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Abstract: Abalone viscera, which accounts for more than 20% of the total weight of abalone, is
generally regarded as waste in the food industry, and effective methods are required to utilize it
productively. In this study, the viscera were fermented with Aspergillus oryzae 001 to add functionality.
Fermented abalone viscera exhibited increased angiotensin I-converting enzyme (ACE) inhibitory
activity and enhanced inhibition of blood pressure elevation in spontaneously hypertensive rats
(SHRs). Abalone viscera administration had no significant effect on body weight, food intake,
liver and kidney weights, or serum components in SHRs. ACE inhibitors specific to fermented
abalone viscera were identified through extraction, fractionation, purification, and analysis. The
identified substance was L-m-tyrosine, which non-competitively inhibited ACE and, in a single
oral administration, significantly reduced blood pressure in SHRs compared to that in the control.
This study identified that abalone viscera fermented by A. oryzae 001 has an inhibitory effect on
blood pressure elevation, suggesting its potential use as a functional food. In addition, L-m-tyrosine,
a unique substance in fermented abalone viscera, was isolated for the first time as a single ACE-
inhibitory amino acid.

Keywords: abalone viscera; Aspergillus oryzae; hypertension; fermentation; spontaneously hyperten-
sive rats

1. Introduction

The food processing industry produces enormous amounts of organic residues and
wastewater, most of which is left unused or untreated [1]. Because waste is detrimental to
the environment and human and animal health, various effective ways of using it are being
explored [1]. Abalone is one of the most popular and economically important seafood
species [2]. Therefore, abalone aquaculture has been increasing worldwide, reaching
190,000 tons per year in 2019 [2,3]. Abalone viscera, which accounts for 15–25% of the total
weight, is usually not considered edible and is discarded, contributing to environmental
pollution [4,5]. Therefore, effective ways to utilize it are being explored, including the
purification of sulfated polysaccharides and antioxidant peptides with bioactive properties
from the viscera [6,7]. In addition, silage made from abalone viscera is rich in protein and
promotes growth in animals that consume it [8].

Aspergillus oryzae, one of the koji molds, has been used for over 2000 years for food
fermentation and for over 50 years for the production of food enzymes [9]. Therefore,
A. oryzae is enlisted in the U.S. Food and Drug Administration’s (FDAs) “Generally Rec-
ognized as Safe (GRAS)” list [10]. It produces a variety of enzymes, including proteases
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and amylases that digest proteins and starch, respectively [11]. The fermented food idli
increases gamma-aminobutyric acid content, angiotensin I-converting enzyme (ACE) in-
hibitory activity, and antioxidant activity through koji mold fermentation [12]. The in vivo
evaluation of spontaneously hypertensive rats (SHR) with koji mold fermented idli has
confirmed its blood pressure-lowering effect [12]. Koji mold is also used for effective
utilization of waste and the residue generated when walnut oil is extracted (walnut meal)
has similarly been reported to enhance ACE inhibitory and antioxidant activities via koji
molds fermentation [13].

Hypertension is a major risk factor for cardiovascular disease, including coronary
artery disease, left ventricular hypertrophy, valvular heart disease, and arrhythmias, such
as atrial fibrillation, stroke, and renal failure [14]. It is estimated that 1.4 billion people
worldwide have hypertension, but only 14% have it controlled [15]. Angiotensin-converting
enzyme (ACE) catalyzes the conversion of angiotensin I to the vasoconstrictor angiotensin
II [16]. Synthetic ACE inhibitors, such as captopril, lisinopril and enalapril are currently
used to treat hypertension but have significant side effects including taste abnormalities,
rash, cough, hypotension, renal failure, and hyperkalemia [17,18]. By contrast, naturally
occurring ACE inhibitors are considered safe [19]. To date, ACE inhibitors have been found
in fermented milk [20] and fish surimi [21], rabbit meat [19], and ACE inhibitory peptides
have been isolated from those foods and other sources.

With the increase in abalone production, the amount of abalone viscera that is dis-
carded is expected to increase in the future. Therefore, more effective ways to utilize abalone
viscera will be required than those at present. In previous studies, abalone viscera fer-
mented with the lactic acid bacteria Lacticaseibacillus casei 001 and Lactiplantibacillus pentosus
SN001 showed ACE-inhibitory activity [22,23]. In addition, single and long-term adminis-
tration of the fermented products reduced SHR blood pressure and growth inhibition was
also not observed. Koji mold, such as lactic acid bacteria, has been traditionally used to
ferment foods. In the present study, abalone viscera were fermented with A. oryzae 001, and
the inhibitory effect of the fermented product on elevated blood pressure was evaluated.

2. Materials and Methods
2.1. Material and Reagents

Abalone viscera were sourced from Australian farmed blacklip abalone (Haliotis ruber)
and transported frozen. A. oryzae 001 is a proprietary fungus owned by the laboratory.
L-tyrosine, soybean oil, isoflurane, tert-butylhydroquinone (TBHQ), L-cysteine, trifluo-
roacetic acid, sodium hydroxide, o-phthalaldehyde solution, phosphorus acid and kits for
cholesterol, HDL-cholesterol, and triglyceride E tests as well as glucose and transaminase
CII tests, were purchased from Wako Pure Chemical Industries (Osaka, Japan). Potato
dextrose broth (PDB) was purchased from Funakoshi Co., Ltd. (Tokyo, Japan). The ACE Kit-
WST was purchased from Dojindo Laboratories (Kumamoto, Japan). β-corn starch, casein,
α-corn starch, sucrose, AIN76 mineral mixture, AIN76A vitamin mixture without choline
deuterium tartrate, and cellulose were purchased from Oriental Yeast Co., Ltd. (Tokyo,
Japan). Acetonitrile and distilled water were purchased from KOKUSAN CHEMICAL
Co., Ltd. (Tokyo, Japan). ACE from rabbit lung was purchased from Sigma–Aldrich (St.
Louis, MO, USA), and D-tyrosine was purchased from NACALAI TESQUE, Inc. (Kyoto,
Japan). DL-o-tyrosine was purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo,
Japan). L-m-tyrosine was purchased from Cosmo Bio Co., Ltd. (Tokyo, Japan); D-m-tyrosine
was purchased from Santa Cruz Biotechnology, Inc. (Dallas, TX, USA), Hip-His-Leu was
purchased from Bachem AG (Bubendorf, Switzerland), and His-Leu was purchased from
Peptide Institute (Osaka, Japan).

2.2. Fermentation by A. oryzae 001

Abalone viscera were lyophilized, ground with a mixer, and sieved through a 500-
mesh sieve. The abalone viscera powder was stored at −20 ◦C until use. A. oryzae 001 was
activated from −80 ◦C storage by pre-culturing with shaking (28 ◦C, 160 rpm for 24 h) in
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PDB medium. For fermentation, 1 mL of the pre-cultured bacterial solution was added to
100 mL of distilled water with 1 g of abalone viscera powder, and cultured with shaking
(28 ◦C, 160 rpm, 6 d). The culture supernatant of the ferment was subjected to measurement
of ACE inhibitory activity. The ACE-inhibitory activity was determined using the ACE
Kit-WST according to the manufacturer’s instructions.

2.3. Long-Term Administration Study

Eighteen 14-week-old male SHR/Izm rats (Sankyo Lab Service, Tokyo, Japan) were
housed in a room at 25 ± 3 ◦C, with a humidity of 45 ± 5%, and a 12 h light/dark cycle
(8:00–20:00 light period). Water (tap water) and feed were provided ad libitum. The
rats were pre-reared for 1 week to acclimatize them to the environment. During the pre-
rearing period, all rats were fed the same diet. The pre-reared rats were divided into
control, fermented, and unfermented groups of 6 rats each and were fed the diets listed
in Table 1. The diets for the fermented and unfermented groups contained 5% fermented
and unfermented abalone viscera, respectively. Blood pressure was monitored twice a
week using a non-observational blood pressure monitor for mice and rats (Blood Pressure
Monitor For Mice & Rat Model MK-2000, Muromachi Kikai Co., Tokyo, Japan) six times
per animal. Body weight and food intake were also measured on the same day as the
blood pressure measurements. Food intake was measured from the difference between the
amount fed and the amount remaining. Blood samples were collected under isoflurane
anesthesia after one night of fasting, from day 49. After the rats were euthanized, their
kidneys and livers were removed for observation and weighing. Blood tests included
serum total cholesterol, HDL-cholesterol, glucose, triglyceride, aspartate aminotransferase
(AST), and alanine aminotransferase (ALT) activity, as measured using kits (Cholesterol
E Test, HDL-cholesterol E Test, Glucose CII Test, Triglyceride E Test, and Transaminase
CII Test).

Table 1. Diet composition.

Total Ingredients (g/kg) Control Unfermented Fermented

β-Cornstarch 392 345.5 345.5
Milk casein 195 195 195
α-Cornstarch 132 132 132

Sucrose 100 100 100
Soybean oil 70 70 70

Cellulose 50 50 50
AIN-76 Mineral mixture 35 35 35

AIN-76A Vitamin mixture 12.5 12.5 12.5
L-Cysteine 3 3 3

TBHQ 0.014 0.014 0.014
NaCl 10 6.5 6.5

Abalone viscera 0 50 50

2.4. Purification of ACE Inhibitor Components

Fermented and unfermented abalone viscera were extracted with water (50 ◦C, 125 spm,
60 min) and centrifuged (13,000× g, 10 min). The aqueous extract was ultrafiltered using
a centrifugal ultrafiltration unit Vivaspin 20 (Sartorius Stedim Biotech GmbH, Göttingen,
Germany) with molecular mass cut-off (MWCO) values of 3, 10, 30, and 100 kDa. Each
fraction (<3 kDa, 3~10 kDa, 10~30 kDa, 30~100 kDa, >100 kDa) was concentrated in a
rotary evaporator, lyophilized, and measured for ACE-inhibitory activity. The fraction with
high ACE-inhibitory activity was dissolved in distilled water, filtered through a 0.22 µm
filter, and analyzed using reversed-phase high-performance liquid chromatography (RP-
HPLC). ODS-120T (4.6 × 250 mm; Tosoh Bioscience, Tokyo, Japan), and liquid A (0.1%
trifluoroacetic acid solution) and liquid B (0.1% trifluoroacetic acid solution/acetonitrile =
3:7 mixture) were used as the column and mobile phase, respectively. For elution, a concen-
tration gradient of 0–50% ratio of solution B was applied over 40 min. The flow rate was
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set at 1.0 mL/min, and the detector at 220 nm. The peak with high ACE-inhibitory activity,
unique to aqueous extracts of fermented abalone viscera, was collected and purified repeat-
edly. The peak with high ACE-inhibitory activity was subjected to a concentration gradient
from 7% to 7.7% acetonitrile, and ACE-inhibitory activity was determined according to the
manufacturer’s protocol for the ACE Kit-WST, and IC50 was calculated.

2.5. Identification of ACE Inhibitors

The purified fractions were subjected to Edman degradation, and the purified products
were identified using mass spectrometry. Phenylthiohydantoin derivatives produced by
Edman degradation were separated and analyzed using RP-HPLC using Zaplous alpha, Pep
C18 120A (0.1 × 150 mm; AMR, Inc., Tokyo, Japan). The molecular weights of the purified
materials were determined using an LTQ-Orbitrap XL mass spectrometer (Thermo Fisher
Scientific K.K., Tokyo, Japan). The ACE-inhibitory activities of various isomers (L-tyrosine,
D-tyrosine, DL-o-tyrosine, L-m-tyrosine, and D-m-tyrosine) of the purified substance were
determined, and the IC50 values were calculated. The structure of the purified product
was determined by comparing the IC50 of the purified product with those of the various
isomers. To eliminate foreign substances in the reagents, standards of all isomers were
purified using HPLC and used for the measurement of ACE-inhibitory activity. HPLC
conditions were the same as those used for the purification of ACE inhibitory components.

2.6. Estimation of Mode of Inhibition

The mode of inhibition was determined using Lineweaver–Burk plots [19,24]. Briefly,
50 µL of L-m-tyrosine (0, 0.28, and 0.57 mM) and 100 µL of ACE (10 mU/mL) were mixed
and incubated at 37 ◦C for 10 min. After incubation, 25 µL of Hip-His-Leu (2.5, 5.0, 12.5,
and 25 mM) was added, and the mixture was incubated at 37 ◦C for 40 min. Then, 50 µL of
1N NaOH was added, and after the reaction was stopped, 10 µL of 0.2% o-phthalaldehyde
solution was added, and the reaction was carried out at room temperature for 15 min under
light-shielding conditions. Then, 15 µL of 3.6 M phosphoric acid solution was added, and
fluorescence intensity was measured at excitation and emission wavelengths of 360 and
460 nm, respectively. The Michaelis–Menten constant (Km) and the maximum reaction
rate (Vmax) were calculated according to the Michaelis–Menten kinetic equation from the
Lineweaver–Burk plot.

2.7. Single-Dose ACE Inhibitor Study

Male SHRs/Izm rats were purchased and housed as described in Section 2.3. Wa-
ter (tap water) and feed were provided ad libitum, and the rats were pre-reared for at
least 1 week to acclimatize to the environment. L-m-tyrosine solution (pH 3, 10 mg/kg
body weight) or water (pH 3) was orally administered to each rat. The pH was adjusted
to 3 because L-m-tyrosine is insoluble in water under neutral pH. Blood pressure was
measured 6 times per animal before and 2, 4, 6, 8, and 24 h after administration using a
non-observational blood pressure monitor.

2.8. Statistical Analysis

The blood pressure measurements and weight changes are expressed as mean ± standard
error, and other results are expressed as mean ± standard deviation. Rejection was per-
formed using the Smirnov–Grubbs test. Multiple comparisons were performed using the
Steel–Dwass test, and comparisons between two test intervals were performed using the
t-test. Statistical significance was set at p < 0.05.

3. Results & Discussion
3.1. Long-Term Dosing Study

The ACE-inhibitory activity of abalone viscera fermented with A. oryzae 001 was
56.9%. Fermentation of abalone viscera using lactic acid bacteria requires the addition of
glucose [22,23], while the addition of nutrients was not necessary because koji mold has a
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variety of enzymes. The results of A. oryzae 001 fermented and unfermented abalone viscera
administered to SHRs are shown in Figure 1. No significant differences in food intake were
observed between the test groups during the study period (data not shown). The blood
pressure of the fermented group was always lower than that of the control group from day
6 onward. The fermented group always had lower blood pressure than the control and
unfermented groups from day 12 onward. Blood pressure was significantly lower in the
fermented group than in the control group on days 22, 26, 29, 33, 36, and 43, and significantly
different from the unfermented group on days 26, 33, and 36. The results of body weight
changes are shown in Figure 2. There were no significant differences in the body weights
of SHRs between the test groups during the study period. The average kidney and liver
weights are shown in Table 2, and the blood test results are shown in Table 3. The control
group was reduced to n = 5 due to hemolysis in the serum of one animal in the control
group. There were no significant differences in kidney and liver weights between the
study groups and no differences in appearance. Serum total cholesterol, HDL-cholesterol,
glucose, triglyceride, ALT, and AST levels were also not significantly different between the
groups. Rodents are commonly used as animal models of hypertension, with SHRs being
the most commonly used model in studies of essential hypertension in humans [25–27]. In
the present study, the group treated with fermented abalone viscera had consistently lower
blood pressure than the other groups after 12 days of treatment. Thus, fermentation with
A. oryzae 001 imparted an antihypertensive effect to abalone viscera, and the fermented
viscera was shown to suppress blood pressure elevation in vivo over the long term. In a
previous study, L. casei 001 fermented abalone viscera mixed feed suppressed blood pressure
elevation of SHRs after 28 days of administration [22], but A. oryzae 001 fermented abalone
viscera mixed feed suppressed blood-pressure elevation from day 12 of administration.
Therefore, it was suggested that in A. oryzae 001 fermented abalone viscera suppressed
blood pressure elevation more rapidly than L. casei 001 fermented abalone viscera in vivo.
In a study on L. pentosus SN001 fermented abalone viscera, SHRs were reared for 9 weeks
and L. pentosus SN001 fermented abalone viscera mixed feed suppressed blood pressure
elevation from week 8 of rearing [23], and no significant differences occurred between the
fermented and unfermented groups [23]. The fermented group showed significantly lower
blood pressure than the unfermented group during approximately 7 weeks three times (on
days 26, 33, and 36) in this experiment. Therefore, A. oryzae 001 fermentation may have
greatly enhanced the inhibition of blood pressure elevation in abalone viscera compared
to L. pentosus SN001 fermentation. These results suggest that A. oryzae 001 fermentation
enhanced the inhibition of blood pressure elevation in abalone viscera, and that the in vivo
effect was stronger than that of lactic-acid fermentation. Significant differences in food
intake and body weight between test groups have been used as an indicator of growth
inhibition in rats [23,28]. Administration of the abalone viscera mixture did not affect
food intake or body weight, suggesting that A. oryzae 001 fermented and unfermented
abalone viscera did not inhibit SHR growth. Hypertensive patients tend to have lower
HDL cholesterol levels and higher triglyceride levels, and total cholesterol levels above
a certain level induce a greater increase in blood pressure [29]. Triglyceride and total
cholesterol levels in the unfermented group tended to be higher than in the control group.
The fermented group tended to have lower total cholesterol than the unfermented group.
Abalone viscera contains about 10% lipids in its dried state, and a diet high in lipids
increases cholesterol and triglyceride levels [23,30]. A. oryzae has lipolytic enzymes and has
used fatty acids as a carbon source in previous reports [31]. Therefore, A. oryzae 001 may be
degraded and reduced lipids in abalone viscera, resulting in lower total cholesterol levels
in the fermented group than in the unfermented group. Hyperglycemia occurs due to
abnormalities in glucose regulation, such as decreased glucose utilization, increased glucose
production, and insulin secretion [32]. Since there were no significant differences in glucose
concentrations among the study groups, it appears that abalone viscera consumption
does not induce hyperglycemia. The reason for the highest glucose concentration in the
fermented group may be due to the high carbohydrate-degrading enzyme activity of the
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fermented abalone viscera, since A. oryzae produces α-amylase and glucoamylase [11]. ALT
and AST activities are indicators of liver health [33]. These values and liver appearance
and weight displayed no significant differences between the test groups and suggested
that abalone viscera consumption does not affect the liver. Long-term administration of
feed mixed with idli fermented with A. oryzae suppressed the increase in blood pressure in
SHRs from at least day 14, and ALT and AST activities remained normal with no significant
difference from control or unfermented for 10 weeks [12]. Thus, it was suggested that
fermentation with A. oryzae did not affect ALT and AST activities.
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Figure 1. Changes in systolic blood pressure in spontaneously hypertensive rats fed different diets:
control (•), unfermented (�), and fermented (N). * p < 0.05 fermented vs. control group; # p < 0.05
fermented vs. unfermented group. The data represented the mean values ± standard error (n = 6).
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Table 2. Kidney and liver weights of SHRs in each test section.

Test Group Control Unfermented Fermented

Kidney (g) 2.56 ± 0.13 2.55 ± 0.14 2.47 ± 0.08
Liver (g) 10.06 ± 0.47 10.34 ± 0.43 10.26 ± 0.38

The data represent mean ± standard deviation, n = 6.

Table 3. Concentration and activity of SHRs components in serum.

Test Group Control Unfermented Fermented

Glucose (mg/dL) 119.0 ± 14.4 114.7 ± 32.7 133.6 ± 23.1
Triglycerides (mg/dL) 69.1 ± 16.2 78.9 ± 13.8 74.0 ± 14.4

Total cholesterol (mg/dL) 76.0 ± 14.5 84.0 ± 11.3 74.4 ± 8.8
HDL-cholesterol (mg/dL) 43.6 ± 2.9 42.1 ± 7.6 43.6 ± 7.2

Alanine aminotransferase activity (IU/L) 25.3 ± 2.4 24.6 ± 1.2 24.3 ± 2.2
Aspartate aminotransferase activity (IU/L) 33.0 ± 7.4 34.4 ± 7.1 31.1 ± 5.9

The data represent mean ± standard deviation, n = 5 (Control), n = 6 (Unfermented and Fermented).

3.2. Purification of ACE inhibitors

The IC50 values of each fraction separated by ultrafiltration are listed in Table 4. The
fermentation products showed maximum ACE-inhibitory activity and a weight of <3 kDa.
Therefore, the <3 kDa fraction was further analyzed. The results of RP-HPLC analysis of
the <3 kDa of fermented and unfermented products are shown in Figure 3. The peaks
of the fermented and unfermented products were designated as (F1–F7) and (N1–N2),
respectively, with larger peaks detected in F1 and F4. F1 was similar in retention time
and size to N1, so F4 was considered to be the fermentation product-specific peak; F4
was further purified using RP-HPLC to yield three peaks (F’1–F’3). The ACE-inhibitory
activity was not observed in F’1 and F’2, but high ACE-inhibitory activity was observed in
F’3 and it was subjected to Edman degradation and mass spectrometry. Protease activity
involved in protein degradation was found to be enhanced during fermentation (Data
not shown). Abalone viscera is rich in protein and fermentation is used as an effective
means of protein hydrolysis [34]. Fermented camel and bovine milk showed maximum
ACE-inhibitory activity in the <3 kDa and <5 kDa fractions, respectively [35,36]. Fermented
soybean showed strong ACE-inhibitory activity in the lower molecular weight fraction,
with maximum activity in the <2 kDa fraction [37]. Those ferments showed higher ACE-
inhibitory activity in the smaller molecular weight fractions, consistent with the results of
the present study. Previous studies have confirmed that the smaller the molecular weight
of a bioactive substance, the easier it passes through the intestinal wall and the more likely
it is to exert its effect in vivo [38,39]. Thus, A. oryzae 001 fermented abalone viscera had
high ACE-inhibitory activity in the low molecular weight fraction, suggesting that it is
effective in vivo.

Table 4. Weight of each fraction and IC50 of ACE activity.

MWCO (kDa) <3 3~10 10~30 30~100 100<

Fermented
IC50 (mg/mL) 0.36 0.41 0.58 0.42 0.38

Fraction weight (mg) 451 42 18 10 24

Unfermented
IC50 (mg/mL) 0.68 0.49 0.85 N.D. 1.35

Fraction weight (mg) 230 14 35 N.D. 36
N.D. = not detected.
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Figure 3. Separation of <3 kDa fraction of fermented and unfermented abalone viscera by RP-HPLC.
(a) Chromatogram of unfermented abalone viscera, (b) chromatogram of fermented abalone viscera,
(c) chromatogram of fraction F4. The percentage of ACE inhibition for each peak is indicated next to
the symbol.

3.3. Identification of ACE Inhibitors

Edman degradation analysis showed that only one tyrosine residue was present in
the purified substance. Mass spectrometry results showed an m/z of 182.08122 and a
composition of C9H12O3N. Thus, it was clear that the purified product was tyrosine. Since
tyrosine has many isomers, the structure was determined by measuring the ACE-inhibitory
activity of the various isomers and comparing the IC50 with that of the purified product.
The IC50 values for each isomer were as follows: L-tyrosine and D-tyrosine showed less
than 50% ACE inhibition at all concentrations. The IC50 values for the ACE inhibition
of DL-o-tyrosine, L-m-tyrosine, and D-m-tyrosine were 0.62 mg/mL, 0.31 mg/mL, and
0.96 mg/mL, respectively. L-m-tyrosine was the most potent ACE inhibitor, with an IC50
value comparable to that of the isolated peak. Therefore, F’3 was determined to be L-
m-tyrosine. Tyrosine is effective for mental health, and dietary tyrosine intake has been
found to improve cognitive performance and physical performance tasks that are sensitive
to it [40]. ACE inhibitors of natural origin were present in carp scales, salmon process-
ing by-products, and aosa-derived substances [41–43]. Previous studies have reported
tyrosine-containing dipeptides [39,44,45] and tripeptides over [46,47] ACE inhibitory pep-
tides. Inhibitory dipeptides with a tyrosine residue at the C-terminus are effective [48,49].
Tyrosine-containing peptides may also be effective because of the high ACE-inhibitory ac-
tivity of tyrosine. Since the amount of tyrosine contained in abalone viscera is not high [50],
it is assumed that it was purified by fermentation.
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3.4. Estimation of Mode of Inhibition

In previous studies, ACE-inhibitory activity and the mode of inhibition of peptides
containing tyrosine were measured [44,51], but the mode of inhibition of tyrosine alone or
L-m-tyrosine was not determined. This study is the first to investigate the ACE-inhibitory
activity of L-m-tyrosine. Lineweaver–Burk plots of ACE activity at various concentra-
tions of L-m-tyrosine (0, 0.28, 0.57 mM) are shown in Figure 4. Vmax was 5.56, 2.20, and
0.78 mM/min, respectively, and was concentration dependent. Km was similar at 8.15,
8.24, and 8.14 mM, respectively. From the slope and y-axis intercept, Ki was 0.12 mM.
Vmax was concentration-dependent while Km was relatively constant suggesting that ACE
inhibition by L-m-tyrosine is a non-competitive inhibition. Similar to the present study,
several tyrosine-containing dipeptides noncompetitively inhibited ACE [44]. In previous
reports, ACE inhibitors obtained by hydrolysis of marine products, such as squid and tuna
noncompetitively inhibited ACE [52,53]. However, the ACE inhibitory sites of these sub-
stances were not identified [52,53]. In most cases, binding of the inhibitor to the allosteric
site of the enzyme results in a pattern of noncompetitive inhibition, but there are exceptions.
Because ACE inhibitors from different foods are not identical, detailed inhibition methods
require further investigation [54].
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3.5. Single-Dose Study of ACE Inhibitors in SHRs

The effect of L-m-tyrosine administration on the blood pressure of SHRs is shown in
Figure 5. From 4 h after administration, the tyrosine group showed lower blood pressure
than the control group. Six and eight hours after administration, the blood pressure
of the tyrosine group was significantly lower than that of the control group. In vivo
studies indicate that L-tyrosine-supplemented diets prevent blood pressure elevation and
tyrosine-containing peptides reduce blood pressure in SHRs in the short term [55,56].
However, there are no reported studies of L-m-tyrosine. L-m-tyrosine was identified as
the active component that acted as the ACE inhibitor in this study. Tyrosine isomers differ
in structure, resulting in differences in ACE-inhibitory activity, behavior in the body, and
digestibility [57]. The smaller the molecular weight of a bioactive substance, the faster it is
digested and absorbed, and the more rapidly it exerts its effects in vivo [38,39]; therefore,
among the isomers of L-tyrosine, L-m-tyrosine may be the most potent inhibitor of elevated
blood pressure in vivo.
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4. Conclusions

In this study, abalone viscera, an underutilized resource, was fermented with A. oryzae
001, its ACE-inhibitory activity was enhanced, and its inhibition of blood pressure elevation
in vivo was confirmed. The ACE inhibitor unique to fermented abalone viscera was
identified as L-m-tyrosine, which was found to inhibit ACE in a non-competitive manner.
Furthermore, L-m-tyrosine showed antihypertensive effects in vivo. These results revealed
that the fermentation of abalone viscera by A. oryzae 001 enhanced the antihypertensive
effect of abalone viscera, suggesting that fermented abalone viscera can be utilized as a
functional material to inhibit elevated blood pressure. In addition, L-m-tyrosine was found,
for the first time, to be an amino acid with high ACE-inhibitory activity.
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