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Abstract: Previous data suggested that anti-obesity interventions, such as percutaneous electric
neurostimulation and probiotics, could reduce body weight and cardiovascular (CV) risk factors
by attenuation of microbiota alterations. However, potential mechanisms of action have not been
unveiled, and the production of short-chain fatty acids (SCFAs) might be involved in these responses.
This pilot study included two groups of class-I obese patients (N = 10, each) who underwent
anti-obesity therapy by percutaneous electric neurostimulations (PENS) and a hypocaloric diet
(Diet), with/without the administration of the multi-strain probiotic (Lactobacillus plantarum LP115,
Lactobacillus acidophilus LA14, and Bifidobacterium breve B3), for ten weeks. Fecal samples were used
for SCFA quantification (by HPLC-MS) in relation to microbiota and anthropometric and clinical
variables. In these patients, we previously described a further reduction in obesity and CV risk
factors (hyperglycemia, dyslipemia) after PENS-Diet+Prob compared to PENS-Diet alone. Herein,
we observed that the administration of probiotics decreased fecal acetate concentrations, and this
effect may be linked to the enrichment of Prevotella, Bifidobacterium spp., and Akkermansia muciniphila.
Additionally, fecal acetate, propionate, and butyrate are associated with each other, suggesting an
additional benefit in colonic absorption. In conclusion, probiotics could help anti-obesity interventions
by promoting weight loss and reducing CV risk factors. Likely, modification of microbiota and related
SCFA, such as acetate, could improve environmental conditions and permeability in the gut.

Keywords: probiotics; acetate; percutaneous electrical neurostimulation

1. Introduction

In fifty years, obesity has increased from 4.8% to 12.9% of the adult population, and
from 0.8% to 6.7% in children and adolescents [1–3]. Obesity is a complex metabolic
pathology caused by several genetic and nongenetic agents, such as environmental factors.
It manifests as changes in body appearance but also correlates with glycemic and lipidemic
alterations, oxidative stress, chronic inflammation, and increased risk of lethal diseases [3].
In fact, obesity is a major risk factor for type-2 diabetes mellitus (T2DM) and cardiovascular
diseases (CVD) [4,5], and the interrelationship between these pathologies may suggest the
participation of common mechanisms. Several studies that involved animals and humans
have recently demonstrated a striking connection between the development of CVD and
an imbalance in the gut microbiota composition (dysbiosis) along with the presence of their
derived metabolites [6,7]. Up to 100 trillion symbiotic microbes live in the gut. Healthy
microbiota in humans is highly diverse and mainly composed of Firmicutes, Bacteroides,
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Proteus, Actinomycetes, Fusobacteria, and Verrucomicrobia [8]. Under obesity, bacterial
microbiota may suffer alterations in taxonomic diversity and composition, as well as in gut
distribution. Notably, a metagenomic study using 16S rRNA gene sequencing revealed
microbiome alterations between obese and lean mice [9,10]. Microbiota modifications
were linked with two dominant bacterial phyla, Firmicutes and Bacteroidetes. The ratio
of Firmicutes/Bacteroidetes has been proposed as a marker for obesity. However, this
ratio has been found variable along animal and human studies [11]. Interestingly, these
bacteria produce different substrates and metabolites to promote or inhibit the growth
of different microorganisms. Additionally, these products can be assimilated into the
bloodstream along the intestine leading to different effects on the organism [12,13]. Active
elements include short-chain fatty acids (SCFA), vitamins, amino-acids and antioxidant,
anti-inflammatory, and analgesic products, as well as potentially harmful agents such as
carcinogens and immunotoxins [14,15].

Short-chain fatty acids (SCFAs) are residual metabolites excreted by the gut micro-
biota after the degradation of dietary fiber and indigestible carbohydrates. Commensal
bacteria such as Bifidobacterium, Bacteroides, Enterobacter, Faecalibacterium, and Roseburia
species may be able to ferment these fibers and carbohydrates into SCFA. SCFAs are fatty
acids composed of two to six carbons: hexanoic, pentanoic, and more abundantly, acetic,
propionic, and butyric acid. They are not only required for the nutritional demands of
microorganisms, but also impact host immunity and metabolism as well as regulating local
atmosphere conditions and growth of other bacteria [16]. SCFA have been related to bene-
ficial cardiometabolic outcomes in adiposity, glycemia, insulin sensitivity, inflammation,
and dyslipemia [16–18]. However, after obesity, the levels of fecal and plasma SCFA in
clinical studies have been controversially described [19–21]. Nevertheless, SCFA-producing
microbiota might account as a promising target to control metabolic alterations under
obesity. Some multi-strain probiotic made of Lactobacillus and/or Bifidobacterium have
enhanced obesity and associated CV risk factors in clinical trials and animal models [22–27].
Other approaches like the percutaneous electro-neurostimulation of the T6 dermatome
(PENS) led to weight loss by production of a somato-autonomic reflex that slow stomach
emptying and induce early satiety [28]. This intervention can increase patient adherence to
diet by regulation of growth hormones, ghrelin, and IGF-1 [28,29]. In fact, in a previous
report [30], we described that addition of probiotics to PENS under hypocaloric diet further
improved weight loss and the glycemic and lipid profile in class-I obese patients, in parallel
to an enrichment of specific bacteria. However, potential mechanisms of these anti-obesity
interventions have not been elucidated. Herein, our aim was to seek for a metabolic
link between those microbiota alterations and the beneficial outcomes produced by the
probiotic administration.

2. Materials and Methods
2.1. The Pilot Study

As described in Lorenzo et al. [26], this pilot study (NCT03872245) was performed in
the Obesity Unit of the Garcilaso Clinic in Madrid (Spain), including two groups of class-I
obese patients (N = 10, each) with a female/male ratio of 2.33 in both cases, who underwent
anti-obesity therapy by percutaneous electric neurostimulations (PENS) and hypocaloric
diet (Diet), with/without administration of the multi-strain probiotic (Adomelle®; Bro-
matech, Milan, Italy). Exclusion criteria were (a) untreated endocrine diseases causing
obesity, (b) previous treatment with hormones, prebiotics, probiotics, or with nutritional
supplements, (c) diagnosis of previous CVD or cancer, or (d) portable electrical devices.

2.2. PENS, Hypocaloric Diet, and Probiotic Administration

Patients who previously were unsuccessfully treated only with the hypocaloric diet
were randomly assigned to the PENS-Diet or PENS-Diet+Prob for ten consecutive weeks.
The PENS of dermatome T6 was performed by using the Urgent PC 200 Neuromodulation
System®(Uroplasty, Minnetonka, MN, USA), as previously described [30]. Patients were
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placed in a supine position and PENS was delivered by a needle electrode inserted in the
left upper quadrant along the medio-clavicular line at two centimeters below the ribcage
and at 0.5–1 cm of depth. The PENS was undertaken at a frequency of 20 Hz at the highest
amplify (0–20 mA) without causing any pain. The participants underwent one 30-min
session every week for ten consecutive weeks. In addition, a 1200 Kcal/day diet was
uni-formly prescribed during PENS interventions in both groups of patients, as previously
described [30]. The diet followed a Mediterranean style (carbohydrates 51%, proteins 23%
and fat 26%) with a high intake of fruit and vegetables, a moderate intake of meats, and
olive oil as the main source of fat. A record of food intake was applied along the study.
Also, all patients followed an exercise activity of 1h/day brisk walking. The multi-strain
probiotic consisted of a mixture of Lactobacillus plantarum LP115 (<1 × 109 colony forming
units, CFU), Lactobacillus acidophilus LA14 (1 × 109 CFU), and Bifidobacterium breve B3
(<1 × 109 CFU). It was given (2 tablets/day) with water after meals, without altering the
amount of food intake. Additionally, all patients followed an exercise activity of 1 h/day
brisk walking. The work was carried out in accordance with The Code of Ethics of the
World Medical Association (Declaration of Helsinki). The Ethical Committee of Clinical
Research (Medicine, Esthetic, and Longevity Foundation) approved this investigation
(ref.: Garcilas-19-3; Feb 2019).

2.3. Clinical and Microbiota Variables

Clinical variables such as BMI (kg/m2), weight loss (WL), the percentage of total
weight lost (%TWL), the percentage of excess BMI lost (%EBMIL), systolic (SBP) and
diastolic (DBP) blood pressure, fasting glucose, glycated hemoglobin (HbA1c), and the
lipid profile [triglycerides (TG), total cholesterol, LDL-cholesterol (LDLc), HDL-cholesterol
(HDLc)] were measured at the Clinical Analytical Department of the Hospital Fundación
Jiménez Díaz. Additionally, fecal samples were isolated and frozen (−80 ◦C) before and
after the PENS-Diet or PENS-Diet+Prob treatments to analyze the intestinal microbiota [30]
and the composition of short-chain fatty acids (SCFAs).

2.4. Fecal SCFA Quantification

Fecal samples were thawed and derivatized with 3-nitrophenylhydrazine (3-NPH), as
described by Han et al. [31]. The derivatization process started by mixing 50 µL of fecal
matter with 50 µL of AcN (50%) in deionized water. The mixture was then centrifuged for
10 min at 5000 g under 4 ◦C. Forty µL of the supernatant was mixed with 20 µL of 200 mM
3-NPH, 20 µL of 120 mM 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), and
6% pyridine (Sigma-Aldrich, Burlington, USA). They were incubated for 30 min at 40 ◦C.
Finally, 920 µL of AcN (10%) in deionized water was added into each tube and samples
were frozen at −30 ◦C until HPLC-MS analysis. The standard samples of SCFA (acetic,
propionic, and butyric acid) were prepared in a 50% AcN:H2O solution and derivatization
was carried out in the same manner as fecal samples.

The analysis for acetate, propionate, and butyrate was performed by LC-MS/MS at the
mass spectrometry facility of Complutense University (Madrid). The quantitative analysis
by MRM used an LC-ESI-QQQ 8030 Shimadzu mass spectrometer and a Phenomenex
Gemini 5 µm C18 110 A 150 × 2 mm column (Agilent, Santa Clara, USA). A phase gradient
was applied to a 20 µL injection volume: phase A (H2O + 0.01% formic acid) and phase B
(AcN + 0.01% formic acid). The flow rate of the mobile phase was stabilized at 0.6 mL/min,
and the total elution time of the compounds was set at 11 min. Firstly, phase B was applied
at 20% for 2 min, after which phase B was set up to 40% for 5 additional minutes. Then,
phase B was raised from 40% to 100% (from minutes 8 to 11) and later, it returned to the
initial conditions (Supplementary Table S1A). Mass spectra of the parental and fragmented
ions were used for quality and quantity determination of SCFAs (Supplementary Table S1B).
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2.5. Statistical Analysis

The statistical analyses were performed by R 4.1.1 software. The Shapiro–Wilk test
was used to analyze the normality of variables. Then, non-parametric tests were used for all
variables. Within each group (PENS-Diet or PENS-Diet+Prob), the Wilcoxon signed-rank
test was used to compare median values of metabolite concentrations before and after
treatment. The Mann–Whitney test was performed to compare the differential values of
each metabolite between the PENS-Diet and PENS-Diet+Prob treatments. Spearman’s
correlation was used to analyze the relationship between SCFA concentration and clinical
and microbiota variables. Finally, a quantile regression analysis was performed for variables
showing greater association in Spearman’s correlation.

3. Results
3.1. Probiotics Administration Further Reduced Obesity and CV Risk Factors

The characterization of this pilot study was previously published by Lorenzo et al. [30].
Briefly, at baseline, there were no significant differences in BMI, age, and sex between the
PENS-Diet and PENS-Diet+Prob groups. After treatments, PENS-Diet induced a significant
reduction in body weight, systolic and diastolic blood pressure, fasting glucose, plasma
triglycerides, and total cholesterol (Table 1a). However, PENS-Diet+Prob triggered a further
improvement in weight loss, %TWL, and %EBMIL, and a reduction in plasma HbA1c and
triglycerides, in addition to elevated HDLc levels (Table 1a). Additionally, there was a
significant association between probiotic administration and the differences between these
factors (not shown). Thus, the addition of probiotics to the PENS-Diet promoted a higher
enhancement against obesity and cardiovascular risk factors [30]. However, the probiotics-
derived mechanisms of action are not fully known, and modification of microbiota and
their metabolites could be involved.

Table 1. Clinical and microbiota outcomes in obese patients after PENS-Diet and PENS-Diet+Prob
interventions.

(a)

PENS-Diet PENS-Diet+Prob

WL (kg) 11.1 ± 4.4 ** 16.2 ± 4.6 ** #
%TWL 12.9 ± 4.5 17.5 ± 3.5 #

%EBMIL 57.0 ± 12.3 84.2 ± 29.5 #
∆ SBP (mmHg) −12.5 (22.5) * −10.0 (12.5) *
∆ DBP (mmHg) −10.0 (10.0) * −2.5 (10.0) *

∆ Fasting glucose (mg/dL) −7.0 (11.0) ** −13.0 (16.5) *
∆ HbA1c (%) −0.05 ± 0.4 −0.46 ± 0.4 * #

∆ TG (mg/dL) −8.5 (26.0) ** −47.0 (63.75) ** ##
∆ Total cholesterol (mg/dL) −9.0 ± 7.4 ** −18.5 ± 33.3

∆ LDLc (mg/dL) 0.5 (42.75) −18.0 (25.5)
∆ HDLc (mg/dL) 0.05 (6.8) 10.5 (12) ##

(b)

PENS-Diet PENS-Diet+Prob

Prevotella spp. −0.15 (1.3) 1.05 (2.6) #
Bifidobacterium spp. 0.08 ± 2.2 1.70 ± 1.4 ** #

Akkermansia muciniphila 0.20 (0.4) 1.05 (2.1) * ##
Firmicutes/Bacteroidetes −0.04 ± 0.2 −0.36 ± 0.4 * #

(a) The differences between pre- and post-treatment in weight loss (WL), percentage of total weight loss (%TWL),
percentage of the excess of body mass index loss (%EBMIL), systolic blood pressure (SBP), diastolic blood pressure
(DBP), and glycemic and lipid parameters are shown for PENS-Diet and PENS-Diet+Prob patients. (b) Microbiota
differences between pre- and post-treatments in both groups of patients. Values are shown as median (IQR) or
mean ± SD. * p < 0.05 and ** p < 0.01 post-treatment vs. pre-treatment. # p < 0.05 and ## p < 0.01 PENS-Diet+Prob
vs. PENS-Diet. Glycated hemoglobin A1c, HbA1c; triglycerides, TG; HDL—cholesterol, HDLc; LDL—cholesterol,
LDLc; systolic blood pressure, SBP; diastolic blood pressure, DBP.

3.2. Probiotics Induced Microbiota Alterations and Decreased Fecal Acetate

As described [30], the PENS-Diet+Prob intervention significantly reduced the Firmi-
cutes/Bacteroidetes ratio and enriched Prevotella spp., A. muciniphila, and Bifidobacterium spp.
compared to PENS-Diet (Table 1b). Interestingly, Bifidobacterium spp. and A. muciniphila
have been associated with improvements in gut dysbiosis, cardiometabolic markers,
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and insulin resistance by the regulation of fecal and plasma SCFA [20,32,33]. Thus, we
next quantified the levels of the most abundant fecal SCFA in our patients. In PENS-
Diet, we detected non-significant variations of SCFA between before and after treat-
ment, whereas in PENS-Diet+Prob subjects, acetate was significantly lessened (−54%,
p = 0.023) and butyrate and propionate exhibited a reduction trend (Figure 1). Additionally,
both the PENS-Diet and PENS-Diet+Prob groups exhibited significant positive correlations
between changes in SCFAs. In PENS-Diet, differential acetate significantly correlated with
propionate (Rho = 0.94, p < 0.01) (Figure 2a), while in PENS-Diet+Prob, differential acetate
was also significantly linked to butyrate (Rho = 0.89, p < 0.01) and propionate (Rho = 0.89,
p < 0.01) (Figure 2b). Thus, fecal SCFAs, particularly acetate and butyrate, may be decreased
by gut microbiota after probiotics administration. In this regard, by univariate quantile
regression, we found that in PENS-Diet, differential acetate and butyrate were significantly
associated with each other (β = 8.39, p < 0.01, and β = 0.119, p < 0.01) (Figure 3a,b), and
acetate was associated with propionate (β = 5.31, p = 0.059) (Figure 3c). In PENS-Diet+Prob,
differential acetate was associated with butyrate (β = 2.27, p = 0.078) (Figure 3a,b) and was
propionate in both ways (β = 2.63, p < 0.01 and β = 0.28, p < 0.01) (Figure 3c,d).
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Figure 1. Fecal levels of short-chain fatty acids after PENS-Diet and PENS-Diet+Prob. (a) Total levels
of main SCFAs, including acetate, propionate, and butyrate, were quantified by HPLC-MS after ten
weeks of PENS-Diet and PENS-Diet+Prob. Individual (b) acetate, (c) propionate, and (d) butyrate
concentrations are also shown. * p < 0.05 post-treatment vs. pre-treatment.
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(b) PENS-Diet+Prob. The color scale indicated the lower (−1; red) and the higher (1; blue) Rho values.
* p < 0.05 and ** p < 0.01.
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Figure 3. Associations among SCFAs in obese patients after PENS-Diet and PENS-Diet+Prob. The
significant quantile regression models for differences (pre- and post-treatment) in (a) acetate vs.
butyrate, (b) butyrate vs. acetate, (c) acetate vs. propionate, and (d) propionate vs. acetate. In the grey
line, the PENS-Diet model. In the black line, PENS-Diet+Prob. The model equations for PENS-Diet
(top) and PENS-Diet+Prob (bottom) are also shown.

3.3. Association between SCFAs, Bacterial Microbiota, and Cardiovascular Risk Factors

The reduction in fecal SCFAs might be associated with the enrichment of specific
bacteria and with the improvement of clinical outcomes in obese patients. In PENS-Diet
subjects, a negative correlation between differential acetate and Enterococcus (Rho = −0.67,
p = 0.035) was noted. Additionally, propionate was inversely correlated with Lactobacillus
(Rho = −0.93, p = 0.008) and butyrate with Bacteroidetes (Rho = −0.86, p = 0.014)
(Figure 4a). Interestingly, butyrate and propionate concentrations directly correlated with
total cholesterol (Rho = 0.76, p = 0.049 and Rho = 1, p < 0.01, respectively) (Figure 2a).
On the other hand, in PENS-Diet+Prob, reductions in acetate could be associated with
Actinobacteria decrease (Rho = 0.71, p = 0.047), while butyrate levels might be positively
linked to Bifidobacterium spp. (Rho = 0.71, p = 0.047) (Figure 4b). However, fecal butyrate
might be inversely correlated with fasting glucose (Rho = −0.71, p = 0.047) and directly
with HDLc (Rho = 0.78, p = 0.023) (Figure 2b).
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4. Discussion

In this pilot study, an anti-obesity intervention by PENS and a hypocaloric diet for
ten weeks induced weight loss and improvement of blood pressure, glycemia, and hy-
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perlipidemia in class-I obese patients. Importantly, the concomitant administration of
probiotics (L. plantarum, L. acidophilus, and B. breve B3) led to further amelioration of these
parameters. These probiotics enhanced the growth of Prevotella spp., Bifidobacterium spp.,
and A. muciniphila, and reduced the Firmicutes/Bacteroidetes ratio. As a potential conse-
quence, the SCFA acetate decreased in fecal samples and this effect could be linked with
clinical outcomes.

SCFA can induce anorexigenic and insulinotropic peptides (i.e., leptin, PYY, GLP-1)
and stimulate anti-inflammatory responses [16,17]. In obese mice, exogenous administra-
tion of butyrate reduced hepatic steatosis and inflammation, improving the gut barrier
integrity [34]. Both propionate and butyrate increased plasma incretins and insulin sensitiv-
ity [17], and acetate enhanced cardiac hypertrophy, insulin sensitivity, and oxidative stress,
and elevated plasma HDLc levels [35]. Also in these mice, amelioration of obesity was
associated to the probiotics stimulated fecal production of SCFA [25,26]. However, after
obesity, the levels of fecal SCFA (acetate, propionate, and butyrate) have been controver-
sially described. A reduction of SCFA has been mostly observed in obese rodents [25,26],
but in human obesity, variable concentrations of SCFA have been unveiled [19–21]. The
concentration of fecal SCFA is inherently derived from their production and absorption
rates. Most of SCFA absorption is in proximal colon and thus, caecal SCFA levels are
directly correlated with their concentrations [36]. In contrast, an inverse link between fecal
SCFA (i.e., acetate) and their absorption rate was previously reported [37]. Likely, gut
barrier can be disturbed in obesity by alterations in microbiota, mucus, immune system,
and environmental conditions (pH, water, ions) [38], and thus, SCFA permissibility and
their potential benefits could be diminished. In obese subjects, the higher presence of stool
SCFA were associated with reductions in A. muciniphila and Bacteroides, and increased blood
pressure, proinflammatory markers, and the lipid/glycemic profiles [21]. A. muciniphila
has been described as a mucin-degrading bacteria with protective roles on intestinal gut
barrier [39,40].

In this regard, reconstitution of unbalanced microbiota may be achieved by enrich-
ment with specific bacteria from probiotics. Multi-strain formula of probiotics has elicited
favorable activities against metabolic and cardiovascular diseases. They improved body
weight, insulin resistance, GLP-1 release, and hyperlipidemia [8]. Previous reports have
tested the combination of both Lactobacillus and Bifidobacterium probiotics in diet-induced
obese mice [41]. Remarkedly, this combination led to higher weight loss and hypoli-pidemic
effects than probiotics alone. Thus, multi-strain probiotics may induce faster growing and
stabilization of their bacteria and trigger synergetic actions on host intestine by metabolites
production, which could lead to attenuation of metabolic and cardiovas-cular risk factors.
In this sense, a multi-strain probiotic made of Lactobacillus and Entero-coccus produced
higher concentrations of SCFA (i.e., acetate and butyrate) than each bacte-rium alone [42].
Probiotics might also enhance other SCFA-producing bacteria and in-crease SCFA perme-
ability at the intestine [43,44]. SCFA could promote gut barrier repair by triggering other
bacteria and enterocytes and colonocytes growing [16,45]. The close correlation between
acetate and butyrate levels also suggests their positive action on intes-tinal permeability. In
this line, Bifidobacterium spp. and A. muciniphila can generate acetate and promote butyrate
synthesis by other bacteria [46,47]. In our study, PENS-Diet+Prob, but not PENS-Diet
alone, enriched Prevotella spp., Bifidobacterium spp., and A. muciniphila, which could en-
courage gut barrier integrity by balancing microbiota and releasing acetate. Then, acetate
and other SCFA might be better assimilated to promote anorexigenic, insulinotropic, and
anti-inflammatory responses, helping on the reduction in body weight, glycemia, and
hyperlipidemia [34]. Also, acetate-consuming bacteria with favorable actions would have
obtained nutrients to grow and regain gut eubiosis. Interestingly, we found only significant
reductions for fecal acetate and tendencies to decrease for propionate and butyrate, after
probiotics. Likely, longer treatments of these probiotics (or others) might have influenced
also on more SCFA. In this sense, administration of Lactobacillus rhamnosus for 20 weeks in
obese women provoked a decrease in both fecal acetate and butyrate [48]. Moreover, acetate
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may be more sensitive to obesity, diet modifications or probiotics than other SCFA. De la
cuesta-Zuluaga et al described a greater increase of acetate than that of propionate and
butyrate in overweight/class-I obese individuals, compared to their lean counterparts [21],
and higher degrees of obesity have been associated with elevation of several fecal SCFA
(acetate, propionate, and butyrate) [19]. Altogether, this multi-strain probiotics may re-
duce obesity and CVD risk factors at least in part by increasing Bifidobacterium spp. and
A. muciniphila and derivate SCFA like acetate.

Limitations of the Study

Although this is a pilot study, an obvious limitation is the reduced sampling size
which can influence statistical power. Additionally, a group of subjects who follow only
a diet regime, PENS intervention, or probiotic intake could offer comparative data about
microbiota distribution and metabolite release. Since multiple factors (presence of comor-
bidities, habits, etc.) could influence probiotics and SCFA actions, our data should be taken
with care. Finally, a direct comparison of SCFA levels in plasma and fecal samples and the
analysis of gut tissue could quantify alterations in SCFA absorption under obesity and after
treatments. All these variables will be considered in a future study.

5. Conclusions

Administration of probiotics could be useful at least for coadjutant therapy for ame-
liorating body weight and CVD risk factors under obesity. Probiotics may enrich specific
bacteria and change microbiota composition and distribution along the intestine. A mix
of probiotics Lactobacillus plantarum, Lactobacillus acidophilus, and Bifidobacterium breve B3
induced the growth of Prevotella spp., Bifidobacterium spp., and A. muciniphila. Interestingly,
some of these bacteria can produce metabolites, such as acetate, with potential cardiopro-
tective actions (hypolipidemic, insulinotropic, anti-inflammatory). In turn, acetate might
enhance the gut environment and permeability to selective nutrients and metabolites, and
thus, it could favor their assimilation to the systemic circulation. More clinical assays are
required to investigate the gut absorption rates and potential cardioprotective actions of
SCFA under obesity, with and without probiotic administration.
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