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Abstract: The use of chemotherapeutic agents is of paramount importance when treating colorectal
cancer (CRC). Unfortunately, one of the most frequent chemotherapy (CTx) side effects is intestinal
mucositis (IM), which may present with several clinical symptoms such as nausea, bloating, vomiting,
pain, and diarrhea and even can result in life-threatening complications. There is a focused scientific
effort towards developing new therapies to prevent and treat IM. The aim of this study was to
assess the outcomes of probiotic supplementation on CTx-induced IM in a CRC liver metastasis rat
model. Six-week-old male Wistar rats received either a multispecies probiotic or placebo mixture. On
the 28th experiment day, rats received FOLFOX CTx, and afterwards, the severity of diarrhea was
evaluated twice daily. Stool samples were collected for further microbiome analysis. Additionally,
immunohistochemical stainings of ileum and colon samples with were performed with MPO, Ki67,
and Caspase-3 antibodies. Probiotic supplementation alleviates the severity and length of CTx-
induced diarrhea. Additionally, probiotics significantly reduced FOLFOX-induced weight and blood
albumin loss. Furthermore, probiotic supplementation mitigated CTx-induced histological changes
in the gut and promoted intestinal cell regeneration. This study shows that multispecies probiotic
supplementation attenuates FOLFOX-induced IM symptoms by inhibiting apoptosis and promoting
intestinal cell proliferation.

Keywords: probiotics; chemotherapy; FOLFOX; mucositis; colorectal cancer; liver metastasis

1. Introduction

Colorectal cancer (CRC) is a major oncologic burden responsible for around 10% of
new cancer cases and deaths worldwide [1]. As in many types of cancers, the use of
chemotherapeutic agents is of paramount importance when treating CRC [2]. Unfortunately,
one of the most frequent chemotherapy (CTx) side effects is intestinal mucositis (IM). It
can affect 40 to 100% of cancer patients depending on the drug and its dosing [3,4]. IM
develops due to the direct cytotoxicity inflicted by the antineoplastic drugs on the intestine
epithelial cells, and this further promotes inflammation and indirect injury such as villus
blunting or loss of the mucus layer [5,6]. This intestinal injury may present with various
clinical symptoms such as nausea, vomiting, bloating, pain, and diarrhea and even can lead
to life-threatening complications [4,7]. Furthermore, severe IM may result in suboptimal
cancer treatment as the CTx doses need to be reduced or postponed.

There is a focused scientific effort towards developing new therapies to prevent and
treat IM [6]. One of the main IM pathophysiological mechanisms is the gut microflora
balance alteration; thus, probiotics and antibiotics are being tested to prevent the formation
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of a harmful environment within the intestine [8,9]. Probiotics are described as “non-
pathogenic live microorganisms that, when administered in adequate amounts, confer
a health benefit on the host” [10]. They have a very wide variety of actions on the host,
such as direct interaction with pathogens, promotion of intestinal barrier function, or
immunomodulation [11]. As pointed out by a recent review, several studies report positive
results of different probiotic strains in treating IM; however, further research for novel
probiotic strains and their action mechanisms is essential [8].

The aim of this study was to assess the outcomes of a novel multispecies probiotic
combination on CTx-induced IM in a CRC liver metastasis rat model.

2. Materials and Methods
2.1. Animals

In this experimental model, we used six-week-old Wistar rats (Janvier Labs, Le Genest-
Saint-Isle, France) ranging in weight from 200 to 280 g at the start of the protocol. According
to the experimental groups, rats were housed two to four per enclosure, having ad libitum
pelleted chow and tap water. The experimental protocol was approved by the Austrian
Committee for Animal Trials (Approval number: BMWF-66.010/0158-V/3b/2019) and
performed according to the 3R guidelines.

2.2. Experiment Design

Overall, 90 rats were separated into six different study groups (Table 1). The detailed
study design is presented in Figure 1. The whole study protocol lasted for 34 days. For the
first two weeks, rats received daily gavage with probiotics or placebo mixture. On day 14,
rats underwent CRC liver metastasis implantation that used a rat colorectal cancer cell line
(CC531) or sham surgery. On days 28 and 29, CTx drugs or placebo were administered.
After administering the first dose of CTx, diarrhea assessment started. On day 34, after
performing necessary imaging, modalities rats were culled, and samples were collected.

Table 1. Study groups.

CONTROL
Tumor (−)/CTx (−)

Non FOLFOX
Tumor (+)/CTx (−)

FOLFOX
Tumor (+)/CTx (+)

Gavage Placebo Probiotics Placebo Probiotics Placebo Probiotics

Start (n) 10 10 15 15 20 20

End (n) 10 10 15 15 20 19 *
* Premature death on day 34 due to CTx complications. CTx, chemotherapy.

2.3. Probiotics

A multispecies probiotic mixture (provided by Institut Allergosan, Graz, Austria)
composed of eight bacterial strains was used. Lactobacillus casei W56; Lactobacillus acidophilus
W37; Lactobacillus brevis W63; Lactococcus lactis W58; Bifidobacterium lactis W52; Lactococcus
lactis W19; Lactobacillus salivarius W24; and Bifidobacterium bifidum W23 were combined
with 1 g of matrix (maize starch, maltodextrins, vegetable protein, potassium chloride,
magnesium sulphate, amylases, and manganese sulphate). The placebo contained only
the matrix. Either the probiotic or placebo powder was dissolved freshly every morning
using tap water approximately 15 min before gavaging. Each rat received 1 mL of probiotic
(1.2 × 109 CFU/mL) or placebo suspension.
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Figure 1. Study design.

2.4. Chemotherapy

In this study, we used the FOLFOX regimen, as it is used for colorectal cancer metas-
tasis treatment and has a proven capability to induce gastrointestinal damage [12–14].
The doses were adjusted using a previously described methodology according to the an-
imals’ skin surfaces [15]. All CTx drugs were injected intraperitoneally under general
2% isoflurane anesthesia. The CTx administration protocol is presented in Figure 2.
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2.5. Diarrhea Evaluation

All animals were examined twice daily after the first injection of the chemotherapeuti-
cal agents. Diarrhea was graded using a published scale: grade 0, no diarrhea; grade 1, mild
diarrhea (staining of anus); grade 2, moderate diarrhea (staining of the lower abdomen)
and; grade 3, severe diarrhea (staining over legs and higher abdomen or continual oozing)
(Figure 3) [16].
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and higher abdomen or continual oozing).

2.6. Blood Tests

The first three samples were acquired by drawing blood from the subclavian vein. The
last blood sample was drawn on day 34 from the inferior vena cava just before final organ
sample collection. Complete blood count was calculated using a V-Sight hematology ana-
lyzer (A. Menarini Pharma GmbH, Vienna, Austria). Biochemical blood measurements were
performed with a Spotchem EZ (A. Menarini Pharma GmbH, Vienna, Austria) analyzer.

2.7. Immunohistochemical Staining

Organ samples were fixed in 4% buffered formaldehyde solution, rinsed with distilled
water, and dehydrated with ascending ethanol series. After incubating at 60 ◦C, samples
were embedded in paraffin. Using a rotary microtome, 2 µm thick tissue sections were cut.

Slides were stained using the following primary antibodies: Anti-MPO (Dako, Via
Real Carpinteria, CA, USA, A0398, dilution 1:800), Anti-Ki67 (Abcam, Cambridge, UK;
ab16777, dilution 1:200), and Anti-Caspase-3 (Abcam, Cambridge, UK; ab4051, dilution
1:200). The UltraVision LP Detection System: HRP Polymer (Thermo Fisher Scientific,
Waltham, MA, USA) and DAB Chromogen (Dako, Via Real Carpinteria, CA, USA) were
used to visualize the target antigen. Sections were counterstained with hematoxylin.

All stained slides were scanned and analyzed using the open-source QuPath software
(v0.3.0) [17].

2.8. Intestine Crypt and Villi Length Analysis

Crypt and villi length in both ileum and colon were measured according to a publica-
tion by Adelman et al. [18]. Five random crypt and villi lengths of the ileum were measured,
and a villi/crypt length ratio was calculated for further data analysis. The median value of
five random crypt lengths of the colon for each rat was used.
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2.9. Microbiome Analysis

DNA isolation from fecal samples was performed using the Magna Pure LC DNA
III Isolation Kit (Bacteria, Fungi) (Roche, Mannheim, Germany) according to previously
reported protocols [19,20]. A stool pellet was mixed with 500 µL phosphate-buffered saline
(PBS) and 250 µL bacterial lysis buffer. Afterward, the sample was homogenized using
the MagNA Lyser instrument (Roche Life Science. Mannheim, Germany) at 6500 rpm
for two 30 s cycles. Enzymatic lysis was performed using 25 µL lysozyme (100 ng/mL,
37 ◦C for 30 min) and 43.4 µL proteinase K (20 mg/mL, 65 ◦C for 1 h). After the samples
were heat inactivated at 95 ◦C for 10 min, DNA was extracted using a MagnaPure LC
instrument (Roche, Mannheim, Germany) according to the manufacturer’s instructions.
Extracted DNA was eluted in 100 µL elution buffer and stored at −20 ◦C until analysis.
Then, 2 µL of total DNA was used in a 25 µL PCR reaction in triplicates using a FastStart
High Fidelity PCR system (Sigma, Darmstadt, Germany) according to the manufacturer’s
instructions and the target specific primers 515F (5′-GTGYCAGCMGCCGCGGTAA-3′)
and 806R (5′GGACTACNVGGGTWTCTAAT-3′) for 30 cycles. Triplicates were pooled,
normalized, indexed, and purified according to a published protocol [19]. The final pool
was sequenced on an Illumina MiSeq desktop sequencer at 9 pM and v 3 600 cycles chem-
istry. FASTQ raw reads were processed using QIIME2 tools implemented on a local galaxy
instance (https://galaxy.medunigraz.at). Taxonomic assignment was carried out using a
naïve Bayesian classifier trained on the SILVA V132 database. Features were summarized
on genus level for further analysis. Using the web-based analysis platform “Calypso”,
group-specific general linear models identified genera that significantly changed during the
course of the study. For the selected genera, differences between day 28 and day 34 were cal-
culated and entered into a Spearman correlation analysis with diarrhea characteristics and
albumin and weight changes to assess the associations between microbiome changes and
the effects of the probiotics. p-values were adjusted with Benjamini–Hochberg correction
and visualized using the R package “corrplot” (Version 0.92).

2.10. Statistical Analysis

Statistical analysis was executed using SPSS 23.0 (IBM Corp., Armonk, New York, NY,
USA) and GraphPad Prism 9 (GraphPad Software, La Jolla, CA, USA). Data distribution
was evaluated with the Shapiro–Wilk test. Normally distributed data were further analyzed
using t-test and one-way ANOVA with Tukey’s post hoc test. Non normally distributed
data were investigated with Mann–Whitney U and Kruskal–Wallis with Dunn’s post hoc
tests. A p-value of 0.05 or lower was considered significant. Data is provided as median
and quartiles (Q1; Q3).

3. Results
3.1. Response to Chemotherapy

During the whole study, we had a single death due to CTx toxicity (Table 1). The ad-
ministration of FOLFOX CTx induced severe leukopenia for both CTx-receiving rat groups.
No probiotic influence was observed on the severity of FOLFOX-induced leukopenia.

3.2. Diarrhea Assessment

A total of 15 animals (75%) receiving placebo and 19 animals (100%) receiving pro-
biotics developed some degree of diarrhea (Figure 4). The peak incidence of diarrhea
was observed 96 h after the first CTx injection in both groups. At the peak incidence,
seven animals (35%) receiving placebo and four (21%) receiving probiotics developed se-
vere diarrhea. Furthermore, severe diarrhea tended to resolve quicker for animals receiving
probiotic supplementation (24 h (12.0; 30.0) vs. 12 h (12.0; 12.0); p = 0.026).

https://galaxy.medunigraz.at
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3.3. Weight Change

At the start of the study, rat weight increased evenly in all groups. This tendency
continued for rats not receiving CTx, yet rats that received FOLFOX significantly lost
weight (Figure 5A). Probiotic supplementation managed to significantly limit weight loss
caused by CTx (83.97% (79.65; 86.61) vs. 86.76% (84.29; 88.46); p = 0.016) (Figure 5B).
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3.4. Blood Albumin Levels

Rat blood albumin levels were consistent across all groups at the start of the study
(Figure 6A). FOLFOX CTx significantly reduced blood albumin levels in both the placebo
and probiotic groups. We further analyzed blood albumin level changes between protocol
days 28 and 34. Figure 6B shows that probiotic supplementation managed to significantly
reduce CTx-induced blood albumin loss (80.35% (68.03; 84.88) vs. 83.60% (80.28; 89.48);
p = 0.021).
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3.5. Histopathological Examination

Analysis of rat terminal ileum villi length and crypt depth ratio showed that probiotics
helped to alleviate CTx-induced intestinal damage (1.59 (1.44; 1.76) vs. 1.93 (1.73; 2.09);
p < 0.001)) (Figure 7A). A similar tendency was seen with the rat colon crypt depth analysis
(366.00 µm (331.70; 402.20) vs. 309.80 µm (286.20; 345.10; p < 0.001)) (Figure 7B). The
percentage of MPO-positive cells was significantly lower in both FOLFOX-receiving groups
in comparison to rats that did not receive CTx, and this was observed both in colon and
ileum tissues. There were no differences between both CTx groups (Figure 7C,D). Probiotic
supplementation greatly increased intestinal cell proliferation, and the differences between
both CTx groups were statistically significant (Figure 7E,F). Furthermore, it seems that
probiotic supplementation also managed to have a protective effect from CTx-induced
apoptosis on ileum cells (9.57% (7.98; 11.07) vs. 7.58% (6.50; 9.30); p = 0.001) (Figure 7G).
However, the apoptosis index in the colon samples was similar across all experiment groups
(Figure 7H).

3.6. Associations between Adverse Effects and the Microbiome

Correlation analysis results are summarized and presented in Figure 8. The length of
diarrhea shows a strong correlation with an increase in Bacteroides in stool samples during
CTx (rs = 0.76; padj = 0.002). Additionally, our correlation analysis shows that the higher
abundance of Ruminococcaceae NK4A214-group bacteria may further promote albumin loss
during CTx (rs =−0.68; padj = 0.015). Further microbiome representation data are presented
in the Supplementary File.
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4. Discussion

One of the most common CTx side effects is IM, and its occurrence can affect 40 to 100%
of cancer patients depending on the CTx regimen used [3,4]. IM interferes with optimal
cancer treatment as the CTx doses need to be reduced or postponed; furthermore, it may
even cause life-threatening complications [4,7]. Pathophysiology of IM is very complex but
mainly involves five phases: (1) direct DNA damage and tissue cytotoxicity; (2) primary
damage response, leading to inflammation and apoptosis; (3) signal amplification, resulting
in exacerbated tissue injury; (4) inflammation and ulceration, leading to villus atrophy
and barrier disruption; and (5) healing, with epithelial proliferation and intestine barrier
regeneration [5,6,21]. Although this is a great IM development summary, various CTx
regimes act differently on the gut barrier. Currently, only few studies report the impact of
FOLFOX CTx on the development of IM and subsequent diarrhea [13,22,23]. Therefore, the
aim of this study was to assess the outcomes of probiotic supplementation on FOLFOX
CTx-induced IM.

Our study shows that a previously never-tested multispecies probiotic combination
alleviates the severity and length of CTx-induced diarrhea. Additionally, probiotics signifi-
cantly reduced FOLFOX-induced weight and blood albumin loss. Furthermore, probiotic
supplementation mitigated CTx-induced histological changes in the gut and promoted
intestinal cell regeneration. Lastly, we managed to identify few bacteria groups that may
play a role in the pathogenesis of severe diarrhea development and CTx-induced blood
albumin level loss.

Similarly, FOLFOX CTx-induced diarrhea attenuation results were reported by Chang et al. [22].
After administering increasing doses of Lactobacillus casei variety rhamnosus, authors observed lower
diarrhea severity scores, with the peak being reached 6 days after the first chemotherapeutical agent
injection. The peak diarrhea incidence differs slightly from the one we report in our study (96 h), but
this may be mainly explained by the different FOLFOX CTx injection timing and dosage.

One of the most common CTx side effects is weight loss, and on some occasions, it can
be associated with worse patient survival [24]. Similarly, to our study, several other studies
showed that probiotics containing Lactobacillus and Bifidobacterium manage to decrease
CTx-induced weight loss [25,26]. Additionally, a study by Bowen et al. reported that
multispecies probiotic VSL#3 can prevent CTx-caused weight loss. Probiotics preserve
weight by preserving the intestinal integrity and alleviating CTx-induced diarrhea [27].
Additionally, the development of hypoalbuminemia has been associated with increased
rates of chemotherapy failure and mortality [28,29]. To our knowledge, our study is the
first to show that multispecies probiotic supplementation can help to preserve albumin
levels in a cancer model.

Probiotic safety and their interaction with the CTx itself for immunocompromised
cancer patients is a very important and often debated issue [30–32]. In this study, we did not
observe an increase in severe complications or premature deaths attributed to probiotic use.
Moreover, our other study analyzing the impact of probiotics on tumor growth revealed
that the used probiotic supplementation does not decrease the efficiency of FOLFOX CTx
on CRC liver metastasis [33].

The histopathological investigation of ileum and colon tissue sheds some light on the
underlying probiotic action mechanisms. Probiotic supplementation managed to alleviate
CTx damage to the intestine, and this was indicated by the preserved ileum villi/crypt
length ratio and crypt depth in the colon. This finding was in line with the results reported
by Chang et al. in a CRC model; however, other studies report inconsistent results [22,25,34].
The analysis of anti-MPO-positive cells revealed an unexpected finding. The percentage of
anti-MPO-positive cells was significantly lower in both chemotherapy groups both in the
ileum and colon. This result is a bit counterintuitive, as usually, various inflammatory cells
play an important role in the development of IM [6]. This result may be mostly influenced
by the fact that the samples were gathered 6 days after initial CTx administration, when the
course of IM starts to shift towards regeneration, especially in rats [5]. Furthermore, rats
were in severe leukopenia at that time, theoretically leaving fewer neutrophils for tissue
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infiltration. A critical event for IM development is increased intestinal cell apoptosis, which
was measured using Caspase-3 staining [5]. Interestingly, our results show that probiotics
managed to decrease apoptosis in the ileum; however, no positive effects were observed in
the colon. This may be mostly explained by the 10-times-lower large intestine apoptotic
activity and thus its lower susceptibility to CTx-induced damage [35]. Moreover, probiotic
supplementation significantly increased intestinal cell regeneration in both the colon and
ileum. Various other probiotic strains have previously shown intestinal-healing effects in
CTx-induced IM models [22,27].

Administration of CTx is known to dramatically alter the gut microbiome [36]. This
includes the overall decrease in diversity and a relative increase of proteobacteria [37–39].
Our performed microbiome correlation analysis revealed that a relative increase of Bacteroides
group bacteria was associated with increased diarrhea length. Results in the literature are
quite inconsistent, as some studies report an increase and some a decrease of Bacteroides
abundance when administering CTx [37,38]. Furthermore, although Ruminococcaceae
NK4A214-group bacteria are generally known for their short-chain fatty acid production
and anti-inflammatory effects, our analysis indicated contradictive results, showing that
the higher abundance of Ruminococcaceae NK4A214-group bacteria may further promote
albumin loss during CTx [40–42]. We could not identify other articles supporting this result;
thus, it should be used cautiously and re-evaluated in a further study.

One potential drawback of this study is the adoption of an animal model. Although
successful probiotic effect translation from rodent to human has been published, we should
note that the multispecies probiotics used in our study may have a different interaction
with the human gut microbiome, resulting in altered outcomes [43].

5. Conclusions

Our study indicates that multispecies probiotic supplementation attenuates FOLFOX-
induced IM symptoms in an experimental rat colorectal cancer liver metastasis model. As
shown by the immunohistochemical analysis, the used probiotics act by inhibiting apoptosis
and promoting intestinal cell proliferation. Further research into more in-depth molecular
mechanisms is warranted, and our study group is conducting an experimental study that
will focus more on these multispecies-probiotic-induced gut permeability changes.
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Genus level microbiome composition.
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