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Abstract: Plant-based diets, both vegan and vegetarian, which emphasize grains, vegetables, fruits,
legumes, nuts, and seeds are increasingly popular for health as well as financial, ethical, and religious
reasons. The medical literature clearly demonstrates that whole food plant-based diets can be both
nutritionally sufficient and medically beneficial. However, any person on an intentionally restrictive,
but poorly-designed diet may predispose themselves to clinically-relevant nutritional deficiencies.
For persons on a poorly-designed plant-based diet, deficiencies are possible in both macronutrients
(protein, essential fatty acids) and micronutrients (vitamin B12, iron, calcium, zinc, and vitamin D).
Practitioner evaluation of symptomatic patients on a plant-based diet requires special consideration
of seven key nutrient concerns for plant-based diets. This article translates these concerns into seven
practical questions that all practitioners can introduce into their patient assessments and clinical
reasoning. Ideally, persons on plant-based diets should be able to answer these seven questions. Each
serves as a heuristic prompt for both clinician and patient attentiveness to a complete diet. As such,
these seven questions support increased patient nutrition knowledge and practitioner capacity to
counsel, refer, and appropriately focus clinical resources.

Keywords: plant-based diet; vegan; vegetarian; vitamin D; vitamin B12; iron; essential fatty acids;
calcium; zinc; essential amino acids

1. Introduction

In recent decades, both practitioners and patients have grown in awareness of the
potentially life-saving importance of shifting to a plant-based diet [1,2]. Several systematic
reviews and meta-analyses of vegan or vegetarian diets have demonstrated benefits for
reduced blood pressure, improved glycemic control, reduced total and LDL cholesterol,
reduced pain from diabetic neuropathy, reduced C-reactive protein, as well as reduced
weight [3–9]. With such evidence, plant-based diets are widely promoted and increasingly
prescribed by numerous health care practitioners [10,11].

The definition of a plant-based diet itself is the subject of some confusion in the
medical literature. A recent review documented that the majority of plant-based dietary
intervention studies completely proscribed animal products. However, more than 30% of
trials included dairy products and 20% were semi-vegetarian [12].

In the 12-million-member Kaiser-Permanente health plan (United States), the patient-
directed Plant-Based Eating Guidebook (see Table 1) describes a plant-based diet as “lots
of plant foods in their whole, unprocessed form, such as vegetables, fruits, beans, lentils,
nuts, seeds, whole grains, and small amounts of healthy fats. It does not include animal
products, such as meat, poultry, fish, dairy, and eggs. It also does not include processed
foods or sweets” [11]. The formal definition in the medical literature is that a plant-based
diet consists of all minimally processed fruits, vegetables, whole grains, legumes, nuts and
seeds, herbs, and spices; and excludes all animal products, including red meat, poultry,
fish, eggs, and dairy products [13].
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Table 1. Helpful resources for a healthy plant-based diet (sites accessed 9 April 2020).

Kaiser Permanente. The Plant-Based Diet: A Healthier Way to Eat
https://thrive.kaiserpermanente.org/care-near-you/southern-california/center-for-healthy-

living/wp-content/uploads/sites/30/2017/12/Plant-Based-Diet-Eng.pdf

Kaiser Permanente. Plant-Based Eating. Eat Healthy, Live Better
https://1w7lsd145y0$\times$22fgi71wekk2-wpengine.netdna-ssl.com/wp-content/uploads/

15116-plant-based-eating.pdf

Physicians Committee for Responsible Medicine. Good Nutrition.
https://www.pcrm.org/good-nutrition

Physicians Committee for Responsible Medicine. Nutrition Guide for Clinicians.
https://nutritionguide.pcrm.org/nutritionguide/view/Nutrition_Guide_for_Clinicians/1342

057/all/Micronutrients_in_Health_and_Disease#2

USDA National Agricultural Library. Food and Nutrition Information Center.
Information for Health Professionals.

https://www.nal.usda.gov/fnic/information-health-professionals

USDA National Agricultural Library. Food and Nutrition Information Center.
Dietary Guidance.

https://www.nal.usda.gov/fnic/dietary-guidance-0

USDA Nutrition Evidence Systematic Review.
https://nesr.usda.gov/

USDA Choose My Plate.
Tips for Vegetarians.

https://www.choosemyplate.gov/node/5635

US National Library of Medicine. MedlinePlus.
Vegetarian Diet.

https://medlineplus.gov/vegetariandiet.html

Forks over Knives Tools.
https://www.forksoverknives.com/tools/#gs.2v5u3g

Ideally, people on a plant-based diet will follow a well-planned diet that provides
all the necessary nutrients and energy for health. Realistically, however, a well-designed
plant-based diet may not be well-implemented [14]. A plant-based diet is an exercise in
mindfulness. As with any diet, in the absence of mindful attention to dietary choices, key
nutrients may be missing [15–21].

Numerous reflexive factors guide dietary choices and require mindful attention. These
include culture, upbringing, and comfort with cooking, access, convenience, cost, as well
as available time or energy. Additionally, plant-based diets can include highly-processed
foods that increase health risk including refined grains, fried foods, and added sugar that
increase nutritional inadequacy and health risk [11].

A healthy plant-based diet may be further complicated by additional restrictions,
such as gluten-free diets or diets that minimize ingestion of lectins, corn, histamine, tyra-
mine, methionine, oxalates, salicylates, nickel, mold, or FODMAPs. Even more nutritional
challenges are found in patients with hypochlorhydria [22]; food intolerances; renal in-
sufficiency [23] malabsorption syndromes (including those who have undergone gastric
bypass or cholecystectomy); [24] or prescribed metformin, proton pump inhibitors, or H2
blockers [25].

Furthermore, pregnancy, breastfeeding, childhood/adolescence, intense physical
work, or athletic training represent additional challenges for a healthy diet. Based upon
decades of clinical experience, innumerable common patient scenarios exist where the
nutritional adequacy of a plant-based diet needs to be considered in the clinical assessment
of symptomatic patients. To the extent that nutrition is important for health, the differential
diagnosis for all patients with many common, non-specific symptoms, including fatigue,
depression, anxiety, insomnia, dizziness, cognitive complaints, as well as chronic pain
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includes the possibility of one or more dietary nutrient deficiencies [26,27]. Ascertainment
of what types of foods are preferred or omitted provides guidance as towards adequacy or
inadequacy of nutrient status.

Just as with any other prescribed intervention, the monitoring and reassessment of a
prescribed plant-based diet is medically indicated. However, patients may also embark
on a plant-based diet with neither a prescription nor sufficient guidance. They may add
other dietary restrictions or be unaware of increased risks with prescribed medications.
Ironically, this means that well-intentioned, but poorly-designed or poorly-implemented
diets for better health may actually promote nutritional deficiencies.

For all these reasons, practitioners now need the capacity to assess quickly if their
patient is following a well-planned, plant-based diet. This is especially true for the pa-
tient with symptoms presenting for diagnosis. Yet, numerous studies have documented
that physicians may lack both the knowledge and the confidence to address nutritional
concerns [28–34].

Additionally, a recent review of the food-based dietary guidelines for 100 countries
found that most countries do not provide information to their citizens that cover the broad
spectrum of plant-based diets [35]. To address these concerns, the authors in this paper
seek to increase clinician knowledge and to affirm the importance of referrals to dietitian
nutritionist colleagues.

Seven nutrients require special consideration. For patients on any form of a plant-
based diet presenting for assessment of new symptoms or worsened chronic symptoms,
physicians need to consider their intake of vitamin B12, iron, essential fatty acids, calcium,
vitamin D, zinc, and protein. To rapidly screen in primary or subspecialty care, we identified
the following seven questions as practical guides that can empower physicians to both
consider nutritional status in their clinical reasoning and appropriately utilize clinical
resources.

2. Question One: What Is Your Preferred Source of Vitamin B12?

Dietary vitamin B12 for humans is only produced by the microbial and archaea
kingdoms. This vitamin is readily found in dairy, eggs, meat, and fish as animals can
concentrate this nutrient and feedlot animals are often supplemented.

Persons on a plant-based diet without vitamin B12 supplementation, as well as elderly
or pregnant persons, are more susceptible to B12 deficiency [36]. Plant-based diets are high
in folate (vitamin B9), which can mask B12 deficiencies until problems develop [37].

2.1. Patient Proficiency

Unfortified plant-based diets do not contain bioactive vitamin B12 (cobalamin). Vita-
min B12 is the most common vitamin deficiency in the vegan diet [16].

People on plant-based diets require vitamin B12 supplementation. The only reliable
plant-based sources are processed foods fortified with vitamin B12. Examples include
fortified plant milks, breakfast cereals, soy products, and nutritional yeasts. Fermented
soy products (e.g., miso, tempeh), shiitake mushrooms, algae, and unfortified nutritional
yeast contain inactive analogues of vitamin B12 can contribute to vitamin B12 intake, but
are not considered reliable sources [38,39]. The dried seaweed known as nori has been
shown to provide active vitamin B12 [40]. Low vitamin B12 can adversely affect mood,
memory, energy, and nerve function [41,42]. Persistently low B12 can result in irreversible
neurocognitive dysfunction [41,42].

2.2. Practitioner Proficiency

Vitamin B12 is the necessary co-factor for only two enzymatic reactions in human
physiology [43–46]. Despite this, an incredibly broad array of symptoms can follow from
B12 insufficiency.
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The first enzyme, methionine synthase, is crucial in the methylation cycle. Insufficient
B12 in the methylcobalamin form results in elevated homocysteine and impairment of all
methylation-dependent processes including [46,47]:

• Neurotransmitter metabolism (mood, energy, cognition);
• Estrogen metabolism (PMS, endometriosis, menstrual cycle irregularities);
• Histamine clearance (histamine intolerance);
• Phosphatidylcholine production (cell membrane composition and function, intestinal

mucus, pulmonary surfactant);
• Creatine and carnitine production (cognition, strength/stamina, mood);
• Myelin production (neurologic, cognitive function);
• DNA synthesis.

The second enzyme, L-methylmalonyl-coA mutase, is the last enzyme needed for
fatty acids and amino acids to enter the Kreb’s cycle (via succinyl CoA rather than acetyl
CoA). Insufficient B12 in the adenosylcobalamin form results in elevated methylmalonic
acid [46,48,49].

For women of childbearing age, B12 status is important for both maternal health
as well as minimizing neural tube defect risk in the child [50]. In infants, maternal and
infant vitamin B12 status is relevant for normal feeding, gastrointestinal function, growth,
and neurological development [51]. In adults, common, non-specific symptoms of B12
deficiency include fatigue, nausea, anorexia, arthralgia, insomnia, dyspnea upon exertion,
dizzy spells, feeling cold, pallor, muscle cramps, and digestive complaints. Additional
deficiency signs are neurologic, cognitive, and psychiatric. Neurologic signs include
paresthesias, sensory loss, ataxia, neuropathies including ocular neuropathy, age-related
macular degeneration, autonomic dysfunction including urinary incontinence, orthostatic
intolerance, excessive sweating and erectile dysfunction, plus motor disorders, cerebral
atrophy, and spinal cord degeneration [43,49]. Cognitive signs include word finding
and concentration difficulties, disorientation, and dementia. B12-dependent psychiatric
disorders include depression, postpartum depression, and psychoses [52–54].

B12 absorption in the terminal ileum requires stomach hydrochloric acid and pepsin,
as well as the sequential binding of three transport proteins: haptocorin (saliva and stom-
ach), intrinsic factor (stomach and intestine), and transcobalamin (intestine into liver and
systemic circulation). Risk factors for poor absorption include auto-antibodies to intrinsic
factor and/or parietal cells, impaired acid production, Helicobacter pylori infection, gastric
bypass, intestinal bacteria overgrowth, and malabsorption disorders. Iatrogenic risk factors
for low vitamin B12 absorption include use of proton pump inhibitors or metformin [55].
Oral B12 may not be readily assimilated in patients with one of several common genomic
variations [49,56]. B12 deficiency can occur in the absence of macrocytic anemia and when
serum B12 level is within the reference range [43].

Cyanide-stabilized cobalamin, cyanocobalamin, is the most common B12 supple-
ment [50,57–59]. Cyanocobalamin releases a cyanide group for every molecule of B12 that
is used. Theoretically, this could be important for persons with diets rich in cyanide via the
ingestion of almonds, lima beans, soy, spinach, and seeds; who smoke; are uremic; or have
the most common of inherited mitochondrial disorders, Leber hereditary optic neuropa-
thy [59,60]. Options include oral or sublingual methylcobalamin, adenosylcobalamin, or
hydroxocobalamin. Daily oral doses at 1000 µg (far above the RDA of 2.4 µg/day) have
shown equivalence or superiority to injected B12 at 1000 mcg/month [52].

There are no clearly defined adverse effects produced by vitamin B12 supplementation.
A no tolerable upper intake level (UL) has been established for B12, due to its low level of
toxicity [61]. Compounded methylcobalamin is available for intramuscular administration.

2.3. Clinical Testing Notes

Vitamin B12 deficiency can be easily missed. The absence of macrocytic anemia does
not rule out significant B12 deficiency [43,53,62]. Additionally, measuring only a serum
B12 level has poor sensitivity for identifying early insufficiency [43,63–65]. The medical
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literature does not support a clear vitamin B12 cut-off for diagnosis [43,66–68]. Evaluation
of vitamin B12 status should include at least one systemic biomarker (serum B12 or holo-
transcobalamin) and one cellular biomarker (homocysteine or methylmalonic acid, MMA).
Optimal testing for vitamin B12 needs to be conducted after 12 h of fasting and no B12
supplementation for at least one day. Of note, normal levels of serum B12, homocysteine,
and MMA still may not exclude symptomatic B12 deficiency. Clinical suspicion must
remain high [49,65,67–69]. Treatment trials may be helpful for diagnosis [43,69].

Of potential relevance to testing patients not supplementing, B12 may be an acute
phase reactant. Measured B12 levels may be artificially elevated in myeloid, lymphatic,
and solid tumors, alcoholism, cancer, liver-, renal-, autoimmune-, and bronchopulmonary
diseases [41].

3. Question Two: What Is Your Preferred Source of Iron?

Iron deficiency is the most common cause of anemia across the globe, affecting one-
third of the world population [70]. About 10 million Americans are iron deficient and
5 million have iron deficiency anemia [71]. Iron found in meats (heme iron) has a higher
bioavailability than iron found in plants (non-heme iron) [72]. Moderately lower iron stores
may reduce the risk of chronic diseases [73], but may also increase the risk of restless leg
syndrome [71].

3.1. Patient Proficiency

Depleted iron stores and iron-deficiency anemia are commonly found in all persons
regardless of diet [70,71]. However, persons on plant-based diets, especially women of
child-bearing age, children, and teenagers need to be aware of an increased risk. Iron status
is important for optimal mood, energy, cognition, athletic performance, and pregnancy
outcomes [2,71,74–78].

Plant-based sources of iron include Swiss chard, spinach, quinoa, soybeans, sesame,
pumpkin seeds, lima beans, lentils, tempeh, tofu, cashews, almonds, blackstrap molasses,
and iron-enriched baked goods such as bagels. Vitamin C aids iron absorption. Good
sources of vitamin C include citrus fruit, red and green peppers, broccoli, and tomato
products; in addition, Kiwi spices such as anise, caraway, cumin, licorice, and mint also
promote iron absorption [79].

Other food, spices, beverages, and supplements may impair iron absorption [80].
These include rosemary, chili pepper, garlic, Pak hyeng, shallot, tamarind, soy beans,
milk, eggs, coffee, green and black tea, as well as turmeric, calcium, resveratrol, and
quercetin [73,79,81].

3.2. Practitioner Proficiency

Iron is an important co-factor for the synthesis of hemoglobin, myoglobin, neuroglobin,
nitric oxide, dopamine, and DNA. Iron is also an important co-factor as well as for oxidative
stress management (superoxide dismutase), DNA repair, and mitochondrial function
(aconitase, cytochrome c, cytochrome c oxidase) [82]. As a consequence, iron is important
for cognitive performance, cardiac function, gastric digestion, muscle strength, endurance,
and stamina, in addition to temperature regulation. Normal iron status is important during
pregnancy for fetal brain maturation and optimal birth weight, as well as for the prevention
of adverse maternal outcomes including mortality. Low-iron status (Ferritin levels less than
50 µg/L) is the leading cause of restless legs syndrome [71,71]. Overt and prolonged iron
deficiency eventually results in reduced hematocrit, hemoglobin, and RBC levels.

Dietary phytates and tannins [83], malabsorption [84], infections, small intestinal
bacteria overgrowth (SIBO) [85], digestive inflammation, as well as systemic inflamma-
tion [86] can impair iron absorption even with adequate dietary intake. Blood loss, blood
and platelet donations, and rapid growth contribute to iron deficiency [71,71]. Gastric
acid is necessary for non-heme iron to dissociate and increase its solubility for absorption.
Acid-blocking medications and hypochlorhydria disrupt iron absorption [87]. A normal
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hemoglobin does not exclude iron deficiency. Iron stores significantly influence non-heme
iron absorption [88,89].

3.3. Clinical Testing Notes

Serum ferritin is the primary indicator for iron deficiency. This test is the most efficient
and cost-effective means for diagnosis. Ferritin levels less than 15 µg/L are diagnostic.
Erythropoiesis may be affected even at higher levels of 40 µg/L [90].

4. Question Three: What Is Your Preferred Source of Essential Fatty Acids?

The short-chain omega-3 and omega-6 fatty acids, alpha-linolenic acid, and linoleic
acid are termed essential as they cannot be synthesized and must be ingested for multiple
biological functions [91–93].

The activity of their elongated long-chain forms (omega-3: eicosapentaenoic acid (EPA,
C20:5n3) and docosahexaenoic acid (DHA, C22:6n3); omega-6: DGLA (dihomo-gamma-
linoleic acid, cis-20:3n6); and AA (arachidonic acid 20:4n3) include optimal cell membrane
composition, inflammatory and anti-inflammatory response (production of eicosanoids:
prostaglandins, leukotrienes, and thromboxanes), inflammation resolution (production of
specialized pro-resolving mediators (SPM) including lipoxins, resolvins, maresins, and
protectins), as well as endocannabinoid production [94–96].

The essential fatty acids were originally termed “vitamin F” when identified as essen-
tial factors for growth and dermal function in 1929 [97,98]. The long-chain fatty acids were
identified when it was discovered that the essential fatty acids linoleic and linolenic acid
gave rise to the pentaene and hexaene acids, EPA and DHA of rat tissue [99].

4.1. Patient Proficiency

Essential nutrients means that we must eat them; we cannot make them. The short-
chain omega-3 and omega-6 fatty acids, alpha-linolenic acid and linoleic acid, are termed
essential as they cannot be synthesized and must be ingested for multiple biological func-
tions [100,101]. Two families of essential fatty acids exist: the omega-3 and omega-6 fatty
acids. Optimal plant-based short-chain omega-3 oils are found in walnuts, flaxseeds, hemp
seeds, and chia seeds. Optimal dietary omega-6 sources include cold-pressed safflower,
sunflower, and olive oils; plus avocados, nuts, and seeds [93,102].

Long-chain omega-3 fatty acids (termed EPA and DHA) are vitally important and can
be produced from short-chain omega-3′s with the help of several vitamins and minerals;
but the process may be inadequate. Persons on plant-based diets are at increased risk for
insufficient EPA and DHA [103].

Low EPA or DHA levels can adversely affect mood, memory, and inflammation/pain
in addition to infant development [104]. Algae-derived DHA or brown algae with kelp oil
may support long-chain omega-3 intake in plant-based diets [105].

4.2. Practitioner Proficiency

Essential fatty acids needs can be met by a plant-based diet, but sufficiency requires
planning and adequate co-factors [103,106]. The short-chain omega-3 fatty acid termed
alpha linoleic acid (ALA) can be converted into long-chain fatty acids omega-3 EPA and
DHA; but the process may be insufficient with a low conversion rate, especially for
men [102,107–109]. Insufficient iron, zinc, magnesium, vitamins C, and B6 intake also
contribute to poor conversion rates, which may substantially impact infants, children, and
women [106,110,111].

Low EPA levels are associated with inflammatory imbalances, autoimmune diseases,
arthritis, asthma, atherosclerosis, menstrual cramps, eczema, psoriasis, depression, and
attention deficit disorders [106,110,112,113].

Maternal DHA intake and supply is crucial in the third trimester and during breast-
feeding for an infant’s neurological development and function. DHA regulates levels of
neurotrophins, i.e., brain-derived neurotrophic factor (BDNF) and nerve growth factor.
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At all ages, cell membrane DHA content determines membrane fluidity and hormone-
receptor binding capacity. Low DHA levels are associated with ADHD, cognitive dys-
function, depression, diabetes, hyperestrogenism, aggression, and impulsive violence
including suicide. Additional concerns of low DHA include gestational diabetes, hyperten-
sion, pre-eclampsia, premature birth, low birth rate, post-partum depression, post-partum
obsessive-compulsive disorder, menopausal problems, osteoporosis, breast cancer, and
cardiovascular disease [103,105,110].

5. Question Four: What Is Your Preferred Source of Calcium?

Sufficient intake and absorption of calcium is essential for ensuring normal bone and
dental health. Dairy is the best-known dietary calcium source, but is intentionally not
included in plant-based diets. Persons on plant-based diets may be at even higher risk than
the general public for insufficient dietary calcium intake [2]. To ensure normal blood levels,
dietary calcium insufficiency is mitigated by increased calcium release from bones.

5.1. Patient Proficiency

Sufficient calcium intake is important for bone health, dental health, muscle function,
and more [114–117]. Sufficient calcium intake is especially necessary in children and
adolescents for the attainment of optimal peak bone mass. Sufficient calcium intake is also
especially important in pregnancy, and to optimize both maternal and infant health [118].

Non-dairy sources of calcium include almonds, beans, blackstrap molasses, broccoli,
dark leafy greens, bok choy, kale, collard, mustard or turnip greens, dried figs, okra,
tahini, tofu, and tempeh. Fortified packaged foods, including plant milks, often contain
added calcium. Absorption rates of plant calcium sources are affected by fiber and other
compounds that diminish its total availability [119].

5.2. Practitioner Proficiency

The parathyroid gland, via the secretion of parathyroid hormone (PTH), tightly con-
trols blood and interstitial calcium concentrations to ensure normal muscle contraction,
nerve impulse transmission, coagulation function, and hormone secretion [120]. Insuffi-
cient dietary calcium intake results in decreased blood calcium concentration, which in
turn results in increased parathyroid hormone secretion with two important effects. First,
vitamin D is hydroxylated into its active form 1,25-dihydroxyvitamin D (calcitriol) [120].
This results in decreased urinary excretion and increased intestinal absorption of calcium.
Second, PTH secretion results in the release of calcium and phosphate from bone. Because
insufficient dietary calcium intake is mitigated by release of calcium from bones, chronically
insufficient calcium intake is one modifiable factor in excessive bone loss [119,121–123].

Vitamin D deficiency, hypochlorhydria of any cause, including the use of H2 blockers
or proton-pump inhibitors, or the intake of foods rich in sugars, fiber, phytate, and oxalate
may reduce the bioavailability of calcium [11,25,124,125]. Oxalic acid is found in chard,
collard greens, rhubarb, and spinach. Phytic acid is found in grains, nuts, seeds, and
vegetables. Sprouting, soaking, or germination of grains and seeds reduces phytate binding;
and cooking and fermentation helps break down fiber, and supports bioavailability [126].
Probiotics with phytase can block calcium binding to phytic acid.

Diets low in calcium or persons with poor calcium absorption may result not only
in decreased bone mineral density, but also muscle dysfunction including cramps and
spasms. Insufficient calcium intake may result in brittle nails, coarse hair, confusion,
depression, memory loss, hallucinations and delirium, neurotransmitter dysfunction, ir-
regular heart rhythms, cardiovascular disease, increased cancer risk, dental disease, and
paresthesias [127].

Controversially, vegans and vegetarians may have lower bone mineral density and ve-
gans may have increased fracture risk than the general public [127–129]. However, persons
on a plant-based diet who ensure a sufficient intake of calcium and vitamin D may not have
a higher risk of total or site-specific fractures, bone loss, and diminished bone height and
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bone weight [129,130]. This means that plant-based diets, like all other diets, must be mind-
fully planned to ensure an adequate amount, variety, and bioavailability of calcium-rich
foods, including the use of supplemental calcium and Vitamin D, if needed [131,132].

Additional testing options include an assessment of the zinc protoporphyrin/heme
ratio or reticulocyte hemoglobin content.

6. Question Five: What Is Your Preferred Source of Zinc?

Zinc is the second most abundant trace element, yet nearly two billion individuals
worldwide lack adequate zinc intake. Although overt deficiency is not generally seen, zinc
intakes may be below optimal levels in many persons on a plant-based diet because its
bioavailability from plant foods is lower than that from animal products [133,134].

6.1. Patient Proficiency

Zinc status is closely linked to immune status, digestive efficacy, bone health, mood
regulation, and cognitive functions [133–135]. Grain, legumes, soybean, wheat germ, seeds,
nuts, nutritional yeast, leafy and root vegetables contain small amounts of zinc [136,137].

6.2. Practitioner Proficiency

Zinc status is important for over 300 reactions, including stomach acid and insulin
production [138], protein metabolism, osteoblast mineralization [139], heme synthesis [140],
and cytosolic antioxidant activity. Zinc plays multiple important roles in the central ner-
vous system as it impacts glutamatergic neurons and circuitry throughout the cortex,
amygdala, and hippocampus, regulates NMDA receptors and neuronal metabolism, and
supports BDNF production and neuroplasticity [141–143]. Zinc impacts thyroid hormone
activation [144], insulin action [138], leptin management [145], melatonin synthesis, gas-
trointestinal function and repair [146,147], and immune function [137,148–150].

Zinc levels influence vitamin A absorption, transport, and utilization [151]. Zinc
deficiency may mimic iron deficiency symptoms [152]. Deficiencies can be seen in impaired
health of skin, tongue, hair, nails, and eyes. Deficiency can be experienced as the loss of
sense of taste or smell, delayed wound healing, impaired immunity, appetite loss, and
growth retardation [133–135]. Zinc deficiency may not be demonstrable in blood tests [153].

Zinc deficiency concerns men and women in family planning stages due to higher risks
of infertility and pre-eclampsia. Fetal complications can include congenital malformations,
low birth weight, and growth retardation. Infant complications follow from the increased
risk of premature birth including with retinopathy, necrotizing enterocolitis, and chronic
lung disease [145,154]. Zinc is critical for male health in all ages for testosterone, prostate,
sexual health, and reproduction [133–135].

Plant-based diets may increase the amount of zinc required in the diet due to the
reduced bioavailability of zinc and is related to the high phytate content of many vegetable
products. Well-planned vegetarian diets must be implemented to avoid dietary zinc
deficiency and compensate for phytates and fiber absorption inhibitors [2,103,151,155–158].

Zinc bioavailability is increased with soaking, sprouting, and fermenting. Consump-
tion of garlic and onions may help improve the absorption of dietary zinc [159]. Zinc
absorption is moderately inhibited by the dairy protein casein. Non-dietary risk factors
can increase zinc requirements. These factors include severe stress, alcoholism, diabetes,
malabsorption, bariatric surgery, heavy perspiration, high-dose folic acid supplementation,
and cadmium, copper or iron excess [135,155,157,158]. Appropriate assessment is needed
to ensure adequacy in a plant-based diet.

7. Question Six: What Is Your Preferred Source of Vitamin D?

Vitamin D deficiency is a major global public health problem even in sunny equatorial
countries. Musculoskeletal concerns with vitamin D deficiency include rickets, osteo-
malacia, osteoporosis, chronic musculoskeletal pain, muscular weakness, non-traumatic
fractures, as well as falls [160]. Vitamin D deficiency has also been strongly linked to the in-
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cidence and severity of numerous extra-skeletal concerns, including immune, auto-immune,
and infectious diseases, as well as numerous pregnancy concerns including gestational
diabetes and pre-eclampsia [161,162].

7.1. Patient Proficiency

Plant-based diets do not provide vitamin D. The one exception is that 100 g of sun-
exposed mushrooms can provide the RDA of 400 international units (IUs) of ergocalciferol
(vitamin D2) [163].

This means that many persons on plant-based diets must rely on adequate sun expo-
sure or supplementation. However, limited seasonal sun exposure in northern latitudes,
indoor work and lifestyles, and the use of sunscreen, mean that many are at risk for in-
adequate vitamin D [164]. Vitamin D cannot be made when one is behind glass [165].
Furthermore, the more melanin in one’s skin [166], the higher one’s body mass index
(BMI) [167], or the older one is [168], the more sun exposure one needs to make vitamin D.
Vitamin D requirements are higher during pregnancy and lactation [169,170].

7.2. Practitioner Proficiency

Vitamin D is actually not a vitamin, but a seco-steroid hormone derivative of choles-
terol that binds to nuclear receptors found in nearly every tissue in the body, including
skeletal muscle cells, pancreas beta-cells, immune cells, and the placenta. Vitamin D
binding to the nuclear receptor results in the up- or down-regulation of numerous genes
that goes beyond the regulation of calcium and phosphate metabolism. These include
regulation of cellular proliferation, differentiation, and apoptosis, plus innate and adaptive
immunity [161].

Numerous studies have linked low vitamin D states with all-cause mortality, cardio-
vascular disease, numerous cancers including colon and breast, inflammation, disordered
glucose metabolism and elevated lipid status, infectious diseases, autoimmunity including
thyroid disease, rheumatoid arthritis and multiple sclerosis, mood disorders, declining cog-
nitive function, and impaired physical functioning including falls [163,171–179]. Vitamin
D deficiency is a major global public health problem even in sunny equatorial countries.
Musculoskeletal concerns with vitamin D deficiency include rickets, osteomalacia, osteo-
porosis, chronic musculoskeletal pain, muscular weakness, non-traumatic fractures, as
well as falls [180]. Vitamin D deficiency has also been strongly linked to the incidence and
severity of numerous extra-skeletal concerns, including cardiovascular and cerebrovascular
disease [162], chronic pain [181], immune [182,183], auto-immune [184–186], and infectious
diseases [187], as well as numerous pregnancy concerns including gestational diabetes
and pre-eclampsia [188–190]. Once orally absorbed, vitamin D2 or D3 is converted in the
liver to 25-hydroxyvitamin D [25(OH)D], which is the best form to measure for assessment
of vitamin D status [191]. This form is then converted once more into the active form,
1,25-dihydroxyvitamin D (calcitriol) by the kidneys. Liver or kidney dysfunction may
impair vitamin D status.

The most common form of vitamin D found in over-the-counter supplements is D3
(cholecalciferol). This may be labeled as either vitamin D or vitamin D3. Cholecalciferol is
commercially made from sheep lanolin exposed to ultraviolet B (UVB). This is bio-identical
to the vitamin D3 synthesized endogenously in human skin with sun exposure. Vitamin D2
(ergocalciferol) is synthesized from UVB-induced transformation of the ergosterol found
in the cell walls of mushrooms [163]. The avoidance of animal-derived vitamin D may be
important for some. Vitamin D3 has a significantly longer half-life than D2 and is preferable
over vitamin D2 for raising serum 25(OH)D levels [172,179].

The Endocrine Society’s guidelines define Vitamin D deficiency, insufficiency, and suffi-
ciency as serum concentrations of 25(OH)D of <20 ng/mL, 21–29 ng/mL, and 30–100 ng/mL,
respectively [177]. However, vitamin D function also depends upon magnesium status as a
cofactor for vitamin D biosynthesis, transport, and activation [191–193].
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7.3. Clinical Testing Notes

The one test for assessment of vitamin D status is 25-hydroxyvitamin D [25(OH)D] [191].

8. Question Seven: What Are Your Preferred Sources of Complete Proteins?

Patients who adopt a plant-based diet and health professionals who guide them must
ensure the adequate intake of total protein in addition to the sufficient intake of the nine
essential amino acids.

8.1. Patient Proficiency

All protein in the diet and all proteins in muscle, bone and brain are made from
amino acids. Twenty amino acids exist and nine of these amino acids are termed essential.
This means that they must be eaten as they cannot be made by the body. All 20 amino
acids can be found in a plant-based diet. However, plants provide a less optimal balance
and amino acid distribution compared to animal foods [194,195]. Persons consuming a
plant-based diet need to ensure adequate total intake of protein as well as the complete
range of essential amino acids [196,197].

Plant-based foods that contain all nine of the essential amino acids in themselves
are infrequent. These include buckwheat, chia seeds, original Ezekiel bread, nutritional
yeast, and quinoa. Daily meals should include mixed combinations of proteins to ensure
the completeness of amino acid intakes. Common examples of complementary proteins
include beans and brown rice, roasted vegetables and lentils, or different colored vegetables
in a soup/stew with miso/lentils/beans and a whole grain. Protein digestibility of cereals,
legumes, nuts, and seeds may be improved by soaking, sprouting, cooking, and, especially,
pressure cooking [196,198]. Current data suggests that vegetarians consume adequate
protein, but in a small number of vegans, there may be a modest risk of insufficient
intake [199].

8.2. Practitioner Proficiency

Individuals on a plant-based diet are able to consume adequate protein. However,
even persons on a relatively high-protein plant-based diet can be at risk for low intake of
three essential amino acids, i.e., lysine, methionine and tryptophan [194,199]. Historically,
an extreme example of an adverse consequence is kwashiorkor, the severe protein malnour-
ishment disease that can occur despite a high-protein diet. This now rare condition was due
to low lysine and tryptophan intake associated with a primarily maize-based diet [200].

Many plant-based foods can be great protein sources, but they vary considerably in
their protein content as well as their amino acid content. Red flags for symptomatic patients
are plant-based diets that are low in total protein; or that consist of a low intake of legumes,
grains, seeds, or nuts. For example, one cup of quinoa contains 8 g of protein, whereas one
cup of cooked lentils contains 18 g. However, unlike the complete amino acid profile for
quinoa, lentils have very little of the essential amino acids’ methionine and tryptophan.
They are also low in the amino acid cysteine. Thus, a diet containing predominantly lentils
may be high protein and still be incomplete. Similarly, diets with high intakes of powdered
plant-proteins may be incomplete. For example, commercially-available powdered pea and
soy proteins have very low methionine content [201–203].

8.2.1. Lysine

Diets with too few legumes, such as low lectin diets, may mean an insufficient intake
of lysine. Significant lysine deficiency can exist despite a diet rich in fruits and vegetables,
nuts and seeds, as well as corn, wheat, and brown rice [204]. Lysine insufficiency is a causal
factor for delayed growth, insufficient collagen production, osteoporosis (due to urinary
calcium loss), as well as recurrent herpes simplex outbreaks. Plant-based foods with higher
amounts of lysine include avocados, wheat germ, and legumes (soybeans, beans, peas and
lentils) [205].
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8.2.2. Methionine

Likewise, plant-based diets low in grains, such as gluten-free diets, but still rich
in legumes, may be low in methionine. Commonly eaten foods low in methionine are
asparagus, beets, broccoli, cabbage, carrots, cauliflower, celery, kale, pea, soy, spinach,
squash, sweet potatoes, seaweed, turnips, and zucchini. Plant-based diets are best balanced
with the inclusion of grains rich in methionine: wheat, wheat germ, millet, barley, rice
including brown rice, corn, kamut, oats, rye, sorghum, teff, triticale, and quinoa. Of these,
only millet, rice, corn, sorghum, teff, and quinoa are gluten-free. Oats, depending upon
processing, may be gluten-free.

Methionine sufficiency is essential for growth, healthy hair, skin, and nails. Methionine
sufficiency is required for selenium and zinc absorption, as well as T-cell proliferation and
differentiation. Additionally, methionine is essential for methylation, an important factor
in the prevention of both neural tube defects and osteoporosis [206,207]. Of note, patients
may intentionally restrict methionine intake for health reasons, including life extension, fat
loss, and cancer-cell-growth inhibition [208,209].

8.2.3. Tryptophan

Tryptophan deficiency can occur in diets low in total protein or with low intake
of seeds, (pumpkin, chia, sesame, sunflower, and squash), nuts, legumes, and grains.
Concentration of this essential amino acid in proteins is most often significantly lower
than for other amino acids. For example, plant-based diets rich in foods, such as lentils,
avocados, broccoli, eggplant, spinach, and tomatoes, may be low in tryptophan [203,210].

Tryptophan is the essential amino-acid necessary for growth, as well as the production
of serotonin, melatonin, and vitamin B3 (niacin, nicotinamide). Tryptophan deficiencies can
present as mood disorders, fatigue, insomnia, or disordered eating. Vitamin B3 deficiencies
can present with headaches and dizziness, as well as changes in skin, mood, energy, cog-
nition, and digestive system function [211]. (Of note, symptoms of tryptophan deficiency
may occur at intakes as little as 25% below the required daily intake [211].)

8.2.4. Conditionally Essential Nutrients

Persons on plant-based diets are at risk for insufficient levels of three conditionally
essential molecules that are readily found in omnivore diets: 1) creatine (from methionine,
glycine, arginine), 2) carnitine (from methionine, lysine), and 3) taurine (from methionine,
cysteine). These conditionally essential nutrients, under normal conditions, can be pro-
duced by the body in amounts sufficient to meet physiological requirements. However,
pathophysiological stress and/or restricted dietary intake of key amino acids can impair
their production and increase the risk of multiple medical concerns.

8.2.5. Creatine

Creatine supplies energy to both the muscle and brain to meet suddenly increased
energy demands. Plant-based diets are inherently low in creatine, a principal compo-
nent of both muscle and brain. Supplementation may be important. For persons with a
genetic impairment of creatine production, creatine supplementation reverses cognitive
and neurodevelopmental defects [212]. Similarly, creatine supplementation has resulted
in improved memory in young female vegetarians, and short-term memory and intel-
ligence/reasoning in other normal populations [213,214]. Creatine supplementation in
vegetarian athletes has resulted in significant improvements in both muscular strength and
endurance in addition to memory [215].

8.2.6. Carnitine

Carnitine status is clinically relevant as it is crucial for mitochondrial function and
cellular energy production. Persons consuming a plant-based diet under increased physical
stress, including pregnancy or dialysis, are at increased risk of hypocarnitinemia [212,216].
Carnitine shuttles long-chain fatty acids across the mitochondrial membrane from the
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cytosol into the mitochondrial matrix for β-oxidation. Carnitine production is especially im-
portant for cardiac and skeletal muscle function. Moreover, carnitine has anti-inflammatory
and antioxidant properties and plays a role in insulin sensitivity [217].

Defective fatty acid oxidation can present as fatigue, non-alcoholic fatty liver disease,
fat accumulation, or hypoglycemia [218–220]. Fatty acid oxidation is also important for
oocyte developmental competence [128]. Patients with chronic diarrhea or taking valproic
acid, omeprazole, or zwitterionic drugs such as levofloxacin are at risk for secondary
carnitine deficiency [221].

8.2.7. Taurine

Taurine is one of the most important amino acids in high energy tissues, including
the brain, retina, and muscles. Plant-based diets do not contain taurine [222]. Analysis of
taurine levels in vegans have been slightly lower to half that of omnivores [223].

Taurine is critical for neurological development and neurodegenerative protection. In
the eye, taurine provides critical antioxidant protection for the retina, lens, vitreous, cornea,
iris, and ciliary body. This includes critical photoreceptor and retinal pigment epithelium
antioxidant protection [224,225].

Taurine supports bile flow and cholesterol conjugation. It affects blood pressure
regulation, mitochondrial function, and electron transport chain activity [224,225]. Taurine
provides valuable xenobiotic detoxification and protects against degenerative endocrine
hormone disruption [226].

Consequences of inadequate taurine intake or production include magnesium wast-
ing, cardiomyopathy and arrhythmias, renal dysfunction, pancreatic beta cell dysfunction,
plus numerous neurological and vision disorders including loss of retinal photorecep-
tors. Additional concerns with insufficiency include infertility, still births, and neonatal
developmental problems [224,225].

8.2.8. Protein and Energy Intake during Caloric Restriction

The RDA for dietary protein intake is set at 0.8 g/kg of body weight [227]. Free-living
individuals consuming meat report consumption of 17% energy as protein, while those on
a vegan diet report ~13% [21]. At an energy intake appropriate for weight maintenance,
this level of protein is adequate. However, when individuals consume a low-calorie diet,
whether on purpose or due to medical or psychological factors, special attention must be
paid to maintain protein intake based on body weight. Reducing energy intake without
attention to total protein intake on a total plant-based diet may result in insufficient intake
of protein and amino acids.

The value of dietary protein depends not only on amino acid composition, but factors
such as the protein digestibility corrected amino acid score (PDCAAS) [199,228]. PDCAAS
is a complex indicator of protein quality used to assess the capacity of dietary protein to
meet amino acid requirements in the diet [229,230]. For example, one gram of protein
with a low PDCAAS does not provide the same amino acid protein bioavailability and
content as one gram from a high PDCAAS food. Beans and legumes have a PDCAAS
score of 45–70 percent and rice provides a PDCAAS score of 56–62 percent. In contrast,
processed soy as soy protein isolate provides 100% of the PDCAAS. Lower PDCAAS scores
are one factor dieticians consider for the maintenance of muscle mass in obese-sarcopenic,
elderly-sarcopenic, or athletic patients [196,197,201,231,232].

Additionally, protein digestion and absorption are adversely affected by the numerous
causes of hypochlorhydria, including aging, medications, and gastric bypass/banding. Fur-
thermore, the phytic acid and trypsin inhibitors found in many plants may impact protein
digestibility. Humans may lack adequate phytate-degrading enzymes in the digestive tract
and the body may require increased dietary protein in order to compensate. Phytic acid
is found in cereals, legumes, seeds, and nuts. Trypsin inhibitors are found in common
beans, chickpeas, lentils, peas, broad beans, peanuts, and soybeans. Phytic acid and trypsin
inhibitors may be reduced by soaking and cooking these foods [135,233]. The inclusion of
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probiotic supplementation may enhance blood levels of amino acid levels from incomplete
plant proteins [234].

8.3. Clinical Testing Notes

Assessment of specific amino acid distributions in the diet and of total protein intake
is primarily based upon patient self-report. In children, height and weight should be
measured at each clinical visit. Symptomatic patients for any reason will likely benefit
from the screening for blood urea nitrogen, creatinine, total protein, and albumin found in
commonly ordered metabolic profiles.

9. Conclusions

Intentional plant-based diets provide numerous health benefits. Yet, if poorly in-
formed, combined with restrictive diets, or combined with certain prescription medica-
tions, they can drive or worsen physical symptoms. Furthermore, well-informed practi-
tioner attention is required with the special situations of pregnancy, breastfeeding, child-
hood/adolescence, intense physical work, athletic training, and concomitant medical
conditions. As with all medical interventions, physicians must be aware of the benefits,
risks, and potential concerns following from prescribed plant-based diets. In addition,
with more patients self-initiating plant-based diets, all practitioners need the capacity to
question, assess, test, counsel, and appropriately refer for nutritional concerns. The seven
questions identified here provide a framework for the rational consideration of several
nutritional factors that may underlie a symptomatic patient’s presentation. They can be
incorporated into pre-visit questionnaires or into visits.

One limitation in this review is the exclusion of questions regarding dietary sources
of riboflavin (vitamin B2), choline, iodine, and selenium or other nutritional deficiencies.
These remain important medical concerns, but represent emerging areas of clinical interest
with limited research data for persons on plant-based diets. Likewise, further scientific
study is required to understand the value of plant ferritin as a source of iron and endoge-
nous cobalamin synthesis as a source of vitamin B12. Moreover, not addressed above is the
potential for iatrogenic vitamin K deficiency for persons on a plant-based diet prescribed
vitamin K antagonists (i.e., Coumadin) for anti-coagulation with venous thromboembolism,
atrial fibrillation, and prosthetic heart valves. In the past, physicians have ordered patients
to not consume vitamin-K-rich foods, such as green leafy vegetables [235,236]. However,
the evidence for the avoidance of vitamin-K-rich foods is weak and persons on a plant-based
diet, with appropriate INR monitoring, do not need to avoid a plant-based diet [237].

Health professional competence increasingly requires a working knowledge of clinical
nutrition. This review, and the seven questions identified here, support clinician capacity to
include nutritional concerns into the differential diagnosis for any given presenting patient
concern. The underlying hypothesis is that clinician consideration of potential nutritional
insufficiencies will guide both appropriate diagnoses and cost-effective treatments. For
further guidance, laboratory tests are found in Table 1, and several helpful plant-based
references for clinicians and patients may be found in Table 2.
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Table 2. Clinical Tests Relevant to Nutritional Assessment.

Clinical Tests

Protein

Total serum protein
Serum albumin

Prealbumin
Globulin

Retinol-binding protein
Creatinine

BUN
Additional specialized tests may be warranted [238,239].

Vitamin B12

Fasting serum B12 (12 h)
Holotranscobalamin or vitamin-B12-binding capacity,

unsaturated
Total plasma homocysteine

Methylmalonic acid
Mean corpuscular red cell volume

Parietal cell antibodies
Intrinsic factor antibodies

Iron Serum ferritin
Total iron, iron-binding capacity, % saturation (calculated)

Fatty Acids

Omega-3 (EPA + DHA) index
Omega-6/omega-3 ratio

EPA/Arachidonic acid ratio
Arachidonic acid

EPA
DHA

Calcium

Serum calcium
RBC Calcium

Parathyroid hormone
Serum 25-hydroxyvitamin D

C-terminal telopeptide of type-I collagen (CTX-I)

Zinc
Serum or RBC zinc

Serum copper
Serum ferritin

Vitamin D 25-hydroxyvitamin D, immunoassay
25-hydroxyvitamin D (D2, D3), LC/MS/MS
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