
Citation: Wang, M.; Zhang, J.;

Kalantar-Zadeh, K.; Chen, J. Focusing

on Phosphorus Loads: From Healthy

People to Chronic Kidney Disease.

Nutrients 2023, 15, 1236. https://

doi.org/10.3390/nu15051236

Academic Editors: Stanisław

Niemczyk, Dorota Szostak-Węgierek
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Abstract: Phosphorus is an essential micromineral with a key role in cellular metabolism and tissue
structure. Serum phosphorus is maintained in a homeostatic range by the intestines, bones, and
kidneys. This process is coordinated by the endocrine system through the highly integrated actions
of several hormones, including FGF23, PTH, Klotho, and 1,25D. The excretion kinetics of the kidney
after diet phosphorus load or the serum phosphorus kinetics during hemodialysis support that
there is a “pool” for temporary phosphorus storage, leading to the maintenance of stable serum
phosphorus levels. Phosphorus overload refers to a state where the phosphorus load is higher
than is physiologically necessary. It can be caused by a persistently high-phosphorus diet, renal
function decline, bone disease, insufficient dialysis, and inappropriate medications, and includes
but is not limited to hyperphosphatemia. Serum phosphorus is still the most commonly used
indicator of phosphorus overload. Trending phosphorus levels to see if they are chronically elevated
is recommended instead of a single test when judging phosphorus overload. Future studies are
needed to validate the prognostic role of a new marker or markers of phosphorus overload.

Keywords: phosphorus load; chronic kidney disease; phosphorus pool

1. The Distribution of Phosphorus

Phosphorus is the sixth most abundant element in the human body and plays a key role
in cellular metabolism and tissue structure [1]. Most body phosphorus (85%) is stored in the
bones and teeth. The remainder (14%) is stored in soft tissues. Only 1% of the body’s total
phosphorus stores are found in the extracellular fluid (ECF, including serum) [2]. In skeletal
tissue, phosphorus is primarily complexed with calcium in the form of hydroxyapatite
crystals, while the remaining phosphorus is found in the form of amorphous calcium
phosphate [3]. In soft tissue, phosphorus exists mainly as phosphate esters (and, to a lesser
extent, as phosphoproteins and free phosphate ions) [4]. Phosphorous is involved in a
wide variety of essential cellular functions. These include biochemical energy transfer
via adenosine triphosphate (ATP), maintenance of genetic information within DNA and
RNA nucleotides, intracellular signaling via cyclic adenosine monophosphate (cAMP), and
membrane structural integrity via glycerophospholipids. The ECF is responsible for the
transport of phosphorus to and from the organs involved in phosphorus metabolism [5].
As a part of ECF phosphorus, serum phosphorus is easily measurable and can signal the
status of body phosphorus stores. The normal range for serum phosphorus in adults is
2.5–4.5 mg/dL [0.81–1.45 mmol/L], but varies with age (the younger the child, the higher
the normal phosphorus level) [3].
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2. Phosphorus Homeostasis and In-Depth Review of Phosphorus Regulation

Because phosphorus is involved in a series of physiological activities, maintaining its
homeostasis is very important. The intestines, bones, and kidneys are the primary organs
that maintain phosphorus homeostasis and control phosphorus concentration in circula-
tion [6,7]. They perform this function via three endocrine system hormones: fibroblast
growth factor 23 (FGF23), the parathyroid hormone (PTH), and 1,25(OH)2D3 (1,25D) [8–14].
It is well known that these three hormones respond to phosphorus loads by modulating
intestinal phosphorus absorption, urinary phosphorus excretion, and phosphorus dis-
tribution into bone. The most typical is oral phosphorus administration, which caused
significant increases in FGF23 by 2 h and PTH by 4 h in non-DM patients [15]. These hor-
mones are also capable of modulating each other’s secretion in in vitro and in vivo animal
models, thus forming a complex phosphorus regulatory network [16–19] (Figure 1). It has
also been reported that Klotho has both FGF23-independent and FGF23-dependent roles in
phosphorus homeostasis [20]. However, it is unknown how this reciprocal regulation net-
work works under different physiological states. Granger causality analysis is a statistical
method for investigating the flow of information between time series [21]. It is superior for
resolving the construction and interaction of complex networks and for revealing causality
relationships among multiple variables. The Granger causality methodology was first
developed in econometrics, but has been widely applied to many other fields, including
cardiology and neuroscience [22,23]. We recently used Granger causality analysis in a
prospective clinical study that was attempting to determine the most important initiating
factors, mediating factors, and outcomes involved in in vivo phosphorus regulation. Six
healthy men were enrolled and treated with different phosphorus diets for five days, with
urine collection and blood drawn every two hours on the last day of the diet for biochemical
analysis. Granger causality analysis showed that serum αKlotho was the most strongly
connected variable, and that it played a key role in influencing other factors. In addition,
urinary phosphorus excretion was frequently regulated by other factors in the phosphorus
regulatory network after regular-phosphorus (1500 mg/d) diets. After low-phosphorus
(500 mg/d) diets, serum phosphorus affected other factors, with 1,25D being the main
output factor, while urinary phosphorus excretion was the most strongly connected variable
in the phosphorus metabolic network. After high-phosphorus (2200 mg/d) diets, both
serum FGF23 and 1,25D played critical roles in active and passive phosphorus regulation
(Figure 2) [24]. These results illustrated how the dominant mechanisms of phosphorus
regulation differ under different dietary conditions and suggest that the precise phosphorus
regulatory network mechanisms need to be further explored.
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phorus absorption, urinary phosphate excretion, and phosphate distribution into bone. In addition, 

Figure 1. Phosphorus regulatory network. Note: Fibroblast growth factor 23 (FGF23), parathyroid
hormone (PTH), and 1,25(OH)2D3 responds to the phosphorus load by modulating intestinal phos-
phorus absorption, urinary phosphate excretion, and phosphate distribution into bone. In addition,
these hormones are capable of modulating one another’s secretion in vitro and in vivo animal models,
thus forming a complex phosphorus regulatory network.



Nutrients 2023, 15, 1236 3 of 14

Nutrients 2023, 15, 1236 3 of 14 
 

 

these hormones are capable of modulating one another’s secretion in vitro and in vivo animal mod-

els, thus forming a complex phosphorus regulatory network. 

 

Figure 2. The network of phosphorus metabolism using Granger causality analysis following the 

low-, regular-, and high-phosphorus diet interventions. Note: Causality graph with the highest be-

tweenness and degree effects following three diet interventions. Betweenness centrality is often 

used to find nodes that serve as a bridge from one part of a graph to another. The parameter with 

the highest betweenness was in the center of each graph with all the causal connections associated 

with this parameter. The thin arrows show the regulatory relationships associated with this phos-

phatonin. The big orange and red arrows indicate parameters with the highest outdegree and 

indegree values. Parameters with the highest outdegree value have the most regulating effect over 

other parameters in phosphorus metabolism. Parameters with the highest indegree value means 

they were mostly regulated. The head of the arrow represents the cause, and the tail represents the 

result. Abbreviations: Urine Pi/Cr, urinary phosphorus/creatinine rate; PTH, parathyroid hormone; 

FGF23, fibroblast growth factor 23; BALP, bone alkaline phosphatase; 1,25D, 1,25-dihydroxyvitamin 

D3; sPi, serum phosphorus; sCa, serum calcium. 

Amongst the three major organs, the gut and kidney handle the major fraction of 

daily phosphorus transport for absorption (70% of dietary phosphorus) and excretion 

(70% of dietary phosphorus), respectively [5,25,26] (Figure 3). However, when there are 

large gaps between the total amount of phosphorus that needs to be excreted and the rate 

of phosphorus excretion, it can take the kidney a long time to excrete the absorbed dietary 

phosphorus. For example, if a regular diet contains 1500 mg of phosphorus, the kidney 

will need 20 h to excrete the absorbed 980 mg of phosphorus at a rate of 45 mg per hour 

based on a tubule reabsorption rate of over 80% [27]. When the tubule reabsorption rate 

decreases as a response to PTH or FGF23, the excretion may accelerate. We also observed 

this extended excretion phenomenon in the aforementioned cross-over clinical trial. Un-

der regular- and high-phosphorus diet conditions, the phosphorus tubule reabsorption 

rate decreased but still lasted over 12 h (Figure 3). Following a high-phosphorus diet, 

however, there was a longer duration of tubule reabsorption rate changes, indicating a 24-

h excretion (Figure 3). Several other studies have shown similar findings. Nishida ob-

served that the cumulative urinary excretion of phosphorus continues to increase even 8 

h after a single oral phosphorus load [28]. This is also true in the case of intravenous phos-

phorus loading. Scanni found that the urinary excretion of phosphorus lasted for at least 

12 h and that fractional phosphorus clearance kept increasing for 12 h after a 36-h paren-

teral or duodenal acute phosphorus load, even though serum phosphorus significantly 

decreased at the 36th hour [29]. Thus, we infer that absorbed phosphorus from diets are 

likely first stored somewhere in the body so that the kidney can gradually excrete them. 

This is another important and perhaps overlooked aspect of phosphorus homeostasis. 

However, this slow excretion could not be explained by slow digestion and/or absorption 

because we know that intestinal absorption is completed approximately 7.5 h after intake 

[26]. It may be associated with the circadian rhythm of serum phosphorus, cortisol, or 

Figure 2. The network of phosphorus metabolism using Granger causality analysis following the
low-, regular-, and high-phosphorus diet interventions. Note: Causality graph with the highest
betweenness and degree effects following three diet interventions. Betweenness centrality is often
used to find nodes that serve as a bridge from one part of a graph to another. The parameter with the
highest betweenness was in the center of each graph with all the causal connections associated with
this parameter. The thin arrows show the regulatory relationships associated with this phosphatonin.
The big orange and red arrows indicate parameters with the highest outdegree and indegree values.
Parameters with the highest outdegree value have the most regulating effect over other parameters
in phosphorus metabolism. Parameters with the highest indegree value means they were mostly
regulated. The head of the arrow represents the cause, and the tail represents the result. Abbreviations:
Urine Pi/Cr, urinary phosphorus/creatinine rate; PTH, parathyroid hormone; FGF23, fibroblast
growth factor 23; BALP, bone alkaline phosphatase; 1,25D, 1,25-dihydroxyvitamin D3; sPi, serum
phosphorus; sCa, serum calcium.

Amongst the three major organs, the gut and kidney handle the major fraction of
daily phosphorus transport for absorption (70% of dietary phosphorus) and excretion (70%
of dietary phosphorus), respectively [5,25,26] (Figure 3). However, when there are large
gaps between the total amount of phosphorus that needs to be excreted and the rate of
phosphorus excretion, it can take the kidney a long time to excrete the absorbed dietary
phosphorus. For example, if a regular diet contains 1500 mg of phosphorus, the kidney
will need 20 h to excrete the absorbed 980 mg of phosphorus at a rate of 45 mg per hour
based on a tubule reabsorption rate of over 80% [27]. When the tubule reabsorption rate
decreases as a response to PTH or FGF23, the excretion may accelerate. We also observed
this extended excretion phenomenon in the aforementioned cross-over clinical trial. Under
regular- and high-phosphorus diet conditions, the phosphorus tubule reabsorption rate
decreased but still lasted over 12 h (Figure 3). Following a high-phosphorus diet, however,
there was a longer duration of tubule reabsorption rate changes, indicating a 24-h excretion
(Figure 3). Several other studies have shown similar findings. Nishida observed that the
cumulative urinary excretion of phosphorus continues to increase even 8 h after a single
oral phosphorus load [28]. This is also true in the case of intravenous phosphorus loading.
Scanni found that the urinary excretion of phosphorus lasted for at least 12 h and that
fractional phosphorus clearance kept increasing for 12 h after a 36-h parenteral or duodenal
acute phosphorus load, even though serum phosphorus significantly decreased at the
36th hour [29]. Thus, we infer that absorbed phosphorus from diets are likely first stored
somewhere in the body so that the kidney can gradually excrete them. This is another
important and perhaps overlooked aspect of phosphorus homeostasis. However, this slow
excretion could not be explained by slow digestion and/or absorption because we know
that intestinal absorption is completed approximately 7.5 h after intake [26]. It may be
associated with the circadian rhythm of serum phosphorus, cortisol, or PTH regulation,
which could explain the peak and trough concentrations of serum phosphorus and the
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obvious drop in tubular phosphorus reabsorption that we observed at 8:00 pm no matter
what diet the patients were on (Figure 3) [30–35]. Thus, it is clear that phosphorus regulation
and homeostasis are much more complicated than a network composed of phosphatonins.
An after-diet phosphorus storage, with a corresponding as yet unidentified mechanism,
must also be involved.
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Figure 3. Phosphorus transport among three organs, tissue, and ECF. Note: Gut and kidney handle
the major fraction of daily phosphorus transport for absorption and excretion. Urinary excretion of
phosphorus lasts for at least 12 h to finally reach phosphorus balance. The phosphorus pool acts as a
buffer pool throughout the slow excretion process of the kidney to ensure that the serum phosphorus
is in a narrow range. The arrows mean the exchange between different tissues or organs.

3. Phosphorus Pool

Long bone hydroxyapatite crystal serves as a huge phosphorus reservoir that can
be rapidly mobilized to support numerous biological systems. Daily transport of phos-
phorus (180 mg) from the ECF to form new bones formation and then back to ECF via
bone resorption keeps phosphorus balanced, but involves a far smaller percentage of total
body phosphorus than the amount that is regulated by the gut and kidney [5,25,26]. Thus,
the latter are the main organs that regulate phosphorus homeostasis. The delays in renal
excretion of phosphorus after dietary intake suggest that there might be a “pool” for tem-
porary phosphorus storage, leading to the continuous release of phosphorus from the pool
to the kidney and the maintenance of stable serum phosphorus levels. The “phosphorus
pool” theory was firstly proposed by Spalding et al. when studying phosphorus kinetics
during hemodialysis [36,37]. Spalding et al. explained that a third phosphorus pool usually
switched on to release phosphorus into the extracellular space to protect the intracellular
phosphorus concentrations from decreasing too low because intracellular phosphorus plays
critical roles in energy-dependent processes, intracellular buffering, and protein activity
regulation [36]. Agar et al. also demonstrated evidence of undefined phosphorus pools
from which phosphorus was continuously mobilized into the ECF at a dynamic mobiliza-
tion clearance rate during dialysis [38]. More recently, after adaption by Daugirdas et al.,
the above model/theory could be used to predict intra-dialysis and early post-dialysis
serum phosphorus values, adding further evidence to the idea that there is a phosphorus
storage pool [39].
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Our cross-over clinical trial in healthy adults also supports these findings. When
we calculated phosphorus balance gaps (i.e., the absorbed dietary phosphorus minus the
amount of urinary phosphorus excretion), we found that positive phosphorus balance gaps
last for almost the whole day—from 08:00 to 08:00 the next day [40] (Figure 4). Although
there was a small increase in serum phosphorus levels, the extra phosphorus stored in
the ECF was actually much smaller than the phosphorus gap. Most of the phosphorus
absorbed from the intestine needed to be stored in preparation for excretion (Figure 4).
Thus, we suspect that, in physiological states, the storage pool serves as a buffer to avoid
too rapid phosphorus increases and to maintain stable intracellular phosphorus ranges.

Nutrients 2023, 15, 1236 5 of 14 
 

 

gaps last for almost the whole day—from 08:00 to 08:00 the next day [40] (Figure 4). Alt-

hough there was a small increase in serum phosphorus levels, the extra phosphorus stored 

in the ECF was actually much smaller than the phosphorus gap. Most of the phosphorus 

absorbed from the intestine needed to be stored in preparation for excretion (Figure 4). 

Thus, we suspect that, in physiological states, the storage pool serves as a buffer to avoid 

too rapid phosphorus increases and to maintain stable intracellular phosphorus ranges. 

To date, the source of the storage pool (“third pool”) still remains unknown. We be-

lieve that this pool is part of the ECF, and thus minimally affects organ and/or tissue me-

tabolism. One previous research group hypothesized that this phosphorus was not yet 

incorporated into the bone [36]. A recent study on changes in phosphorus distribution 

during hemodialysis raised the possibility of intracellular phosphorus storage in muscles 

since muscles have high intracellular phosphorus concentrations and could tolerate be-

tween 30–40% reductions in phosphorus concentrations without exhibiting bioenergetics 

[41]. However, Bevington et al. found that the percentage change in intramuscular phos-

phorus only increased by 70%, even when the plasma phosphorus concentration range 

changed fourfold [42]. Additionally, this theory still cannot explain the persistent rebound 

of serum phosphorus after dialysis because dialysis also decreases intracellular muscle 

tissue Pi concentrations by up to 23%, a percentage that has been described in the muscle 

tissue of patients with chronic obstructive pulmonary disease [43,44]. 

 

Figure 4. The storage pool severs as a buffer pool for the transient positive phosphorus balance gap. 

Note: The phosphorus balance gap in the left half of this figure was calculated as follows: phospho-

rus balance gap (mg) = phosphorus balance gap at the previous time point (mg)—the urinary phos-

phorus excretion at the current time point (mg). Phosphorus balance gap at 08:00 was the first gap. 

It was calculated as the dietary phosphorus intake of breakfast multiplied by the intestinal absorp-

tion rate—the urinary phosphorus excretion at 08:00 (mg). As for phosphorus balance gap at 12:00 

and 18:00, the corresponding dietary phosphorus intake per meal multiplied by the intestinal ab-

sorption rate were added to the above first formula. Intestinal absorption rate was calculated by 24-

h urinary phosphorus excretion divided by dietary phosphorus intake. The arrows in the right half 

of the figure mean the exchange between different tissues or organs. Abbreviations: LPD, low-phos-

phorus diet (500 mg/d), NPD, normal-phosphorus diet (1500 mg/d), HPD, high-phosphorus diet 

(2200 mg/d). 

4. Phosphorus Overload and Pathological Phosphorus Pool 

Phosphorus loading refers to the amount of phosphorus intake into a system [1]. For 

example, dietary phosphorus is one of the main kinds of phosphorus loading. Dietary 

phosphorus could cause a transient increase in the phosphorus storage pool, but it is even-

tually excreted by the kidney under the control of the phosphorus regulatory network. In 

cases where phosphorus loadings exceed the kidneys’ excretion threshold, the physiolog-

ical phosphorus pool may become saturated. This excess phosphorus can lead to vascular 

calcification or hyperphosphatemia [45]. We define hyperphosphatemia as a type of phos-

phorus overload which leads to the formation of pathological phosphorus pools in the 

Figure 4. The storage pool severs as a buffer pool for the transient positive phosphorus balance gap.
Note: The phosphorus balance gap in the left half of this figure was calculated as follows: phosphorus
balance gap (mg) = phosphorus balance gap at the previous time point (mg)—the urinary phosphorus
excretion at the current time point (mg). Phosphorus balance gap at 08:00 was the first gap. It was
calculated as the dietary phosphorus intake of breakfast multiplied by the intestinal absorption
rate—the urinary phosphorus excretion at 08:00 (mg). As for phosphorus balance gap at 12:00 and
18:00, the corresponding dietary phosphorus intake per meal multiplied by the intestinal absorption
rate were added to the above first formula. Intestinal absorption rate was calculated by 24-h urinary
phosphorus excretion divided by dietary phosphorus intake. The arrows in the right half of the figure
mean the exchange between different tissues or organs. Abbreviations: LPD, low-phosphorus diet
(500 mg/d), NPD, normal-phosphorus diet (1500 mg/d), HPD, high-phosphorus diet (2200 mg/d).

To date, the source of the storage pool (“third pool”) still remains unknown. We
believe that this pool is part of the ECF, and thus minimally affects organ and/or tissue
metabolism. One previous research group hypothesized that this phosphorus was not yet
incorporated into the bone [36]. A recent study on changes in phosphorus distribution dur-
ing hemodialysis raised the possibility of intracellular phosphorus storage in muscles since
muscles have high intracellular phosphorus concentrations and could tolerate between
30–40% reductions in phosphorus concentrations without exhibiting bioenergetics [41].
However, Bevington et al. found that the percentage change in intramuscular phosphorus
only increased by 70%, even when the plasma phosphorus concentration range changed
fourfold [42]. Additionally, this theory still cannot explain the persistent rebound of serum
phosphorus after dialysis because dialysis also decreases intracellular muscle tissue Pi
concentrations by up to 23%, a percentage that has been described in the muscle tissue of
patients with chronic obstructive pulmonary disease [43,44].

4. Phosphorus Overload and Pathological Phosphorus Pool

Phosphorus loading refers to the amount of phosphorus intake into a system [1]. For
example, dietary phosphorus is one of the main kinds of phosphorus loading. Dietary
phosphorus could cause a transient increase in the phosphorus storage pool, but it is
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eventually excreted by the kidney under the control of the phosphorus regulatory net-
work. In cases where phosphorus loadings exceed the kidneys’ excretion threshold, the
physiological phosphorus pool may become saturated. This excess phosphorus can lead
to vascular calcification or hyperphosphatemia [45]. We define hyperphosphatemia as a
type of phosphorus overload which leads to the formation of pathological phosphorus
pools in the vasculature and subsequent cardiovascular disease. A typical example of
this situation is CKD. As renal phosphorus excretion decreases, serum phosphorus and
coronary artery calcification scores gradually increase [46,47]. Therefore, a precise assess-
ment of the phosphorus overload is very important. However, hyperphosphatemia is not a
sensitive indicator of phosphorus overload. Clinical studies on dietary phosphorus have
found that, after a high-phosphorus diet, most people still have normal ranges of serum
phosphorus. We thus suggest the following formula to help recognize true phosphorus
overload: phosphorus absorbed from the intestine—the phosphorus excretion from urine
+ net phosphorus absorption/release from osteogenesis and osteolysis + net phosphorus
absorption/release from tissue metabolism (Figure 4). Phosphorus overload may be diffi-
cult to define on the basis of a specific value since the demand for phosphorus changes as
physiologic states change. However, we can prove phosphorus overload exists on the basis
of pathological changes (i.e., hyperphosphatemia and vascular calcification).

5. Reasons for and Deleterious Side Effects of Phosphorus Overload

Exploring the underlying causes of phosphorus overload is important to reduce un-
wanted side effects. One potential cause is longstanding abnormalities in any element
of the phosphorus regulatory network. Dietary phosphorus may be the main source of
phosphorus overload in young adults with normal kidney function and bone turnover.
Renal function decline and osteoporosis may be the main causes of phosphorus overload
in the elderly because the glomerular filtration rate (GFR) tends to decrease as a part of the
normal aging process and in cases of chronic disease [48,49]. Serum phosphorus could be
decreased by denosumab, which induces reduction in phosphorus load into the bones of
osteoporotic patients [50]. Additionally, the age-adjusted prevalence of low bone mass can
be as high as 43.1% among adults aged 50 and over [51]. For CKD patients, an inappro-
priate diet, compromised renal function, renal osteodystrophy, insufficient dialysis, and
prescription medications could all cause phosphorus overload. In particular, phosphorus
overload happens early in the CKD disease course (i.e., Craver et al. found decreases in the
24-h urine phosphorus excretion of CKD patients), but intestinal phosphorus absorption
appears to be near normal in CKD patients [46,47].

Substantial evidence from epidemiological studies indicates that phosphorus over-
load is associated with poor outcomes (Figure 5). High dietary phosphorus is associated
with higher blood pressure [40,52], greater left ventricular mass [53], more severe protein-
uria [54–57], renal calcification [58], intraglomerular hypertension and proximal tubular
injury [59,60], fractures [61], and higher mortality [62]. A low bone mineral content has
been shown to be a risk factor for increased incidence of coronary artery disease and car-
diovascular mortality [63,64]. Osteoporosis blocks the skeleton from exerting its reservoir
function when positive phosphorus balance occurs, and is also associated with heterotopic
mineralization [65–68]. As a direct indicator of phosphorus overload, higher serum phos-
phorus concentrations, even within the normal range, are independently associated with
worse microvascular function, coronary artery calcification, incident CKD, and mortality in
community-living individuals [69–72].
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overload. Phosphorus overload leads to a serious of side effects including hyperphosphatemia,
vascular calcification, a worse microvascular function, and so on. These are also the indirect evidence
of phosphorus overload. The arrows mean the exchange between different tissues or organs.

In CKD, the harm of phosphorus overload appears earlier and has more severe conse-
quences than in healthy controls (Figure 5). Excess phosphorus exerts toxic effects through
a variety of pathways, including direct effects of hyperphosphatemia and indirect effects
related to compensatory responses, such as increased FGF23 and PTH levels. With the
exception of calcification, high serum phosphorus levels directly potentiate endothelial
dysfunction, promote the progression of kidney disease, and induce cellular stress, pre-
mature aging, and apoptosis [1,73]. High levels of FGF23 and PTH induce left ventricular
hypertrophy, renal anemia, immune dysfunction, adipose tissue browning, and skeletal
muscle atrophy [74]. Enhanced urinary phosphorus excretion, as a compensatory reaction
for high dietary phosphorus loads, also leads to progressive nephron loss via calcium
phosphorus particle-induced damage to tubule cells [59,75]. Thus, phosphorus overload
should be assessed and treated as quickly as possible, even when normophosphataemia is
suggested based on FGF23 or PTH levels.

6. Early Markers of Phosphorus Overload

The early detection of phosphorus overload improves long-term outcomes. However,
what regulatory processes first respond to high phosphorus loads and how the extent of
the response is determined continue to be points of discussion. For example, in CKD, the
classic hypothesis suggested that there was a trade-off between PTH for phosphorus level
normalization and that this process occurred before hyperphosphatemia [76]. However, the
discovery of the FGF23/Klotho system has improved our understanding of phosphorus
disorders. A high phosphorus diet and high extracellular phosphorus levels increase serum
levels of FGF23 early in kidney disease before there are changes in serum phosphorus
and PTH [77–79]. However, FGF23 is probably not a reliable biomarker for phosphorus
loads because PTH, calcitriol, calcium [80–82], erythropoietin (EPO), hypoxia-inducible
factors (HIFs), various inflammatory stimuli, and kidney clearance are also involved in
FGF23 regulation [83,84]. Early in the sequelae of kidney injury, Klotho expression is down-
regulated [85]. Klotho deficiency upregulates Na+-dependent phosphorus transporter 2a
(NaPi-2a) and NaPi-2c expressions in the kidney and upregulates NaPi-2b in the intestines,
all of which may initiate phosphorus loading in kidney insufficiency [20]. Interestingly, it
has been suggested that phosphaturia decreases Klotho expression through the activation of
the Wnt/β-catenin pathway [86]. Thus, the urine phosphorus creatinine ratio or a 24-hour
phosphorus measurement may be better choices for predicting phosphorus loads. However,
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24-h urine phosphorus measuring, or 24-h urine phosphorus-to-creatinine ratios, are highly
variable in CKD patients, even those with tightly controlled dietary intakes [87] (Figure 6).
Using daily intake minus fecal and urinary outputs to calculate phosphorus retention is an
accurate method if bone and tissue are in metabolic balance. However, this procedure is
too complicated to be widely applied in clinical practice. Additionally, 50–80% of the CKD
population have comorbid bone disorders, meaning this approach could not be applied
to most CKD patients [88–90]. Thus, optimizing current indicators or testing multiple
potential indicators of phosphorus overload may be a good future direction. Our under-
standing of the role of serum phosphorus could be improved. Assessment of phosphorus
overload based on a single serum phosphorus level should be avoided since there are not
only circadian changes in serum phosphorus levels but also changes based on diet, dialysis,
and drugs [74]. This also partially explains the different nadirs of serum phosphorus found
in relation to mortality [91,92]. Fasting serum phosphorus for ≥12 h excludes the “noise”
of dietary intake and may be a better choice, as it has been demonstrated to be associ-
ated with increased mortality greater than measuring <12 h serum phosphorus levels [93].
Chronically elevated serum phosphorus levels, even in the normal range, are likely an
expression of a prolonged exposure to phosphorus overload. If serum phosphorus was
regularly followed in hemodialysis patients, the one-year serum phosphorus achievement
rate (defined as the number of tests within the target range [2.5–4.5 mg/dL] divided by
the total number of tests given throughout a year) may be a better indicator than one-time
phosphorus or averaged phosphorus levels [94]. Keeping the one-year achievement rate
of serum phosphorus higher than 50% provides significant clinical benefits in reducing
cardiovascular mortality [94].
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7. The Path Forward

Evidence related to early control phosphorus overload is limited since we have histori-
cally focused on treating hyperphosphatemia. Controlling potential phosphorus overloads
needs to be a high priority, especially among patients who are not prone to hyperphos-
phatemia. A few interventions, including dietary phosphorus restriction and phosphorus-
binder therapy, have been tested in CKD stage 3/4 patients with normophosphatemia.
Studies on diet control showed that low phosphorus diets were associated with higher
serum 1,25D levels and lower serum Pi and FGF23 values, which slowed the progression of
CKD [95–97]. RCTs on phosphorus load management with phosphorus binders in CKD pa-
tients have yielded conflicting results in terms of the long-term benefits, however [98–100].
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These indicate that the use of unreliable markers of phosphorus overload may preclude
any definite conclusions [101]. Therefore, by analyzing the regulation of phosphorus
metabolism networks and clarifying the compensatory mechanism and underlying causes
of phosphorus overload under different conditions, we can control phosphorus overload
in a targeted manner. We have also demonstrated that, in hemodialysis patients, the bone
disease still contributes the most to phosphorus burdens, followed by dietary factors [94],
suggesting that actions may be taken on the basis of bone disease markers. However, in
hemodialysis (HD) patients with substantial residual kidney function (RKF), RKF was
the only independent predictor of serum phosphorus levels [102]. This emphasizes the
importance of protecting RKF in incident hemodialysis patients, which can be performed
in several ways, such as starting with incremental dialysis [103–106]. Finally, we speculate
that every person may have his/her own ideal level of serum phosphorus, but whether the
percentage of increase from the basal levels can guide phosphorus overload control and
improve prognoses needs further validation.

8. Conclusions

Phosphorus metabolism involves at least three main organs: the intestine, kidneys,
and bone. The endocrine regulation of Pi metabolism is completed via the highly integrated
actions of several hormones, including FGF 23, PTH, Klotho, and 1,25D. Our previous study
showed that a key regulatory factor of serum phosphorus varied under different phospho-
rus diets. Our study of dietary phosphorus interventions demonstrated that the kidney
needs a long time to excrete dietary phosphorus. Combined with findings on phosphorus
kinetics during hemodialysis, our results support the notion that a physiologic phosphorus
pool exists and acts as a buffer for the storage of excess body phosphorus. The pool allows
for the release of phosphorus into extracellular space and the maintaining of a stable serum
phosphorus. The physiological phosphorus pool may not be associated with ill effects,
since final phosphorus balances will be reached via kidney excretion under the control of
the phosphorus regulatory network. However, phosphorus overload can lead to serious
side effects, including the formation of pathological phosphorus pools. Potential causes of
phosphorus overload include high-phosphorus diets, renal function decline, osteoporosis,
insufficient dialysis, and prescription medications. Serum phosphorus remains the most
commonly used indicator of phosphorus overload. We recommend against the use of
a single phosphorus measurement, but chronically elevated serum phosphorus trends
and/or the rate of in-target measurements over time can be used as markers of phosphorus
overload in HD patients. However, by clarifying the details of the metabolic phosphorus
regulatory network and the reasons for the phosphorus overload under different conditions,
we can control phosphorus overload in a targeted manner. Measuring and targeting serum
phosphorus levels on an individual basis may also be an important future direction.
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