r = 0.51 for the BRIEF-P and
r = 0.30 for the REEF), maternal reports were used in the main analyses. Partner reports of
the BRIEF-P and the REEF were used as sensitivity measures.

2.5. Inhibitory Control Tasks

Behavioural tasks were chosen according to five categories of inhibitory control clas-
sified by Anderson and Reidy (2012) [49]: motor inhibition (i.e., inhibit motor behaviour
at specific moments after learning it), verbal inhibition (i.e., inhibit verbal responses), im-
pulse control (i.e., inhibit an instinctive response), delay of gratification (i.e., resist direct
temptation to receive a larger reward after the delay) and go/no-go (i.e., perform certain
behaviour after being shown a stimulus and to inhibit that behaviour after being shown a
different stimulus). A higher score on the tasks indicates better inhibitory control.

The Flanker task [50] was used to measure motor inhibition. Children were asked to
point in the same direction as where a centrally located target fish was swimming towards,
ignoring the presence of interfering stimuli (flanking fish oriented in the same or opposite
directions). Children who passed the four practice trials were presented with another
ten trials, of which three were incongruent trials. Accuracy of the incongruent trials was
scored between 0 and 3 (0 = pointing in the wrong direction; 1 = first pointing in the correct
direction, then pointing wrongly; 2 = first pointing in the wrong direction, then pointing
correctly; 3 = pointing in the correct direction), and subsequently averaged. Forty-nine out
of sixty-three children passed the practice trial.

The Whisper task [51,52] was used to measure verbal inhibition. Children who passed
the two practice trials were asked to whisper the names of another twelve animal pic-
tures. Answers were coded 0 to 2 for every picture (0 = shout; 1 = normal or mixed tone;
2 = whisper) and averaged. All children passed the practice trial.

The Gift Wrap task [51,52] was used to measure motor inhibition. Before the gift in
front of them was wrapped, the children were asked to cover their eyes with their hands
and not peek. Wrapping lasted for one minute. Children’s waiting behaviour was coded
every five seconds with a score ranging from 0 to 3 (0 = watches wrapping/gift; 1 = peeks;
2 = looks away from wrapping/gift; 3 = closed eyes and/or hands in front of the eyes)
and averaged. One child did not understand the task and was therefore excluded from
the analysis.

The Gift Delay task [51] was used to measure impulse control. Children were asked
to refrain from touching and unwrapping the present placed in front of the child when
the examiner left the room for one-and-a-half minutes. Impulse control was measured as
latency (measured in seconds) until touching the present.

Due to insufficient variation and low number of children that passed the practice
trials in the Snack Delay task (to measure delay of gratification) [51,52] and the Bear
Dragon task (to measure go/no-go) [51,53], respectively, these tasks were excluded from
the analyses [43].

2.6. Scoring of Inhibitory Control Tasks

Video recordings of the inhibitory control tasks were observed and scored indepen-
dently by two observers. The first five recordings were scored by both observers indepen-
dently and checked for agreement. Disagreements were discussed and adjusted in the
scoring book. Thereafter, the observers only discussed recordings in case of uncertainties.
Thirty out of sixty-three recordings were scored by both observers to determine inter-rater
reliability. Reliability was quantified by the Intraclass Correlation Coefficient (ICC) relying
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on absolute agreement. The ICCs for the inhibitory control tasks were good: 0.95 for the
Flanker, 0.86 for the Whisper, 0.88 for the Gift wrap, and 0.84 for the Gift delay. Because
the tasks measured different forms of inhibitory control as part of the same overarching
construct, “lumping” was preferred over “splitting”. Following Willemsen et al. [43], a
composite score was created for the inhibitory control tasks by averaging the z-scores. Note
that a latent variable could not be created due to violations of the assumptions [43].

2.7. Confounders

Potential confounding variables were based on previous literature and plotted in
directed acyclic graphs (for DAGs, see Figure 2) [54] to determine their inclusion in the
main analysis. Based on the DAGs, the following confounding variables were considered
for the main analyses: gestational age at birth [55,56], maternal educational level (ranging
from 1, primary education, to 8, university education) [57,58], and executive functioning of
the parent(s) [58]. For this last confounder, parental executive functioning was assessed
with the Behavior Rating Inventory of Executive Function-Adult (BRIEF-A) [59]. The
BRIEF-A is a 75-item self-report questionnaire of executive functioning in adults, scored
on a 3-point scale. We reverse-coded the BRIEF-A outcome for interpretation purposes
so that higher scores indicate better executive functioning. The Cronbach’s alphas were
good for mothers (α = 0.96), and partners (α = 0.93). Similar to the BRIEF-P, some partner
reports were missing (n = 20), and they correlated significantly with maternal reports
(r = 0.54). Therefore, only maternal reports were used as confounders, and partner reports
of the BRIEF-A were used as sensitivity measures. These potential confounders were
correlated with the executive functions and inhibitory control variables to determine
their inclusion as confounders in the analyses. Other potential confounders that were
considered but eventually excluded based on the DAGs were: maternal age [55], secretor
status [18], mode of delivery [60,61], and parity [60]. While low infant birthweight has been
associated with HMO composition and cognitive functioning [62,63], the current study only
included infants with healthy birthweight; therefore, infant birthweight was not included
as confounder. Moreover, breastfeeding duration had previously been assessed in the same
cohort with the same outcome variables (i.e., BRIEF-P, REEF, Whisper, Flanker, Gift Wrap,
and Gift Delay), and no significant associations were found between breastfeeding duration
and these outcomes [43]. Hence, breastfeeding duration was not included as confounder.
The following potential confounders were not considered in the DAGs, as no data had been
collected: gestational weight gain and maternal body mass index [55].
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2.8. Missing Data

Excluding the sum variables derived from the original data (e.g., grouped fucosylated
HMOs are the sum of specific individual HMOs), 9% of the data were missing. The
following milk data were missing: one sample at two weeks and one sample at six weeks.
Additional missing milk data were due to some mothers not breastfeeding and therefore
unable to provide a sample (two samples at two weeks, four samples at six weeks, and nine
samples at twelve weeks). The following questionnaire data were missing: for mothers,
REEF (n = 1) and BRIEF-A (n = 1), and for partners, BRIEF-P (n = 14), REEF (n = 15),
and BRIEF-A (n = 20) (of which 14 of each questionnaire were missing because these
partners did not join this study at baseline). The following behavioural data were missing:
Whisper (n = 4), Gift Wrap (n = 4), Gift Delay (n = 4), and Flanker (n = 18, of which
15 were missing because children did not pass the practice trial). The LittleMCAR test
from the ‘BaylorEdPsych’ package indicated that data were missing completely at random
(X2 = 153.173, p = 0.549). Missing data were imputed by means of multiple imputation
according to Buuren [64] using the ‘mice’ package. Data were imputed 20 times and
analyses were thus run 20 times. Results of these analyses were pooled using the pool
function of the ‘mice’ package, which averages the estimates of the 20 analyses.

2.9. Statistical Analyses

All analyses were performed in R version 4.0.2. A 95% confidence interval that doesn’t
contain a 0 and a p-value of <0.05 were considered statistically significant. Variables were
checked for normality, and the following were not normally distributed: 2′FL (at 2, 6, and
12 weeks), 3′SL (at 2, 6, and 12 weeks), 6′SL (at 2, 6, and 12 weeks), grouped fucosylated
HMOs (at 6 and 12 weeks), grouped sialylated HMOs (at 2, 6, and 12 weeks), inhibitory con-
trol composite score, gestational age, partner executive functions, and maternal educational
level. Pearson’s and Spearman’s correlations were performed to correlate normally and
non-normally distributed variables, respectively. Furthermore, the area under the curve
(AUC) with respect to the ground was calculated for the HMOs of the three milk assessment
time points to create one variable that reflects infant exposure to HMOs during the first
twelve postnatal weeks [65]. Next, the data used for the final analyses were inspected
for outliers. The following variables contained outliers: the AUC of 3′SL (two outliers),
the AUC of 6′SL (two outliers), the BRIEF-P filled in by the mother (one outlier), and the
inhibitory control composite score (one outlier). The outliers were winsorized [66]. Results
of the analyses were similar with and without winsorizing (i.e., including the outliers).

For the main analyses, multiple regression analyses were performed to assess the
association between the HMOs (i.e., 2′FL, 3′SL, 6′SL, grouped fucosylated, and grouped
sialylated HMOs) and the outcome variables (i.e., executive functions as assessed by the
BRIEF-P, REEF, and the inhibitory control composite score). Six models were run, two per
outcome variable. The three separate HMOs (2′FL, 3′SL, and 6′SL) were added to three
models as predictors of the outcome variables. Because the two HMO groups (fucosylated
and sialylated HMOs) are partly derived from the separate HMOs in the first three models,
we analysed the HMOs separately. The two HMO groups were added to the three models
as predictors for the three outcome variables. These six models were run twice, once
including data from exclusively breastfed infants, and once including data from partially
breastfed infants.

Sample size could not be adjusted due to the longitudinal nature of our study. We
determined the power of our analyses depending on the effect size and sample size,
using G*Power (version 3.1). According to Cohen’s [67] guidelines for multiple regression
analyses, f2 ≥ 0.02, f2 ≥ 0.15, and f2 ≥ 0.35 represent small, medium, and large effect
sizes, respectively. We entered an alpha error probability of 0.05, and six predictors (i.e.,
the three individual HMOs and the three confounders) for the model with individual
HMOs. Five predictors were entered for the model with grouped HMOs. When including
exclusively breastfed infants only (n = 45), our power is 0.15, 0.72, and 0.97 for detecting
small, medium, and large effect sizes, respectively. When including partially breastfed
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infants (n = 63), our power is 0.20, 0.86, and >0.99, for detecting small, medium, and large
effect sizes, respectively.

Log-likelihood tests were performed to check which model fit the data best. Models
including the confounders fit significantly better than models without confounders. Hence,
only results from the models with the confounders were interpreted for the results.

2.10. Exploratory Analyses
2.10.1. Clinically Relevant Executive Function Problems

Multivariate logistic regression analysis was performed to assess the differences be-
tween the group of children who scored above the (sub)clinical cut-off of the BRIEF-P (i.e.,
indicating that these children experience clinically relevant executive function problems),
and a group of children without such problems [47]. Seventeen participants scored above
the subclinical cut-off of the BRIEF-P (i.e., a t-score of 60 or higher). For the high-low
comparison analyses, a contrast group was made by taking the 19 participants who scored
the best on executive functions of the BRIEF-P (i.e., t-score of 48 or lower). The dummy
outcome variable was being in the group with low executive functions (0) or in the group
with high executive functions (1). The predictors were the AUCs of the separate HMOs
(2′FL, 3′SL, and 6′SL). The same analyses were performed with the AUCs of the HMO
groups as predictors (fucosylated and sialylated HMOs). Note that the BRIEF-P was the
only outcome measure in which clinical cut-off values are available.

2.10.2. Individual HMOs and Individual Time Points

To investigate the effects of other HMOs on executive functions and inhibitory control,
we added all HMOs from all time points to a random forest model. In total, 24 HMOs (2′FL,
3-FL, 6′SL, 3′SL, DF-TF-LNH, DFL, four different isomers of F-LNH, IF-LNH-I, LNDFH-I,
LNDFH-II, LNFP-I, LNFP-II, LNFP-III, LNFP-V, LNH, LNnH, pLNH, LNT and LNnT
combined, LST a, LST b, and LST c) were added to a Random Forest model to assess which
HMO had the highest predictive value for the BRIEF-P, the REEF, and the inhibitory control
composite. We ran the same analyses for the five HMO groups (grouped fucosylated
HMOs, grouped sialylated HMOs, grouped non-fucosylated and grouped non-sialylated
HMOs, grouped mono fucosylated HMOs, and grouped Di- and Tri-fucosylated HMOs).
One random forest model was run per outcome variable. Thus, three models were run
for the exploration of separate HMOs and three models were run for the exploration of
HMO groups. The ‘randomForest’ package was used to run the Random forest analyses.
We fitted random forest models using the ‘Tuneranger’ package [68]. After that, the HMOs
and HMO groups from all time points were added separately to a Random Forest model to
assess which HMO at what time point had the most predictive value for the BRIEF-P, the
REEF, and the inhibitory control composite (e.g., all HMOs at age 2 weeks were added in
one model with the BRIEF-P).

3. Results
3.1. Descriptives of Study Population Characteristics and Study Variables

Table 1 shows the descriptive statistics of the study population. Table 2 shows the de-
scriptives of the measured variables including the percentages of exclusively breastfeeding
mothers, the measured concentrations of the main HMOs and HMO groups of interest, and
the scores on executive functions and inhibitory control tasks. Differences in concentrations
over time were tested with a One-Way ANOVA test. Figure 3 shows the significant changes
in HMO concentration over time. Concentrations of 6′SL, grouped fucosylated HMOs,
and grouped sialylated HMOs decreased significantly over time. Concentrations of 2′FL
significantly differed between two weeks and twelve weeks, but not for six weeks. Concen-
trations of 3′SL at two weeks significantly differed from concentrations at six and twelve
weeks. However, concentrations of 3′SL at six weeks did not differ from concentrations at
twelve weeks. After adjustment for estimated daily intake, 6′SL and grouped sialylated
HMOs decreased significantly over time. Estimated intake of 2′FL, 3′SL, and grouped
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fucosylated HMOs did not change significantly over time. Scores on the BRIEF-P, the REEF,
and the BRIEF-A did not differ significantly between the mother and partner.

Table 1. Study population characteristics.

Characteristics % n

Child sex
Girl 49.2 31
Boy 50.8 32

Maternal educational level
Low 0 0

Middle 14.5 9
High 85.5 53

Missing 1.6 1

Age (±SD) n
Gestational age (weeks) 39.8 (±1.6) 63

Child age (months) 37.6 (±1.1) 63
Maternal age (years) 1 34.5 (±3.6) 63
Partner age (years) 1 35.9 (±4.1) 47

1 Ages at child age three years (date of the home visit).

Table 2. Descriptive statistics of measured variables: breastfeeding, HMO levels, executive functions,
and inhibitory control.

Breastfeeding % n

Exclusive breastfeeding (2 weeks) 86 54
Exclusive breastfeeding (6 weeks) 89 56
Exclusive breastfeeding (12 weeks) 78 49

HMO levels Mean concentration
(g/L) (±SD) 1 n

Estimated daily intake for
exclusively breastfed

infants (g) (±SD) 2
n

2′FL 2 weeks 0.95 (±0.52) a 60 0.45 (±0.24) 43
2′FL 6 weeks 0.82 (±0.41) ab 58 0.47 (±0.24) 44
2′FL 12 weeks 0.67 (±0.35) b 54 0.41 (±0.23) 45

3′SL 2 weeks 0.18 (±0.03) a 60 0.08 (±0.01) 43
3′SL 6 weeks 0.17 (±0.01) b 58 0.10 (±0.01) 44
3′SL 12 weeks 0.16 (±0.02) b 54 0.10 (±0.01) 45

6′SL 2 weeks 0.38 (±0.09) a 60 0.18 (±0.04) 43
6′SL 6 weeks 0.18 (±0.02) b 58 0.11 (±0.01) 44
6′SL 12 weeks 0.07 (±0.02) c 54 0.04 (±0.01) 45

Fucosylated HMOs 2 weeks 4.84 (±0.46) a 60 2.31 (±0.18) 43
Fucosylated HMOs 6 weeks 4.31 (±0.32) b 58 2.49 (±0.19) 44

Fucosylated HMOs 12 weeks 3.88 (±0.42) c 54 2.45 (±0.29) 45

Sialylated HMOs 2 weeks 1.10 (±0.19) a 60 0.52 (±0.07) 43
Sialylated HMOs 6 weeks 0.66 (±0.06) b 57 0.38 (±0.04) 44
Sialylated HMOs 12 weeks 0.43 (±0.06) c 54 0.27 (±0.03) 45

Behaviour Score (±SD) n

Executive functions questionnaires
BRIEF-P mother 95.0 (±15.8) 63
BRIEF-P partner 97.4 (±18.1) 49

REEF mother 146.4 (±32.6) 62
REEF partner 144.9 (±28.0) 48

BRIEF-A mother 108.2 (±19.7) 62
BRIEF-A partner 108.3 (±16.0) 43

Inhibitory control tasks
Flanker 1.3 (±0.7) 45
Whisper 1.8 (±0.3) 59

Gift Wrap 2.1 (±0.9) 59
Gift Delay (seconds) 77.0 (±28.2) 59

1 Adjusted for sample-to-sample variability (with probabilistic quotient normalization). 2 Adjusted for daily intake
volumes of 480 g, 580 g, and 630 g at weeks two, six, and twelve, respectively, based on previous literature [44].
a,b,c indicate significant differences (p < 0.05) between time points (i.e., a differs from b and c, but not from a).
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3.2. Correlations
3.2.1. Correlations between Executive Function and Inhibitory Control Measures

Correlations between executive function questionnaires and inhibitory control tasks
are shown in Table 3. The BRIEF-P and the REEF correlated significantly for mothers
(r = 0.38), but not for partners. Both the BRIEF-P and the REEF correlated between the
mother and partner (r = 0.51 and r = 0.30, respectively). The BRIEF-A (reflecting parent’s
executive functions) and the BRIEF-P (reflecting a toddler’s executive functions) correlated
significantly for the mother and partner (r = 0.34 and r = 0.50, respectively). In addition, the
inhibitory control tasks did not intercorrelate. Better performance on the Gift Wrap and the
Gift Delay correlated positively with better executive functions as measured by the REEF
filled in by the mother (r = 0.29 and r = 0.37, respectively).

Table 3. Correlations between executive function measures and inhibitory control measures.

BRIEF-P
Mother

BRIEF-P
Partner

REEF
Mother

REEF
Partner

BRIEF-A
Mother

BRIEF-A
Partner Flanker Whisper Gift Wrap Gift Delay

BRIEF-P Mother -
BRIEF-P Partner 0.51 *** -

REEF Mother 0.38 ** 0.23 -
REEF Partner 0.03 0.08 0.30 * -

BRIEF-A Mother 0.34 ** 0.26 −0.14 −0.06 -
BRIEF-A Partner 0.34 * 0.50 ** 0.13 0.05 0.54 *** -

Flanker 0.07 0.23 0.15 0.23 −0.02 0.25 -
Whisper 0.00 −0.17 0.00 0.04 −0.06 −0.21 0.04 -

Gift Wrap −0.03 −0.02 0.29 * 0.18 −0.24 −0.02 0.10 −0.07 -
Gift Delay 0.10 0.00 0.37 ** 0.15 −0.32 * −0.23 0.19 0.12 0.21 -

Note: BRIEF-P and BRIEF-A are reverse-scored (i.e., higher scores indicate better executive functions). * p < 0.05.
** p < 0.01. *** p < 0.001. n = 63.

3.2.2. Correlations between Main HMOs of Interest and Behavioural Measures

Next, correlations between the concentrations of HMOs of main interest are shown
in Table 4. Concentrations of 2′FL correlated significantly between two and twelve weeks
(r = 0.30). All concentrations of 2′FL correlated significantly with concentrations of grouped
fucosylated HMOs at all time points (r ranging from 0.29 to 0.85), except for 2′FL at six
weeks and grouped fucosylated HMOs at twelve weeks. Furthermore, 3′SL, 6′SL, and
grouped sialylated HMOs correlated negatively over time (r ranging from −0.27 to −0.64).
After the removal of outliers in these measures, the correlations remained mostly similar.

Correlations between the predictor and outcome variables used in the main models
(i.e., AUC of the HMOs, maternal reports of executive functions, and inhibitory control
composite) are shown in Table 5. Only the AUC of grouped sialylated HMOs was negatively
correlated with the BRIEF-P (r = −0.31). No other HMOs were significantly correlated with
the executive function and inhibitory control measures.
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Table 4. Correlations between concentrations of individual HMOs and grouped HMOs.

2′FL
(2 w)

2′FL
(6 w)

2′FL
(12 w)

3′SL
(2 w)

3′SL
(6 w)

3′SL
(12 w)

6′SL
(2 w)

6′SL
(6 w)

6′SL
(12 w)

Fuc
HMOs
(2 w)

Fuc
HMOs
(6 w)

Fuc
HMOs
(12 w)

Sial
HMOs
(2 w)

Sial
HMOs
(6 w)

Sial
HMOs
(12 w)

2′FL (2 w) -

2′FL (6 w) 0.26

2′FL (12 w) 0.30 * 0.14

3′SL (2 w) 0.08 −0.08 −0.17

3′SL (6 w) 0.02 0.25 −0.24 −0.30 *

3′SL (12 w) 0.08 −0.07 0.37 ** −0.64 *** −0.42 **

6′SL (2 w) 0.19 −0.12 −0.03 0.08 −0.04 −0.07

6′SL (6 w) −0.13 0.18 −0.13 −0.17 −0.03 0.14 −0.39 **

6′SL (12 w) −0.12 −0.09 0.17 −0.10 0.24 −0.03 −0.64 *** −0.27 *

Fuc HMOs (2 w) 0.66 *** 0.43 ** 0.34 * 0.28 * −0.03 −0.10 0.06 −0.10 0.00

Fuc HMOs (6 w) 0.29 * 0.85 *** 0.30 * −0.20 0.42 ** −0.08 −0.03 0.20 −0.19 0.33 *

Fuc HMOs (12 w) 0.34 * 0.01 0.73 *** −0.21 −0.25 0.40 ** −0.01 −0.15 0.15 0.14 0.05

Sial HMOs (2 w) 0.25 −0.09 −0.05 0.41 ** −0.03 −0.29 * 0.71 *** −0.30 * −0.51 *** 0.39 ** −0.06 −0.04
Sial HMOs (6 w) −0.37 ** 0.22 −0.20 −0.29 * 0.47 *** −0.13 −0.24 0.48 *** −0.10 −0.45 ** 0.41 ** −0.38 ** −0.43 **
Sial HMOs (12 w) 0.09 −0.11 0.32 * −0.46 *** −0.26 0.77 *** −0.25 −0.14 0.36 ** −0.10 −0.20 0.47 *** −0.45 *** −0.30 * -

Note: Correlations are denoted as r. Fuc: Fucosylated, Sial: Sialylated, 2 w: two weeks, 6 w: six weeks, 12 w: twelve weeks. HMO concentrations are in grams per litre and adjusted for
sample-to-sample variability (n = 63). * p < 0.05. ** p < 0.01. *** p < 0.001.
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Table 5. Correlations between maternal reports on executive functions, inhibitory control composite,
and the AUCs of the HMOs (adjusted for sample-to-sample variability, percentage breastfeeding, and
estimated daily intake).

BRIEF-P
by Mother

REEF
by Mother

Inhibitory
Control Composite

AUC of 2’FL 0.00 0.16 0.04

AUC of 3’SL 0.20 −0.12 −0.06

AUC of 6’SL 0.14 −0.16 −0.13

AUC of Fucosylated HMOs −0.17 0.21 0.14

AUC of Sialylated HMOs −0.31 * 0.03 −0.09
Notes: Correlations are based on imputed data (n = 63). HMOs mentioned in this table are the AUCs of the HMOs
in grams consumed at 2, 6, and 12 weeks; the BRIEF-P is reverse-coded to correspond with the other executive
functions and inhibition measures (i.e., higher BRIEF-P scores indicate better executive functions). * p < 0.05.

3.2.3. Correlations between Potential Confounding Variables and Executive
Functions Measures

Potential confounding variables were determined beforehand by the use of DAGs
(as mentioned in the confounder section) and subsequently correlated with the outcome
variables (see Table 6). Only the BRIEF-A correlated significantly with the BRIEF-P (r = 0.30)
and the inhibitory control composite score (r = 0.32). Hence, gestational age and maternal
educational level were excluded from the main analysis, and the BRIEF-A was used
as a confounding factor for the analyses with the BRIEF-P and the inhibitory control
composite score.

Table 6. Correlations between executive function measures and potential confounding variables.

BRIEF-P Mother REEF Mother Inhibitory
Control Composite Gestational Age Mother

Educational Level BRIEF-A Mother

BRIEF-P Mother -

REEF Mother 0.33 ** -

Inhibitory
control composite 0.07 0.34 ** -

Gestational age −0.01 −0.07 −0.05 -

Mother
educational level −0.04 0.18 0.17 −0.02 -

BRIEF-A Mother 0.30 * −0.07 0.32 * 0.07 0 -

Note: Correlations are based on imputed data (n = 63). The BRIEF-P is reverse-coded to correspond with the
other executive functions and inhibition measures (i.e., higher BRIEF-P scores indicate better executive functions).
* p < 0.05, ** p < 0.01.

3.3. Main Analyses
3.3.1. Analyses with Exclusively Breastfed Infants Only

Table 7 shows an overview of the multiple regression analyses, as performed in the
exclusively breastfed group. Better executive functioning, as measured with the REEF, was
associated with more 2’FL (β: 5.21, 95%CI: 0.84–9.57) and grouped fucosylated HMOs
(β: 3.43, 95%CI: 0.30–6.56). These results indicate that higher consumption of human milk
concentrations of 2′FL and grouped fucosylated HMOs during infancy are associated with
higher executive functions at age three years. No other significant associations were found
for the BRIEF-P, the REEF, and the inhibitory control composite. Results were no different
with and without winsorizing.
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Table 7. Associations between HMOs and executive functions (BRIEF-P and REEF) and inhibitory
control (exclusively breastfed infants).

Effect Estimate (95% CI) Standard Error p-Value

BRIEF-P Model 1
Intercept 147.65 (47.08–248.21) ** 49.76 0.005

2′FL −0.34 (−2.07–1.40) 0.86 0.70
6′SL −39.22 (−85.79–7.35) 23.04 0.10
3′SL −29.15 (−118.13–59.83) 44.03 0.51

BRIEF-A 0.15 (−0.048–0.35) 0.10 0.13
BRIEF-P Model 2

Intercept 108.24 (22.69–193.78) * 42.36 0.015
Fucosylated HMOs −0.18 (−1.45–1.08) 0.63 0.77
Sialylated HMOs −7.88 (−28.30–12.53) 10.11 0.44

BRIEF-A 0.18 (−0.02–0.38) 0.10 0.08
REEF Model 1

Intercept 264.44 (33.40–495.48) * 114.40 0.03
2′FL 5.21 (0.84–9.57) * 2.16 0.02
6′SL −14.33 (−131.61–102.96) 58.08 0.81
3′SL −138.79 (−360.91–83.34) 109.99 0.21

REEF Model 2
Intercept 122.34 (−76.57–321.26) 98.57 0.22

Fucosylated HMOs 3.43 (0.30–6.56) * 1.55 0.03
Sialylated HMOs −15.75 (−66.45–34.95) 25.12 0.53

Inhibitory control Model 1
Intercept 1.31 (−2.53–5.15) 1.90 0.49

2′FL 0.01 (−0.05–0.08) 0.03 0.70
6′SL −0.37 (−2.15–1.41) 0.88 0.68
3′SL 0.10 (−3.29–3.50) 1.68 0.95

BRIEF-A −0.01 (−0.02–−0.002) * 0.004 0.02
Inhibitory control Model 2

Intercept 2.24 (−0.82–5.30) 1.52 0.15
Fucosylated HMOs 0.02 (−0.02–0.07) 0.02 0.27
Sialylated HMOs −0.47 (−1.20–0.26) 0.36 0.20

BRIEF-A −0.01 (−0.02–−0.002) * 0.004 0.01
Note that analyses were performed on exclusively breastfed infants only, n = 45. The REEF models did not
include confounders as none of the potential confounders correlated with the REEF. The BRIEF-P is reverse-coded
to correspond with the other executive functions and inhibition measures (i.e., higher BRIEF-P scores indicate
better executive functions). All HMOs and HMO groups mentioned in this table are the Area Under the Curve.
*: p < 0.05, **: p < 0.01.

3.3.2. Analyses Including Partially Breastfed Infants

The same analyses were also performed including data from partially breastfed infants
(see Supplementary Table S1). The positive association between 2′FL and the REEF found
in the exclusively breastfed group was now marginally significant (p = 0.06). Additionally,
higher levels of sialylated HMOs were associated with worse executive functions, as
measured with the BRIEF-P. No other significant results were found, and results were no
different with and without winsorizing.

3.4. Exploratory Analyses
3.4.1. Clinically Relevant Executive Function Problems

Multiple logistic regression analyses were performed to check the differences between
children with high and low executive functions (Table 8). No significant results were
found. Results were the same with and without winsorizing. The results including partially
breastfed infants were also non-significant (see Supplementary Table S2).
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Table 8. Multiple logistic regression results of the relation between the HMOs and HMO groups and
the BRIEF-P (exclusively breastfed infants).

Effect Estimate (95% CI) Standard Error p-Value

BRIEF-P Model 1
Intercept 19.90 (−10.91–61.23) 17.45 0.27

2′FL −0.03 (−0.63–0.47) 0.26 0.91
6′SL −10.36 (−26.00–1.86) 6.80 0.15
3′SL −12.84 (−44.72–11.80) 13.73 0.36

BRIEF-A 0.03 (−0.02–0.10) 0.03 0.29
BRIEF-P Model 2

Intercept 1.68 (−22.06–24.82) 11.53 0.89
Fucosylated HMOs −0.04 (−0.42–0.27) 0.16 0.79
Sialylated HMOs −1.16 (−7.71–5.07) 3.14 0.72

BRIEF-A 0.03 (−0.01–0.09) 0.02 0.18
Note that the analyses were performed on exclusively breastfed infants only, n = 45. All HMOs and HMO groups
mentioned in this table are the Area Under the Curve. BRIEF-P coded as: 1, representing the high executive
functions group, and 0, representing the low executive functions group. Hence, positive values indicate a positive
association between higher levels of HMOs and high executive functions.

3.4.2. Individual HMOs and Individual Time Points

All HMOs were added to a random forest model using the data of the children that had
been exclusively breastfed during the milk sampling period. All models with the BRIEF-P
and REEF yielded a high Mean of Squared Residuals (MSR) (ranging from 163 to 212 for
the BRIEF-P and from 1025 to 1371 for the REEF) and a negative % variance explained, also
after tuning the models. While the models for the inhibitory control composite yielded a
low MSR, these models also explained negative variance. Because the model fits for all
random forest models could not be improved, indicating that the HMOs we selected were
unsuitable for predicting our outcomes, the results of the random forest models were not
interpreted. Similar results were found after including data from partially breastfed infants.

To still be able to exploratorily inspect the HMOs at separate time points, we ran
multiple regression analyses with the separate HMOs predicting the outcome measures,
and corrected for multiple testing by dividing the alpha by the number of predictors in the
model [69]. The HMOs at separate time points were not able to significantly predict the
outcomes. These results were identical after including the partially breastfed infants.

4. Discussion

The goal of this study was to investigate links between human milk HMO concentra-
tions during the first twelve postpartum weeks, and executive functions and inhibitory
control at three years of age. The analyses performed in the group of exclusively breastfed
infants during the 12-week milk sampling period provided evidence that higher milk
concentrations of 2′FL and grouped fucosylated HMOs during the first twelve postnatal
weeks were associated with better executive functions at age three, as measured with the
REEF questionnaire. When partially breastfed infants were added to the analyses, similar
results for 2′FL were produced and a negative association between grouped sialylated
HMOs and executive functions, as measured with the BRIEF-P questionnaire, appeared.
No associations were found with 3′SL, 6′SL, and the inhibitory control composite score.
The results from our random forest models with HMOs measured at single time points
could not be interpreted due to poor model fits.

We found evidence for an association between higher levels of 2′FL in the first twelve
weeks and better executive functions at age three years. This finding seems robust as it
appeared in the analyses with and without including partially breastfed infants. Results
of animal studies are also in line with 2′FL leading to better cognition (for a review, see
Docq et al. [25]). Early life administration of 2′FL enhanced long-term potentiation (LTP,
involved in memory and learning) in rats, improved recognition memory in pigs, and
improved performance in operant learning paradigms in mice [26,31,70]. Moreover, our
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results are consistent with two human studies that found an association between 2′FL at
one month and better motoric development at six months [9], and between 2′FL at one
month and better cognition at twenty-four months [10]. Interestingly, Berger et al. [10]
also measured 2′FL concentrations at six months and did not find an association with
cognition. Likewise, Jorgensen et al. [12] also did not find a link between 2′FL at six months
and child cognition or executive functions. As such, it might be speculated from these
and our findings that early life exposure to 2′FL might be especially important for later
cognitive development. It should also be noted that some human studies did not find an
association between 2′FL and better cognitive outcomes. Cho et al. [11] found no evidence
for a link between 2′FL concentration (measured at different times for individual infants
between ages 2 to 25 months) and cognition (assessed at ages between 2 to 25 months). A
potential underlying mechanism associating 2′FL with later cognition is the gut microbiota.
Indeed, Vazquez et al. found that 2′FL ingestion in rodents improved learning ability and
LTP enhancement [33], but only when the connection of the vagus nerve was intact [70].
Ingestion of 2′FL may have stimulated the production of low molecular components by the
gut microbiota, possibly improving executive functions. Conversely, the gut bacteria can
alter the integrity of 2′FL [71], causing 2′FL to reach the brain in a different form. Different
forms of 2′FL can exert different effects on LTP in the brain [70]. In addition, fucosyllactose
is utilised by Bifidobacteria to promote their growth, which may result in positive effects on
the brain [72–74]. For future studies, it is therefore suggested to include the gut microbiota
when investigating the role of HMOs on cognitive outcomes. Additionally, because HMO
levels decrease over time, and both Jorgensen et al. [12] and Berger et al. [10] found no
evidence for a relation between future cognition and 2′FL at six months, future sufficiently
powered human studies should consider multiple milk samples over a longer period of
time to identify sensitive periods for 2′FL concentrations to impact the developing brain.

Our findings also showed that higher concentrations of grouped fucosylated HMOs
were present in the human milk of children with higher levels of executive functions.
Jorgensen et al. [12] found a positive link between grouped fucosylated HMOs at six
months and language, but not executive functions, at age 18 months. Moreover, as more
human studies investigating fucosylated HMOs as a group are lacking, and animal studies
on grouped fucosylated HMOs and cognition are scarce, we can only cautiously speculate
that grouped fucosylated HMOs may exert positive effects on cognition. Most HMO
research to date focused on specific, individual fucosylated HMOs, including 2′FL. For
this reason and given our positive findings, future studies may consider also investigating
fucosylated HMOs as a group, next to individual HMOs, as the structure of fucosylated
HMOs indicate that their physiological functions may be similar [14]. More mechanistic
studies are also necessary to investigate how grouped fucosylated HMOs might improve
cognitive outcomes.

Contrary to our hypothesis, and only in the analyses with the partially breastfed infants
included, higher concentrations of grouped sialylated HMOs in mother’s milk predicted
worse executive functions in 3-year-old children, as measured with the BRIEF-P. Only
Jorgensen et al. [12] investigated grouped sialylated HMOs in humans and found higher
levels of grouped sialylated HMOs to be associated with improved language performance
at 18 months. Note that our positive associations between 2′FL and grouped fucosylated
HMOs and executive functions were obtained with the REEF questionnaire. Hence, these
apparent discrepancies in our results might be explained by the fact that the BRIEF-P
assesses child executive functions more in general, while the REEF assesses child behaviour
in specific everyday situations. The design of these questionnaires may also explain why
paternal BRIEF-P and REEF did not correlate, as in traditional households (like often is
the case in the Netherlands [75]), fathers, compared to mothers, spend less time with their
children. Fathers may thus have a better view of their child’s general executive functions as
compared to their child’s executive functions in specific daily situations. This could explain
why the BRIEF-P was more strongly correlated between parents, compared to the REEF.
The BRIEF-P may therefore be a more robust measure of executive functions in general,
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while the REEF might be more suitable for caregivers who spend more time with their
children in different situations. Although the BRIEF-P has been used more often, the use of
the newer REEF has been rising.

Our results on grouped sialylated HMOs and worse executive functions were only
found when partially breastfed infants were included in the analyses. Because partially
breastfed infants by definition consume fewer HMOs than exclusively breastfed infants, we
cannot exclude the possibility that these associations between grouped sialylated HMOs
and worse executive functions that were only found in the partially breastfed infants may
be a chance finding. Additionally, our main analyses were performed on the exclusively
breastfed group to correct for potential noise that formula feeding may cause. Some
formula feeding includes galactooligosaccharides (GOS) and fructooligosaccharides (FOS)
which mimic the effects that HMOs have on gut bacteria [76,77], and hence potentially on
the brain [21–23]. For this reason, and because the findings differed for the exclusively
breastfed versus any breastfed group, we refrain from further interpreting these results.

Furthermore, we found no evidence for a relation between 3′SL and 6′SL concentra-
tions and executive functions. Previous results on these HMOs are mixed. Two human
studies and one animal study found a positive association with 3′SL and better future
cognitive outcomes [11,12,78], while one human and one animal study found no evidence
for an association between 3′SL and future cognition [10,79]. Regarding 6′SL, one human
study found an association between higher concentrations of 6′SL at one month and better
cognition [9], while another found an association between higher concentrations of 6′SL
and a smaller change in infant head circumference between 6–18 months [12]. Finally, two
studies found no evidence for a link between 6′SL and cognition at age 24 months [10,11]. In
piglets, ingestion of 3′SL and 6′SL are related to an increase in sialic acid concentration in the
cerebellum and the hippocampus, as well as an expanded hippocampus [80,81]. Whether
this mechanism is associated with better executive functions is still unclear. Nonetheless,
it is premature to draw conclusions regarding individual sialylated HMOs, as results in
human studies are inconsistent, likely due to the different methodologies used and ages
assessed. Sufficiently powered replication studies are necessary to obtain clarity on if, how,
and when sialylated HMOs are associated with child cognition. Curiously, the correlations
between all sialylated HMOs (including grouped sialylated HMOs) were negative over
time, meaning that higher levels of sialylated HMOs at one point were correlated with
lower levels of sialylated HMOs at another time point. This finding was robust, since the
removal of outliers did not change these correlations. It is difficult to speculate why these
correlations are negative over the first 12 postnatal weeks. How sialylated HMOs develop
over time thus requires more research. Future studies on this topic may benefit from adding
different time-variant factors, such as maternal diet, or maternal condition and recovery
after delivery [55].

Our study has several strengths. To our knowledge, this study is the first to assess
HMO concentrations at three time points early in life and relate these concentrations to
cognitive outcomes in toddlerhood. The multiple time points allowed us to investigate
HMO concentrations during a critical and sensitive period in life [82]. Second, we used
two different types of questionnaires, filled in by mothers and their partners, and several
behavioural tasks to provide a more robust view of child executive functions. A good
addition to these measures would be to use eye-tracking [83] or MRI scans [84] for more
fine-grained assessments [1]. Our study also has its limitations. The individual milk volume
consumption was not measured. This resulted in our estimating HMO exposure based on
mean daily intakes known from the literature which is less accurate. Although tedious,
future research may benefit from instructing mothers to weigh their infants before and after
each feeding to obtain a more precise estimate of their daily milk consumption [85,86]. Next,
the generalizability of our results is limited by our mostly highly educated sample. Lastly,
our relatively small sample size reduced our statistical power. However, we preserved our
power as much as possible by reducing the number of statistical tests performed, calculating
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the AUC of the three HMO measures, creating a composite score of the observed inhibitory
control test scores, and using partner scores as sensitivity measures.

5. Conclusions

Despite knowing the beneficial effects of human milk, it is currently one of the most
under-investigated biological systems in life sciences [1]. Specifically, human studies
investigating HMOs in relation to cognitive outcomes in early childhood are scarce. We
found evidence for an association between 2′FL and grouped fucosylated HMOs during
the first twelve postnatal weeks and better child executive functions at age three. In the
future, larger replication studies should consider collecting multiple mothers’ milk samples
in early life and extending these findings to later ages as well. Additionally, studies may
benefit from including the gut microbiota in their analyses to be able to investigate the
mechanisms underlying HMO associations with child neurodevelopment. Studies should
also investigate the effects of HMOs on the development of vulnerable groups who require
tailored nutrition but do not always have access to human milk (e.g., preterm born infants).
Such studies would aid in the determination of sensitive periods in which HMOs may exert
the largest positive effects on cognition and executive functions.
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