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Abstract: Stroke is currently the second most common cause of death worldwide and a major cause
of serious long-term morbidity. Selenium is a trace element with pleotropic effects on human health.
Selenium deficiency has been associated with a prothrombotic state and poor immune response,
particularly during infection. Our aim was to synthesize current evidence on the tripartite interrela-
tionship between selenium levels, stroke, and infection. Although evidence is contradictory, most
studies support the association between lower serum selenium levels and stroke risk and outcomes.
Conversely, limited evidence on the role of selenium supplementation in stroke indicates a potentially
beneficial effect of selenium. Notably, the relationship between stroke risk and selenium levels is
bimodal rather than linear, with higher levels of serum selenium linked to disturbances of glucose
metabolism and high blood pressure, morbidities which are, in turn, substrates for stroke. Another
such substrate is an infection, albeit forming a bidirectional relationship with both stroke and the
consequences of impaired selenium metabolism. Perturbed selenium homeostasis leads to impaired
immune fitness and antioxidant capacity, which both favor infection and inflammation; specific
pathogens may also contend with the host for transcriptional control of the selenoproteome, adding a
feed-forward loop to this described process. Broader consequences of infection such as endothelial
dysfunction, hypercoagulation, and emergent cardiac dysfunction both provide stroke substrates
and further feed-forward feedback to the consequences of deficient selenium metabolism. In this
review, we provide a synthesis and interpretation of these outlined complex interrelationships that
link selenium, stroke, and infection and attempt to decipher their potential impact on human health
and disease. Selenium and the unique properties of its proteome could provide both biomarkers and
treatment options in patients with stroke, infection, or both.

Keywords: selenium; coagulation; ischemic stroke; infection

1. Background

Stroke is the second most common cause of death worldwide (11.8% of all deaths) and
a major cause of serious long-term morbidity [1,2]. Ischemic stroke (IS) is the most common
type of stroke, comprising about 80% of the total cerebrovascular events [3]. Despite the
decline of stroke mortality over the years, the number of IS-related deaths and morbidities
and overall disability-adjusted life years (DALY) lost remains of great importance and
increases in the course of time [4]. Although most risk factors are modifiable, including
hypertension, diabetes mellitus, hyperlipidemia, and smoking [5] other non-modifiable
variables such as age, sex, and genetics have also been considered as risk factors for
stroke [6–8]. Studies on nutritional factors affecting stroke risk and outcomes have been
generally focused on dyslipidemia, with micronutrients and trace elements being generally
underexplored in the literature.

Micronutrients or trace elements refer to nutritional factors required in specific, minute
quantities by organisms and affect specific aspects of their physiological functions. One such
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micronutrient is selenium (Se) [9]. Selenium exerts multiple pleiotropic homeostatic roles
on human health, several of which are interwoven with stroke etiopathogenesis and its
outcomes, as well as infection. This tripartite relationship is not merely observational; many
of the shared pathophysiological substrates that link infection and stroke find common
grounds in Se biology.

A central case in point for this concept arises from the observed interrelationships
between serum Se concentration, the systemic inflammatory response, and multi-organ fail-
ure in sepsis patients. As selenoproteins are known to mitigate oxidative stress, coagulation,
and immune fitness, these associations potentially reflect homeostatic adaptations aimed at
preserving tissues and organs affected by the stress represented by sepsis [10]. Another
example of the pertinence of Se biology arises from host–virus interactions, where host
Se biology is actively contested by viruses in order to favor egress, with oxidative stress
and hypercoagulable states representing secondary consequences. Moreover, selenium
depletion secondary to infection may build up towards a prothrombotic state and impaired
immune fitness, a milieu that has been shown to favor viral genomic instability potentially
resulting in variants with greater pathogenicity [11].

The purpose of this critical review is to explore state-of-the-art evidence on the epi-
demiology, potential mechanisms, and possible interventions regarding selenium status,
infection, and stroke. Furthermore, we aim to provide a concise report on current concepts
regarding selenium supplementation in the specific setting of infectious disease and stroke,
as well as their interplay.

1.1. Selenium Biology

Selenium is a fundamental trace element of human biology and mediates its enzymic
functions through selenoproteins [12]. Selenium is mainly found in soil and enters the food
chain through plants or through external supplementation [9]. The daily selenium uptake
differs from country to country and mostly depends on the soil content of selenium [13,14].
Apparently, there is no consensus on the appropriate daily intake of selenium required to
achieve plateau concentrations of plasma glutathione peroxidase (GPx) [9]. The American
Recommended Dietary Allowance (RDA), revised in April 2000, suggests 55 µg per day
for both men and women, whereas in other countries the recommended doses are higher
probably due to a lower selenium status of their population [15]. In the United Kingdom,
(UK) the recommended dietary dose for an adult woman is 60 µg/day, whereas in lactating
women and adult men the recommended dose is higher at 75 µg/day [16]. Plasma and
serum selenium levels are commonly used for the measurement of selenium status, though
selenoprotein P levels and glutathione peroxidase activity are also widely used [17,18].

Four forms of selenium are taken up and eventually incorporated into selenoproteins.
Two sources can be found as organic compounds selenomethionine (SeMet) and selenocys-
teine (Sec), and two inorganic forms such as selenite and selenate [19]. The most prominent
form of selenium ingested by humans is SeMet. Selenium is metabolized through the liver,
where Selenoprotein P (SELENOP) is synthesized which transports selenium to other tis-
sues and organs through the bloodstream [20]. The transported selenium is then converted
to selenophosphate by intracellular selenium metabolic pathways. Eventually, selenium is
excreted from the human body either through exhalation or via urine as small-molecule
metabolites [21–23].

In humans, the selenium donor for selenocysteine (Sec) biosynthesis is selenophos-
phate, produced from selenite and the consumption of ATP in a reaction catalyzed by
selenophosphate synthetase 2 (SPS2) [24].

Unlike other amino acids, Sec biosynthesis is uniquely dependent on its tRNA [25].
Initially, Sec tRNA undergoes aminoacetylation catalyzed by the seryl-tRNA synthetase 1
(SerRS) and formulates Ser t-RNASec. [26]. Subsequently, Ser-tRNASec is phosphorylated
to form O-phosphoseryl-tRNASec (Sep-tRNASec) by Sep-tRNA kinase (PSTK) [24,27]. The
third step requires the conversion of O-phosphoseryl-tRNA (Sec) to selenocysteinyl-tRNA
(Sec) by the O-phosphoseryl-tRNA (Sec) selenium transferase (SEPSECS) [28].
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Sec is encoded by the UGA codon, which would otherwise signal translation ter-
mination. Selenoprotein mRNAs contain the Sec insertion sequence (SECIS) element, a
conserved steam and loop RNA structure beyond the UGA codon and within the 3′-UTR.
SECIS is required for the recognition of selenocysteine UGA codons which is furthermore
dependent on the elongation factor EFSec and the protein factor SECIS-binding protein 2
(SBP2). Following the delivery of the tRNA carrying selenocysteine to the UGA, the UGA
codon is recognized as selenocysteine rather than a stop codon, and Sec is inserted into the
elongating chain [29]. It should be noted that the SBP2′s redox state, governed by thiore-
doxin and glutaredoxin systems, is linked to its functions, indicating a regulatory feedback
loop between oxidative stress buffering and selenoprotein translational rhythms [30,31].

The regulation of selenium metabolism and the selenoproteome is crucial for the appro-
priate function of several systems of human biology including the central nervous system,
the endocrine system, muscle function, the cardiovascular system, and immunity [32,33].
Selenium abundance regulates redox homeostasis in a level-dependent manner, described
as the selenium “paradox”, i.e., where its accumulation after a threshold leads to oxida-
tive states [34]; this, however, does not refer to a true paradox despite its accounts in the
literature, but rather the on bimodal effects dependent on depletion or abundance.

In the following sections, we will review canonical roles for the selenoproteome that
are actively implicated in infection and cerebrovascular disease.

1.2. Functional Classification of the Selenoproteome

As described previously, selenium is incorporated in the active form of the 21st amino
acid selenocysteine (Sec), which is encoded by a UGA stop codon [31].

Its biological effects are exerted via both the selenoproteome and Se’s bioactive metabo-
lites such as hydrogen selenide and methylated selenium compounds such as methylse-
leninic acid [33,35]. The latter molecules take part in biological processes such as DNA
repair and epigenetics through redox reactions, with the selenoproteome in general repre-
senting a wide array of antioxidant proteins ubiquitous to the human body.

To date, the selenoproteome refers to the products of 25 selenoprotein-coding genes in
humans; out of 25 selenoproteins, 13 of them have known functions [36], further classified
into six subgroups; (i) peroxidase and reductase activities, (ii) hormone metabolism, (iii) pro-
tein folding, (iv) redox signaling, (v) Sec synthesis, and (vi) selenium transport [37,38].
Structurally, SELENOP is distinguished from the rest of the selenoproteins, since it contains
multiple selenol amino acids per polypeptide, whereas all other characterized selenopro-
teins contain only one residue [39]. The gene SELENOP, which encodes the protein of the
same name, is located on chromosome 5q31.1 [40]. The true functional repertoire stemming
from selenoprotein coding genes may be more expansive, as alternative splicing and other
post-translational mechanisms may produce subcellular specific isoforms [41] or create
protein variants with novel functionalities [42].

Conversely, mutations in selenoproteins genes have varying consequences, as de-
scribed above, stemming, however, from the resulting dysregulation of redox homeostasis.
These mutations affect high-energy tissues such as muscle, the thyroid, and the brain, where
tightly regulated mitigation of oxidative stress is essential for their function [43]. Studies
provide strong evidence of a link between genetic variants in selenoproteins genes and risk
for various chronic diseases [44]. Several single nucleotide polymorphisms (SNPs) that
affect the selenoproteome and are associated with the disease have been identified; affected
genes include SELENOP, SEPHS1, GPX1, GPX3, GPX4, TXNRD1, TXNRD2, SELENOF,
DIO2, and SELENOS among others [44,45]. In particular, prostate cancer has been linked to
variants TXNRD1 and TXNRD2 [46], colorectal cancer has been linked to variants GPX1,
GPX4, SELENOP, SELENOF, and TXNRD1 [47–50], lung cancer has been linked to variants
GPX1, GPX4, and SELENOF [51–53] and increased risk of cardiovascular disease has been
linked to variants GPX1 and SELENOS [54,55].

A general principle for selenoproteins is that they take up homeostatic roles in multi-
ple tissues by coupling metabolic and other cellular housekeeping functions with redox
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homeostasis, a modus operandi reflected both in health and disease [56]. In the subsequent
sections, we intend to explore the role of selenium and the selenoproteome in conditions
that represent substrates and shape the course of stroke and infection, namely immunity
and coagulation.

1.3. The Selenoproteome and Immunity

The selenoproteome plays a fundamental role in the regulation of diverse aspects of
immunity [57] and mitigates the prooxidant milieu developed during inflammation [34,58].
The role of selenium in immunity appears to be bidirectional, capable of both enhanc-
ing and mitigating inflammation secondary to infection. These bimodal effects indicate
an operational buffer zone for Se levels, beyond which both deficiency and excess can
be harmful.

In particular, selenium depletion and decreased selenoprotein expression have been
associated with higher levels of inflammatory cytokines in a variety of tissues such as
the gastrointestinal tract, the uterus, mammary gland tissues, and others [33]. However,
increased selenium intake may lead to a setting-specific upregulation of inflammatory
processes. For example, it can lead to the upregulation of stress-responsive selenoproteins
implicated in inflammation and interferon γ (IFNγ) responses [59]. Moreover, it has been
demonstrated that a diet rich in selenium is associated with potentially increased activa-
tion of leukocytes [60], proliferation and differentiation of immune cells, and increased
production of IFNγ and other cytokines [61,62]. Selenium studies on the neutrophil-to-
lymphocyte ratio (NLR), an index of systemic inflammation [61–64], have also indicated
interrelationships with Se homeostasis. Selenium and other micronutrients have been nega-
tively correlated with NRL levels in patients with COVID-19 [65], indicating the protective
role of selenium supplementation in severe inflammatory conditions.

Acquired selenium deficiency may lead to immune dysregulation [33], albeit with
differential, abundance-dependent effects on different aspects of immunity; specifically,
adequate selenium intake and homeostasis have been shown to be instrumental in maintain-
ing immune surveillance and the capacity to mobilize and regulate immune mechanisms.
Conversely, Se dyshomeostasis has been linked with perturbed innate and humoral im-
mune responses [66]. Despite the pivotal role of selenium in many immune cell functions,
data regarding selenium supplementation as an approach to boost immunity in the general
population are limited.

1.4. Selenium and Coagulation

Aside from immunity, selenium is critical for the maintenance of adequate coagulation
mechanisms. GPx activity and the modulation of lipid hydroperoxides levels. Se plays a
critical role in the arachidonic acid (AA) cascade [67]. During the AA metabolism, GPx
acts as a scavenger of hydrogen peroxide and furthermore inhibits the production of both
thromboxane A2 (TXA2) and lipoxygenase products [68,69].

In particular, GPx-3, a member of the selenocysteine-containing GPx family is a major
antioxidant enzyme and is the only one found in the extracellular space. Deficiency
of this enzyme is associated with a prothrombotic state and vascular dysfunction [70].
GPx furthermore regulates the bioavailability of nitric oxide (NO), which has a potential
inhibitory effect on platelet activation and aggregation [71]; conversely, its abrogation
would therefore contribute to potential hyperactivity of otherwise normal functioning
platelets, culminating in a prothrombotic state. Selenium deficiency as an initial step
has been shown to contribute to and enhance the prothrombotic state in a variety of
medical conditions including severe sepsis or septic shock [72,73] and cancer [74]. There
is an inverse association of selenium levels and oxidative stress in patients with sepsis
or cancer survivors as well as those associated with severe trauma [75], which in turn
may predispose one to a hypercoagulable state by impairing red blood cell functions,
promoting to endothelial dysfunction, and, finally, activating platelets and leukocytes—
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events that collaboratively and independently affect an imbalance of the regulatory aspects
of hemostasis [76].

2. The Role of Selenium on Cerebrovascular Risk

In the previous sections, we expanded on the role of selenium on factors that may
increase the susceptibility to cerebrovascular events. Aside from these, there are several
studies that have attempted to explore the direct role of selenium in stroke.

In an observational cross-sectional study (N = 12,095), authors found an inverse cross-
sectional association between low levels of total selenium and prevalence of stroke mostly in
specific population subgroups; male, elderly, white, and people with higher education and
higher income [77]. In a case-control study of Canadian Inuit who generally display high
plasma Se concentrations, authors found that blood selenium (geometric mean: 260 µg/L
vs. 319 µg/L) and dietary selenium (144 µg/day vs. 190 µg/day) were lower in patients
with stroke compared to participants without stroke, in whom selenium exposure was
higher [78]. Hu et al. found that each 50-µg/L increase in blood selenium and in dietary
selenium led to a 38% and 30% reduction in the prevalence of stroke, respectively. The
inverse association was also supported in a case-control study with more than 1000 Chinese
subjects, where Wen et al. demonstrated the potential protective role of selenium in
cardiovascular disease, since lower levels of blood selenium were linked to a higher risk of
ischemic stroke [79]. The protective role of selenium on ischemic stroke was also observed
by Hu et al. in a case-control study, but the negative association was demonstrated only in
males [80].

In a meta-analysis of 12 observational studies, authors yielded a negative association
between selenium levels and stroke [81], though the subgroup analysis did not confirm
this association in the prospective cohort group. In a case-control study, Mironczuk et al.
demonstrated higher Cu/Se and Cu/Zn molar ratios in patients with cardio-embolic stroke,
but relatively low Cu/Se molar ratios in patients with small vessel disease [82].

Fang et al. conducted a mendelian randomization analysis, where four SNPs (rs921943,
rs6859667, rs6586282, and rs1789953) significantly associated with selenium levels were
studied [83]. However, there is insufficient evidence to support a causal link between genet-
ically predicted selenium levels and ischemic stroke and its subtypes were demonstrated.
Similarly, in a cohort study (n = 1103) Wei et al. failed to demonstrate an association between
selenium concentrations and cerebrovascular events in a 15-year follow-up period [84]. In
a longitudinal cohort study (n = 27,770), authors studied the role of trace elements in the
environment on stroke and found that higher levels of environmental selenium exposure
were associated with a higher risk of stroke [85]. Indirect associations between stroke risk
factors and selenium levels stem also from a limited number of studies with somewhat
conflicting results. Wu et al. conducted a Mendelian randomization analysis and demon-
strated a causal effect of selenium levels on beneficial lipid profile, including decreased
total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) and glucose profile,
including HbA1c levels and insulin indicating a protective role of selenium on cardiovascu-
lar events [86]; however, there is a caution on that evidence since levels of selenium above
the physiological range could be harmful on the glucose metabolism [87,88].

Current literature provides limited evidence on the role of selenium supplementa-
tion during the acute phase of stroke. Two randomized placebo-controlled trials (RCTs)
evaluated the effect of intravenous administration of sodium selenite pentahydrate (Sele-
nase) on short-term and long-term acute ischemic stroke outcomes [89,90]. Both studies
demonstrated that selenium supplementation improved short-term outcomes in acute
stroke patients in the context of neurological deficits and degree of disability. Additionally,
Ramezani et al. showed increased activity of antioxidant enzymes in patients who received
Selenase, whereas serum inflammatory markers were lower in the Selenase group (N = 25)
compared to the placebo group (N = 25) [90]. However, both studies failed to yield a bene-
ficial effect of selenium supplementation during the acute phase of stroke in the context of
long-term outcomes. Furthermore, it should also be noted that these studies indicate that
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the role of selenium supplementation on the outcome of cerebrovascular events is to date
contradictory, in part due to the heterogeneity between study design, populations included,
and measurement methods [77–87].

3. Selenium, Stroke, and Infection: From Clinical Observations to Molecular Mechanisms

The relationship between stroke and infection is bidirectional: stroke increases the
predisposition to infections, and infections represent a risk factor for stroke [91]. During
infection, hypercoagulable states represent a broad response intended to limit pathogen
spread [92]. For instance, inflammatory cytokines promote hypercoagulation diffusely and
locally as a ‘walling off’ effect. Infection and specific pathogens may be associated with
persistent prothrombotic states, reflecting lasting epigenetic sequelae [92]. The interplay
between sepsis and hemostasis has been shown to implicate selenium status in critically
ill patients, with lower levels affecting reflecting adverse outcomes [10]. Conversely, a
meta-analysis of supplementation trials in similar patients has shown an ameliorating
effect on total mortality [93]. A broad concept for the underlying mechanism may be
micronutrient depletion, as cells mobilize antioxidants such as GPx to survive both their
own hypermetabolic states and the pro-oxidant milieu [94]. In a murine stroke model,
adequate GPx scavenging limited hypoxic and ischemia-reperfusion injury [95]; this model
may be applicable to stroke patients, where a reduction of glutathione peroxidase but not
other selenoproteins is noted [96]. Within this context, a prior or concomitant infection
could lead to selenium depletion, a concomitant depletion of the selenium-dependent
glutathione peroxidase, and the abrogation of their neuroprotection. In the absence of
infection, the same chain of events could be instigated by chronically low dietary intake.

It should be noted viruses may not only capitalize on a vulnerable state established in
the setting of selenium dyshomeostasis, but also actively target the host selenoproteome
as part of their lifecycles. Specifically, the selenoproteome is targeted by the molecular
armamentarium deployed by viruses such as HIV- 1 and EBOV in a bid to gain transcrip-
tional control of selenoprotein synthesis. The procedures via which this is achieved are
unique host–virus interactions such as antisense tethering (ATI) [97]. ATIs between viral
and selenoproteome mRNAs reflect a gain-of-function procedure during the viral lifecycle,
using the captured host selenocysteine insertion sequence (SECIS) element to bypass a
UGA stop codon and read through it as selenocysteine [97,98]. Virus–host ATIs utilize an
established readthrough mechanism that governs the incorporation of selenocysteine in
selenoproteins albeit with contextual UGA to selenocysteine efficiency [99], potentially
intended as a limiting step in their translational rhythms [100]. The bioavailability and
utilization of other metal ions involved in cellular antiviral defense also impact selenium
trafficking. Intracellular copper trafficking, utilized to saturate phagosomes and in turn
modulated by pathogens themselves [101], directly impacts selenium biology. The specific
mechanisms involved implicate the disruption of UGA recoding by copper, downregu-
lating selenoproteome expression [102]. Taken together, these findings indicate that Se
homeostasis is targeted at a molecular level via a broad spectrum of pathogens; in turn,
both host defense and selenoprotein dysfunction feedback to hypercoagulable states which
would be further exacerbated by the eventual depletion of selenium levels.

4. Discussion

In this narrative review, we explored the robust tripartite relationship between sele-
nium levels, stroke, and infection.

Collectively, the studies presented herein point towards two major mechanisms that
may account for the threefold relationship between selenium biology, stroke, and infection.
The first may lie in selenium’s role in antioxidant cascades and its specific function cardio-
protective agent displayed both against non-organic compounds [103–105] and bacterial
toxins [106]. Oxidative stress plays a significant role in the evolution and by extent, systemic
and tissue-specific consequences of stroke [107] and infection [108]. Selenium’s role in the
mitigation of oxidative stress is mediated via its incorporation in the selenoproteome, an
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antioxidant proteome that includes a key molecule, glutathione. Homeostatically, these en-
zymes ameliorate stress and promote cellular survival both in the setting of basal conditions
(i.e., oxidative phosphorylation) and during specific insults. As an example, during the
acute phase of ischemic stroke, interlinked oxidative sensing and cytoprotective pathways
activate due to the hypoxic states and upregulate the selenoproteome pathway [109–111].
As a case in point, glutathione peroxidase, major selenoproteins, and antioxidants have
been shown to confer further specific effects in reducing stroke volume and ischemic in-
jury [112]; in the setting of bacterial infection, glutathione ameliorates tissue level oxidative
stress [113] and modulates the survival of immune cells [114]. Collectively, the maintenance
of selenium homeostasis represents an important pathway of cellular survival that when
compromised abrogates major cytoprotective mechanisms that function against multiple
stressors—which, in the case of stroke and infection, may even synergize.

From a physiological perspective, selenium uptake may represent a primary modi-
fiable factor that may account for differential susceptibility to stroke and infection. The
optimal concentration levels in adult human blood serum are 80 to 120 mcg/L, though there
is a great variety of normal values from country to country [14,115]. However, selenium
concentration is age dependent [116,117]. Because of age-related nutritional adaptations,
children require less circulating selenium than adults [116,118]. Aside from age, there may
be a biological basis for gender differences and selenium metabolism. Animal studies in
murine models investigated the association between estrogen and selenium status and
demonstrated that estrogen status affects Se metabolism by modulating SELENOP, and to
an extent Se transport [119]. Moreover, absorption of selenocompounds by the intestinal
epithelia seems to be greater in females (~96%) [120] compared to males (~76%) [121].
A recent study in western Romania found that selenium uptake was lower in females
compared to males [115]. Although these studies cannot provide a mechanism for these
differences, they nevertheless should be taken into account when interpreting data and
designing future studies. On the same premise, it should be noted that measuring the
precise dietary selenium intake may be difficult [14], considering food processing such as
cooking which could produce a loss of up to 40% by volatilization [118,122]. One such
proposed technique is the geometric mean evaluation of whole blood and urinary selenium
levels using sequential measurements [123].

From a pathophysiological perspective, disruptions of Se homeostasis occur both as a
substrate and a consequence of infection and stroke—two conditions uniquely intertwined
(Figure 1). As we have previously mentioned, the association between stroke and infection
is bidirectional. Several infections or vaccinations have been shown to contribute to an
increased risk of stroke [124–127] and particularly patients with sepsis and urinary infection
are at greater risk [127–129] even 1 year after sepsis hospitalization [128]. Many pathogenic
mechanisms have been proposed such as direct invasion of the vascular endothelial wall by
pathogens and the instigation of focal inflammation, acceleration of atherosclerosis through
induction of proinflammatory cytokines (such as TNF-alpha, interleukin 2) in response to
specific antigenic stimuli, infection-induced cardiac arrhythmias and infectious burden due
to chronic infections which may dysregulate the magnitude of immune responses [130].
Although infection can lead to stroke, stroke also induces impairment of immunological
competence which increases the risk of infection [91]. Moreover, immobilization due
to motor paralysis or dysphagia as post-stroke sequelae suggests a risk of aspiration
pneumonia and further opportunistic infections [131].
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neurons of their means to resist hypoxia. In this setting, cerebrovascular disease could develop, and 
once established, greatly impact the affected tissue. In a similar manner, defunct immune surveil-
lance secondary to impaired immune dysregulation would effectively reflect increased susceptibil-
ity to pathogens that would otherwise be successfully restricted; furthermore, even in the setting of 
the eventual mobilization of immune responses, depleted selenium would also abrogate the fine-
tuning of the ongoing inflammation. It should also be noted that the mechanisms at play here are 
interconnected and may form feed-forward loops on the initial events presented herein. As such, 
impaired immune surveillance secondary to selenium depletion could further be exacerbated by 
infection, i.e., viruses that can modulate immune responses and target selenium metabolism in turn. 
Sepsis is another such example where depletion of antioxidant selenoproteins, oxidative stress, and 
hypercoagulable states could build up to cerebrovascular disease. In this figure, a select rather than 
an exhaustive number of salient features and potential feed-forward loops secondary to impaired 
selenium homeostasis is presented; the feedback loop between infection and impaired selenium ho-
meostasis is shown with a discontinuous arrow, whereas the interrelationships between each indi-
vidual consequence are implied by the inclusion in brackets. The figure was created with BioRen-
der.com (Available from: https://app.biorender.com; Accessed 13 December 2022). 
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verges, real-world data on the potential implementation of selenium supplementation are 
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Figure 1. The tripartite relationship between impaired selenium homeostasis, stroke, and infection.
The consequences of impaired selenium homeostasis help establish a milieu of multiple failing cellular
functions that mitigate oxidative stress, regulate immune fitness, maintain coagulation, and via a
combination of the above, promote neuronal survival. Once established, these major dysfunctions
present primers for infection and stroke. As an example, impaired selenium homeostasis would
establish a pro-oxidant milieu that could furthermore dysregulate coagulation and abrogate neurons
of their means to resist hypoxia. In this setting, cerebrovascular disease could develop, and once
established, greatly impact the affected tissue. In a similar manner, defunct immune surveillance
secondary to impaired immune dysregulation would effectively reflect increased susceptibility to
pathogens that would otherwise be successfully restricted; furthermore, even in the setting of the
eventual mobilization of immune responses, depleted selenium would also abrogate the fine-tuning of
the ongoing inflammation. It should also be noted that the mechanisms at play here are interconnected
and may form feed-forward loops on the initial events presented herein. As such, impaired immune
surveillance secondary to selenium depletion could further be exacerbated by infection, i.e., viruses
that can modulate immune responses and target selenium metabolism in turn. Sepsis is another such
example where depletion of antioxidant selenoproteins, oxidative stress, and hypercoagulable states
could build up to cerebrovascular disease. In this figure, a select rather than an exhaustive number
of salient features and potential feed-forward loops secondary to impaired selenium homeostasis is
presented; the feedback loop between infection and impaired selenium homeostasis is shown with
a discontinuous arrow, whereas the interrelationships between each individual consequence are
implied by the inclusion in brackets. The figure was created with BioRender.com (Available from:
https://app.biorender.com; Accessed 13 December 2022).

While the mechanistic evidence on the importance of selenium homeostasis converges,
real-world data on the potential implementation of selenium supplementation are not
consistent and are provided by a heterogeneous body of studies. To date, there is significant
controversy regarding the association between measured selenium levels and cerebrovascu-
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lar risk, with most epidemiological studies suggesting an inverse cross-sectional association.
Similarly, low selenium serum levels have been associated with increased cardiovascular
events and mortality [117,132,133], yielding the anticoagulant role of selenium through
modulation of GPx activity [134]. However, levels of selenium above the normal range
have been associated with dysregulated glucose metabolism [87] and hypertension [135],
which are both individually synergizing risk factors for cerebrovascular and cardiovascular
events; this may indicate that measured selenium levels are linearly correlated with vascu-
lar changes, with higher measured levels reflecting dysregulation rather than abundance.
In particular, total selenium intake above 300 µg/d and supplements and high doses of
selenium are considered harmful and should be avoided. Evidence regarding the effect
of selenium administration during the acute phase of stroke is limited, though promising
results were demonstrated in two small RCTs [89,90].

Our results should be interpreted with due caution given the limitations of our study
design. Firstly, this is a narrative review, hence our article does not meet specific criteria
to help mitigate bias as they lack explicit criteria for article selection. Secondly, our search
is limited to publications in PubMed; therefore, it is possible that studies that were solely
indexed in other databases were missed. Moreover, there was a great deal of heterogeneity
in terms of the administration of Se supplementation. Collectively, these studies on real-
world implementation of Se supplementation indicate major gaps in knowledge and
inconsistent reports on how supplements affect health. As Se confers many of its actions via
incorporation to selenoproteins, bioavailability, as measured by various techniques, may
not be indicative of biological activity, and by extension may not be able to reflect whether
a beneficial or detrimental effect would be conferred [136]. By contrast, measurements of
antioxidant capacity conferred by selenoproteins such as glutathione peroxidase perform
more consistently in the literature [137,138]. These points indicate that Se supplementation
and its use as a biomarker would require a paradigm shift that recognizes the complexity
of its biology and the limitations of current methods. Furthermore, data from the studies
presented herein indicate that supplementation strategies should also take into account
additional risk-to-benefit analyses, as well as account for the specific setting in which such
supplementation could be harmful rather than beneficial.

5. Conclusions

In this work, we review a growing body of literature that outlines the relationship
between selenium biology, stroke, and infection. Several lines of evidence suggest that lower
selenium levels are associated with worse stroke outcomes. Future studies should consider
stroke subtypes and comorbidities in evaluating serum Se levels and Se supplementation. In
the setting of infections and sepsis, and specifically those due to pathogens that are known
to install hypercoagulable states, e.g., COVID-19, Se's role is still not adequately explored
but may provide an accessible biomarker and potential treatment. In a broader context,
interventions focusing on adequate selenium uptake could ameliorate this risk, whereas the
selenium supplementation, aiming to establish or maintain levels within the normal range
following stroke, should further be explored as a neuroprotective strategy limiting stroke
recurrence through larger RCTs. Future research should address the current limitations of
Se measurements and the importance of its incorporation in the selenoproteome, potentially
aiming to develop better assays and therapeutics. Furthermore, current concepts in Se
supplementation should be informed of the potential risks of supplementation, and provide
a specific outline of patient groups like to benefit, and conversely, likely to experience
adverse events.
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