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Abstract: There is increasing evidence that food is an important factor that influences the composition
of the gut microbiota. Usually, all the attention has been focused on nutrients such as lipids, proteins,
vitamins, or polyphenols. However, a pivotal role in these processes has been linked to dietary-
derived exosome-like nanoparticles (DELNs). While food macro- and micronutrient composition
are largely well established, there is considerable interest in these DELNs and their cargoes. In this
sense, traditionally, all the attention was focused on the proteins or miRNAs contained in these
vesicles. However, it has been shown that DELNs would also carry other bioactive molecules with
a key role in regulating biochemical pathways and/or interactions with the host’s gut microbiome
affecting intracellular communication. Due to the scarce literature, it is necessary to compile the
current knowledge about the antimicrobial capacity of DELNs and its possible molecular mechanisms
that will serve as a starting point. For this reason, in this review, we highlight the impact of DENLs on
different bacteria species modulating the host gut microbiota or antibacterial properties. It could be
concluded that DELNs, isolated from both plant and animal foods, exert gut microbiota modulation.
However, the presence of miRNA in the vesicle cargoes is not the only one responsible for this effect.
Lipids present in the DELNs membrane or small molecules packed in may also be responsible for
apoptosis signaling, inhibition, or growth promoters.

Keywords: DELNs; microbiota; miRNA

1. Introduction

Bacteria are everywhere, including our bodies and foods. Most of these bacteria
are harmless or helpful, as the species of bacteria that colonize our digestive system,
playing a fundamental role in our health by providing defense against pathogens, aiding
in nutrient processing, lowering serum cholesterol levels, and improving the immune
functions, among others interactive roles [1,2]. In fact, the modulation of gut microbiota to
a more favorable profile has been related to a reduced risk of developing a wide range of
metabolic, immunological and neurological disorders [3].

In this sense, one of the main environmental drivers of microbiota composition and
function is diet. It has become clear that compounds derived from food may promote gut
health, either directly or by modulating the composition and function of the gut microbiota
and interacting with factors and/or signaling pathways associated with intestinal immune
function [4]. However, knowledge of the impact of specific foods or nutrients upon the
intestinal microbiota and its mechanism is still limited. Advances in the knowledge of the
interactions between food compounds and specific intestinal bacteria would lead to a better
understanding of both positive and negative interactions with dietary habits [5].
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In addition, an equilibrate microbiota (eubiosis) is also the first barrier against invasive
pathogens or resident opportunists. In fact, an imbalanced gut microbiota (dysbiosis)
can facilitate pathogen infection and favor a more virulent evolutionary trajectory for
the invading pathogens [6]. In most cases, these pathogens reach the host through food.
According to a report by the World Health Organization, it is estimated that, yearly, there
is a global outbreak of 600 million foodborne diseases, resulting in 420,000 deaths [7].
Among them, the main cause of foodborne disease is bacteria (66%), and the most common
alterations are intoxication and infection [8].

Apart from the repercussions for health, it also has economic repercussions unrelated
to health since it is estimated that about 25% of annual food loss occurs from food contami-
nation by foodborne pathogens [9]. For this reason, great efforts from the food industry
are being dedicated to the development of strategies to prevent bacteria on food, either by
killing or inhibiting microbial growth.

Traditional techniques such as salting, drying, freezing or fermentation are applied to
extend the shelf life of food products, but there may be a risk of recontamination. Therefore,
there is a continuous need for antimicrobial agents [10]. In this sense, several preservatives
are employed by the food industry, mainly synthetic additives. Despite their great efficacy,
the preservatives can have undesirable side effects, not only in humans but also by causing
changes in the organoleptic and/or nutritional properties of food [11].

For this reason, in the last years, natural antipathogen compounds have been gaining
interest in the food industry as food preservatives in order to reduce the use of chemical
additives. These natural antimicrobials are produced and isolated from different sources,
including plants, animals, and microorganisms [12]. An interesting alternative, put on the
table in recent years, is the use of extracellular vesicles (EVs).

All bacteria naturally produce and release these EVs (BEVs) with diverse biological
functions [13], and it appears to be a conserved process in both pathogenic and non-
pathogenic bacteria [14].

In the 1960s, BEVs were first reported in Escherichia coli, but their existence has gained
attention recently [15] owing to their important roles such as pathogenesis [16], inter-
species, intra-species and inter-kingdom communication [17], stress tolerance [18], and
immune stimulation [19].

Regarding this, there are many studies about the important role of BEVs, both pro-
duced by gut microbiota [20] or by foodborne bacteria [21], in the progression and severity
of bacterial infections due to their interactions with animal host cells [22]. These BEVs are
one of the key underlying mechanisms behind the harmful or beneficial effects of many
pathogenic, symbiont, or probiotic bacteria [23].

In the same way that bacteria secrete EVs, it has been demonstrated that cells from
food of both animal and plant origin also secrete them [24,25], and they could also interact
with bacteria, regulating their growth or elimination. In view of this, different studies have
speculated that these dietary-derived exosome-like nanoparticles (DENPs) would be the
third actor between bacteria and hots, becoming a possible alternative strategy to increase
or reduce some specific bacteria. However, the mechanism by which DENPs are involved
in transkingdom communication is not clear yet.

Certainly, it is known that this cell-to-cell communication through DENPs is made
by the transfer of biologically active molecules [26,27]. Although traditionally, all the
attention was focused on the proteins or mRNAs contained [28], in recent years, it has been
shown that they would also carry other bioactive molecules with a key role in intracellular
communication, such as lipids and small-molecule metabolites [29,30].

In this review, we highlight the impact of DENPs on different bacteria species being
able to modulate the host gut microbiome or to reduce the pathogenic bacteria population.
We then provide an overview of the mechanism involved, recent progress, future potential,
and also the remaining challenges of DENs for different biomedical applications.
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2. Can DENPs Impact Bacteria? A Glance of Scientific Evidence

The International Scientific Association for Probiotics and Prebiotics (ISAPP) defined
prebiotics as a ‘substrate that is selectively utilized by host microorganisms conferring a
health benefit’. Substrates considered a prebiotic are, for example, conjugated linoleic acid
(CLA), polyunsaturated fatty acid (PUFA), non-digestible oligosaccharides (FOS, GOS),
human milk oligosaccharides (HMOS), and phytochemicals [31,32].

These prebiotics are then fermented by microorganisms, and the microbial metabolic
compounds produced might be responsible for their health benefits, enhancing the number
of commensal bacteria and decreasing pathogenic bacteria [33]. As an example, it has
been demonstrated that oligofructose (a dietary fiber type) supplementation in human
studies induced specific microbial modifications that were associated with an increase in
Bifidobacterium abundances [34]. It is well established that bifidobacteria confer positive
health benefits to their host via their metabolic activities [35].

DENPs are EVs isolated from fruits or vegetables or from food from animal sources
such as milk or honey. They have displayed promising results in different pathologies
such as cancer, inflammation, nervous diseases, and musculoskeletal disorders. DENPs,
especially from edible plants, are resistant to hard gastrointestinal conditions, thus reaching
distant organs and allowing, for example, their interactions with gut microbiota [36,37].

2.1. Exosomes-like Nanoparticles from Edible Plants
2.1.1. Ginger Exosome-like Nanoparticles

Ginger (Zingiber officinale) is a plant whose rhizome has been widely used as a spice
and as medicine. Around 400 bioactive compounds have been discovered in ginger that
have shown potential health benefits such as anti-inflammatory, anti-tumor, anti-obesity,
and antidiabetic effects, among others [38].

Ginger has been reported to show antimicrobial potential due to gingerol and paradol,
shogaols and zingerone, which can inhibit the growth of bacteria and fungi prolifera-
tion [39]. It shows a potential activity against many Gram-negative bacteria, such as
Escherichia coli, Helicobacter pylori, Pseudomonas aeruginosa, Salmonella Newport, and Gram-
positive bacteria, such as Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis or
Bacillus nutto [40].

On the other hand, ginger can also modulate the microbiota population since 6-
gingerol has demonstrated, during in-vitro assay, to be able to promote the adhesion of
some probiotics (Lactobacillus acidophilus and Bifidobacterium) to colonic epithelial cells
(NCM460 cells and Caco-2 cells), and continuously exerted probiotics activity [41].

Mu J et al. [42] isolated and purified for the first time ginger exosome-like nanoparticles
(GELNs) in 2014. After that, various studies have shown the biological properties of
GELNs [27,43–47]. However, only two studies have been focused on the antibacterial
properties and microbiota modulation of ginger [48,49]. Table 1 summarizes the actions of
GELNs on bacteria.

Teng et al. [48] analyzed tissue distribution of different plant-derived exosome-like
nanoparticles (ELNs), detecting GELNs in the gut and feces over a 6-hr period. This fact
demonstrated that these ELNs were more likely to stay in the intestine, while grapefruit
ELNs preferentially migrated to the liver. Then, GELNs were administered to C57BL/6
mice for a week, and the microbial composition via the 16S rRNA gene (v1-v3 regions) was
analyzed. The authors found that GELNs: (a) produced an increase in Lactobacillaceae
and Bacteroidales S24-7, (b) had no effect on B. fragilis or E. coli growth, and (c) inhibited
Ruminococcaceae growth and a decrease in Clostridiaceae (Table 1). It was hypothesized
that the content and type of phosphatidic acid (PA) lipids of GELN may serve as a signal
for preferential uptake by Lactobacillus rhamnosus GG (LGG).

This significant role of PA lipids was corroborated by Sundaram et al. [49], who
concluded that PA present in the membrane of GELNs interacted with hemin-binding
protein 35 (HBP35) on the surface of Porphyromonas gingivalis (P. gingivalis). In fact, the
authors corroborated that the degree of unsaturation of PA plays a critical role in GELN-
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mediated interaction with HBP35. Consequently, GELNs were taken up by the pathogen
leading to inhibition growth.

In the case of LGG, GELN-RNAs interact with a panel of bacteria genes, altering
the composition of the gut microbiota. miR167a binds the LGG pilus protein SpaC and
downregulates their expression [48]. Regarding aly-miR-159a, gma-miR-166u, and gma-
miR-166p inhibited the expression of genes encoding virulence proteins of P. gingivalis [49].

Besides miRNA GELNs cargo, other studies have detected shogaol and gingerols
in GELNs [27,42,46]. These compounds are volatile phenolic components with potential
antimicrobial activities, among others; for example, it has been shown that gingerols
analogs displayed inhibitory activity against P. gingivalis [50].

These results show that membrane lipids of GELNs could be bacteria-specific, and
this lipid-bacteria interaction allows the uptake of these EVs. When binding occurs, the
release of the EVs cargo triggers bacterial growth alteration.

Table 1. GELNs susceptibility of bacteria.

Reference
Direct Indirect *

Inhibit Promoted No Effect Inhibit Promoted

[48]

Lactobacillus rhamnosus (LGG) x - -

Lactobacillus reuteri (L. reuteri) x - -

Lactobacillus murinus (L. murinus) x - -

Bacillus fragilis (B. fragilis) x x

Escherichia coli (E. coli) x x

Ruminococcaceae sp. (TSD-27) x - -

Listeria monocytogenes (L. monocytogenes) - - - x

[49]

Porphyromonas gingivalis (P. gingivalis) x - -

Fusobacterium nucleatum (F. nucleatum) x - -

Prevotella intermedia (P. intermedia) x - -

Aggregatibacter actinomycetemcomitans
(A. actinomycetemcomitans) x - -

Streptococcus gordonii (S. gordonii) x - -

* Metabolic products from GELNs-treated LGG; (x) Effect; (-) No effect.

2.1.2. Lemon Exosome-like Nanoparticles

Lemon is an edible fruit from the tree Citrus limon (L.) Burm. f. Its chemical com-
position includes phenolic acids, coumarins, carboxylic acids, amino acids, and vitamins
(especially vitamin C), to which is attributed their beneficial properties (anticancer, anti-
oxidant, anti-inflammatory, antimicrobial, anti-obesity, and antidiabetic) [51].

Lemon exosome-like nanoparticles (LELNs) have been demonstrated to inhibit can-
cer cell proliferation-inducing apoptotic cell death [52,53] or inhibit the growth of p53-
inactivated colorectal cancer cells [54].

Although lemon extracts have shown inhibitory activity against Gram-positive and
Gram-negative bacteria [55–58], no studies have been carried out demonstrating antimicro-
bial activity from LELNs.

However, it has been reported the use of LELNs as prebiotics. Thus, the modulation
capacity by LELNs of probiotics such as Lactobacillus strains and Streptococcus thermophiles
(STH) has been established; LELNs increased the bile resistance of LGG and inhibited
Clostridioides difficile infection, which is responsible for antibiotic-associated colitis [59].

As it is shown in Figure 1, this probiotic mix (LGG and STH) previously treated with
LELNs increases on the one hand, the AhR ligands indole-3-lactic acid (I3LA) and indole-3-
carboxaldehyde (I3Ald), leading to induction of IL-22, and on the other hand, lactic acid,



Nutrients 2023, 15, 1265 5 of 14

which leads an inhibition of Clostridioides difficile. Moreover, metabolites from STH can
inhibit the LGG gluconeogenesis pathway to increase the production of I3LA and lactic
acid when co-culturing these two strains, thus exhibiting a synergistic effect in protecting
against Clostridioides difficile infection [59].
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Further, the molecular mechanisms underlying the cross-talk between LELNs and
LGG were studied. The authors explored the active component of LELNs that contributes
to LGG bile resistance, suggesting that pectin content in LELNs was a major contributor to
the increase of this resistance. In fact, previously, it was displayed that pectin from lemon
peel improved the viability of LGG in gastric solution by interactions of its pectins with the
polysaccharides and proteins on the bacterial cell surface [60].

Raimondo et al. [61] analyzed the LELNs cargo exploring its anti-inflammatory prop-
erties. A variety of the flavonoids identified in this study were previously described as
possible gut microbiota modulators [62], mainly hesperidin and naringin.

2.1.3. Coconut Exosome-like Nanoparticles

Coconut water is the aqueous part of the coconut endosperm, which is consumed as a
beverage. Its nutritional composition contains sugars, sugar alcohols, lipids, amino acids,
nitrogenous compounds, minerals, vitamins, organic acids, enzymes, volatile aromatic
compounds, and other biochemical compounds [63].

Several reports have shown coconut water as a valuable tool in the treatment of diges-
tive disorders such as treatment of childhood diarrhea, gastroenteritis and cholera [64,65].
This effect has been attributed mainly to three peptides with antimicrobial activities iden-
tified in green coconut water (Cn-AMP1, Cn-AMP2 and Cn-AMP3) [66], although the
mechanisms of action are unresolved.

Zhao Z et al. [67] isolated coconut exosome-like nanoparticles (CELNs) for the first
time. They demonstrated the presence of extracellular miRNAs in coconut water, being the
levels higher in mature coconut water than in immature coconut water. These miRNAs
were likely to target the human genome and had great potential to affect gene expression
(mainly targeting genes associated with metabolic growth).

Additionally, Yu et al. [68] analyzed more precisely the protein and microRNA content
of CELNs and investigated the relationship between CELNs and bacteria in order to
elucidate the factor affecting bacterial growth. Authors co-incubated Escherichia coli K-12
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MG1655 and Lactobacillus plantarum WCFS1 with CELNs for 4 h and then examined genes
(yegH, ptsG, rpoC, and ccpA, which may influence bacterial growth) expression in bacteria.
CELNs repressed rpoC and yegH expression levels in MG1655 while elevating those of
ccpA after stimulation with CELNs, speculating that the effects of exogenous EVs on
bacterial gene expression levels may be attributable to their cargo miRNAs.

Moreover, the authors demonstrated that CELNs could be taken up by bacteria guar-
anteeing the survival and metabolism of the probiotic bacterium WCFS1.

The findings showed that CELNs could increase the growth of Escherichia coli K-
12 MG1655 and accelerate the growth of Lactobacillus plantarum WCFS1 [67]. WCFS1 is
recognized as a probiotic strain due to its immunomodulatory effects [69].

2.1.4. Tartary Buckwheat-Derived Nanovesicles

Tartary buckwheat (Fagopyrum tataricum Gaertn.) is bitter buckwheat that originated
in China. It is gaining popularity due to having higher concentrations of certain bioactive
phytochemicals, which have protective effects against chronic diseases [70,71]. More
concretely, it shows potential gastrointestinal benefits due to its antioxidant and anti-
inflammatory capacity [72].

Liu Y et al. [73] isolated Tartary Buckwheat-Derived Nanovesicles (TBDNs) and
evaluated their effects on gut microbiota. In the first step, the authors evaluated the
distribution of TBDNs after 1 and 6 h after intragastric administration in mice. As shown
in Figure 2, TBDNs were detected in the liver and colon, demonstrating that TBDNs could
be absorbed and retained in the intestine, an important prerequisite for TBDNs’ action on
the gut microbiota.
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They concluded that some microRNAs transported in TBDNs could target functional
genes of E. coli and L. rhamnosus, promoting their growth. Additionally, TBDNs changed
the human fecal microecological diversity in comparison with the control group.

It is important to remark that proteins [74,75], flavonoids [76], soluble dietary fiber [77]
and resistant starch [78,79] present in Tartary buckwheat could also be filled in TBDNs and
involved in this gut microbiota modulation although it has not been studied so far.

2.2. Exosomes-like Nanoparticles from Animal-Derived Food
2.2.1. Milk Exosomes

The resistance of human and animal milk-derived EVs (MDEVs) to gastric digestion
provides EV entry intact to the human intestine [80], delivering their cargo to intestinal
cells and reaching systemic circulation to exert biological activities [81,82].

Due to the MDEVs’ content (proteins, peptides, lipids, coding and non-coding RNAs,
oligosaccharides), MDEVs isolated from different species have shown multiple biolog-
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ical effects [81]. The studies researched the effects of MDEVs in the immune response
(mainly anti-inflammatory properties), in diseases such as cancer and in other aspects of
cell biology [80].

Owing to the critical roles of human breast milk (HBM) in supporting early human
growth and development, it has been well-studied over the past decades and continues
to attract intense research attention [83]. A particular focus is being paid to the effect that
HBM-derived EVs have on the gastrointestinal (GI) tract. Recently, it has been concluded
that HBM-derived EVs can alter the intestinal immune response and the subsequent
establishment of the microbiota with a cargo capable of influencing the local immune
response to bacterial challenge [84,85].

Cow and bovine MDEVs have also shown an impact on the gut microbiota of mice.
All studies are summarized in Table 2.

Zhou et al. [86] tested if bovine MDEVs could alter bacterial communities in the
murine cecum. A total of 19 families were identified by 16S rRNA sequencing, with an
increase of Lachnospiraceae, Firmicutes, and Tenericutes and of Verrucomicrobiaceae in
treated mice. The modulation was associated with sex and age. These bacterial families
have a direct impact on pathological and physiological conditions. However, the functional
consequences of these changes in bacterial communities in the gut and the mechanisms by
which these changes contribute to phenotypes of health and disease are unknown.

In another study, the colonic contents from C57BL/6 mice fed with MDEVs for eight
weeks were collected, and the microbial composition was analyzed (87), with a finding of an
increase in the abundance of Clostridiaceae, Ruminococcaceae and Lachnospiraceae in MDEVs-
treated mice. Moreover, the results showed that Ruminococcaceae and Dehalobacteriaceae
had significant positive correlations with acetate and butyrate, and Verrucomicrobiaceae had
significant positive correlations with isovaleric and n-valeric. Consequently, MDEVs not
only alter the gut microbiota composition but also modulate their metabolites.

In view of the good results, these authors [88] explored the therapeutic effects of
MDEVs on mice with induced ulcerative colitis (UC). Firstly, they tested the biodistribution
of MDEVs, checking that MDEVs reached the small intestines at 1 h and the colon at 6 h.
After 12 h, MDEVs were mainly located in the colon. These findings demonstrated that
MDEVs via oral administration could reach the colon and stay for a long time in the gut.
Moreover, the results showed that the disturbed gut microbiota in UC was also partially
recovered upon treatment with MDEVs.

It is known that gut microbial diversity decreased in DSS-induced colitis. Interestingly,
mice treated with MDEVs recovered the relative abundance of bacteria nearly to the level
in the control mice and a promising probiotic, Akkermansia, was significantly increased.

Du et al. [89] found in female mice, the treatment with MDEVs supposed an enrich-
ment of beneficial microbes such as Muribaculum and Turicibacter and a decrease of the
harmful genera Desulfovibrio and Marvinbryantia compared with the PBS group. In male
mice, MDEVs prominently increased the abundance of Akkermansia and decreased the level
of Desulfovibrio. Although the relative abundance of the identified bacteria was different be-
tween female and male mice in response to bovine MDEVs, the overall trend influencing the
increase or decrease in the gut microbiota was the same regardless of gender. In this study,
the effect of MDEVs on gut microbial metabolites was also determined; in female mice,
the proportions of acetic acid, propionate and butyrate were higher in the MDEVs groups,
while in male mice, MDEVs significantly increased the proportion of acetic acid, decreased
the proportion of propionate, and had no significant role in the butyrate concentration.

It is important to highlight that in these studies, the molecular mechanism explanation
of how these MDEVs interact with gut microbiota is missing.
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Table 2. MDEVs have shown an impact on the gut microbiota of mice.

Ref. Sample Isolation Animal EVs Conclusions

[86] Bovine Milk Differential ultra-
centrifugation

Female and male
C57BL/6
3 weeks

Exosome and
RNA-depleted

(ERD) VS exosome
and

RNA-sufficient
(ERS) diets

Sex alone does not affect
microbial communities.

7 weeks. Two unclassified
families from

phylum Firmicutes were more
abundant in ERD mice than in

ERS mice.
15 weeks. one of the two

unclassified families from the
phylum of Firmicutes and another

unclassified family from the
phylum Tenericutes were more

abundant in ERS mice compared
with ERD mice

47 weeks. the family of
Verrucomicrobiaceae was

more abundant in ERD mice
compared with ERS mice,

whereas Lachnospiraceae and
two unclassified families from

phyla Firmicutes and Tenericutes
were more abundant in ERSmice

than in ERD mice

[87] Raw milk

Chymosin or
hydrochloric

acid treatment
combined with
ultracentrifuga-

tion/ultrafiltration

Specific-
pathogen-free

female C57BL/6
3 weeks

Low mEVs VS
Middle mEVs VS

High mEVs
VS control PBS

Increase of Clostridiaceae,
Ruminococcaceae

Lachnospiraceae with EVs (with
an increase of mEVs) and

decrease in S24_7.

[88] Raw milk from
Holstein cows

Chymosin
combined with
ultracentrifuga-

tion

Specific-
pathogen-free
male C57BL/6

7–8 weeks

Control group VS
DSS group VS DSS
+ mEVs-Low dose

Genus level:
Depletion of Enterorhabdus and
unclassified_Bacteroidia in the

DSS group, but recovered in the
mEVs group
Family level:

Increased Enterococcaceae and
Desulfovibrionales-unclassified
Desulfovibrionaceae in the DSS

group but unchanged in the
mEVs group

[89] Bovine raw
milk Ultracentrifugation

Specific-
pathogen-free

female and male
C57BL/6
6–8 weeks

High EVs VS
Middle EVs VS

Low EVs VS
Control PBS

Female
Genus: increase Muribaculum,

Turicibacter. Decrease
Desulfovibrio, Marvinbryantia.

Male
Genus: increase Akkermansia.

Decrease Desulfovibrio.
Phylum: increased

Verrucomicrobia and
Cyanobacteria

2.2.2. Honey Exosome-like Nanoparticles

Bee-derived products (honey, royal jelly, venom, propolis and pollen) have been
reported to exert antimicrobial effects increasing interest in the compounds responsible for
these properties [90].
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The antibacterial activities of honey are due to lower water activity, high content
sugar, glycogenic acid and hydrogen peroxide, both generated by glucose oxidase, peptide
defensin-1 (Def-1), and polyphenol compounds [91]. On the other hand, the antibacterial
activity of Royal Jelly is a consequence of the synergy between MRJPs, jelleines, royalisin,
and trans-10-hydroxy-2-decenoic acid (10-had) fatty acid. At the same time, the antibacterial
mechanism of pollen could be exerted by glucose oxidase, phenolic content, phenol content
and bioactive compound as fatty acids [90].

Honey-derived EVs (HDEVs) have also been proposed as possibly responsible for
these beneficial effects. In fact, previous studies have demonstrated the existence of EVs
isolated from pollen, royal jelly and honey and related to antimicrobial effects.

Based on the research of Schuh et al. [92], EVs from Apis mellifera bee pollen, honey
(HDEVs) and royal jelly had bacteriostatic, bactericidal and biofilm-inhibiting effects on
Staphylococcus aureus. However, the underlying mechanism is still not understood. As-
sessing the role of EVs within the antibacterial properties of the crude products, the authors
found that EVs-depleted bee pollen and royal jelly displayed inhibitory and bactericidal
effects at 5% (v/v), while EVs-rich bee pollen and royal jelly inhibited bacterial growth at
1%. No difference was found for EVs-depleted honey (both 1%). Interestingly, in contrast to
its isolated EVs, crude royal jelly displayed a significantly lower biofilm-inhibitory capacity
compared with bee pollen and honey.

HDVs’ antibacterial effect has also been tested against the relevant caries-associated
Streptococcus mutans and the effect on the commensal Streptococcus sanguinis, which has
been described as an important antagonistic species to S. mutans. Its prevalence within
the biofilm is mostly associated with health conditions [93]. Antibacterial molecules such
as MRJP1, defensin-1 and jellein-3 were found as intravesicular cargo. Similarly, Chen
et al. [94] identified MRJP1, 2, 4, 8, and 9, but not Jellein-3 or def-1 as HDEVs cargo.

After bacteria incubation with different HDEVs concentrations [93], results demon-
strated that, despite leading to an antibacterial effect on both strains of oral streptococci,
HDEVs had a pronounced activity against S. mutans compared to S. sanguinis. It could be
associated with mechanical alterations resulting in membrane damage.

Bactericidal effect on S. aureus of royal jelly-derived EVs (RJDEVs) had been confirmed
in vivo [95]. After 48 h, in mice treated with collagen gel with RJDEVS, no bacteria were
detected. In this study, MRJP1, def-1 and Jellein-3 were identified in the EVs.

These findings suggest that MRJP1, def-1 and Jellein-3 are responsible for the antibac-
terial function of HDEVs. However, in the absence of a metabolomics analysis of the cargo,
it is not possible to say that peptides alone are responsible for the observed effects.

The bactericidal effect on S. aureus of royal jelly-derived EVs (RJDEVs) has been
confirmed in vivo [95]. After 48 h, in mice treated with collagen gel with RJDEVS, no
bacteria were detected. In this study, MRJP1, def-1 and Jellein-3 were identified in the EVs.

These findings suggest that MRJP1, def-1 and Jellein-3 are responsible for the antibac-
terial function of HDEVs. However, in the absence of a metabolomics analysis of the cargo,
it is not possible to say that peptides alone are responsible for the observed effects.

3. Conclusions

This review has summarized recent research on the functionality of DELNs as a
bacterial modulator, and we can conclude that the evidence strongly conveys that DELNs
have a direct impact on bacteria growth.

While it is true that most studies are focused on miRNA-EVs as the key molecules
responsible for the interaction between DELNs and bacteria, other bioactive molecules
packed in EVs, i.e., lipids integrating the membrane, are gradually arising as alternative
key compounds involved in gut microbiota modulation.

Numerous studies have highlighted the role of microbiota in health and the importance
of maintaining eubiosis. For this reason, there is a crucial need for a better understanding
of how DELNs interact with bacteria and how to induce a microbiota modulation useful
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for disease treatment. For this, further investigation is necessary prior to deliver EVs-based
therapies clinically.
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