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Abstract: Skeletal disabilities are a prominent burden on the present population with an increasing
life span. Advances in osteopathy have provided various medical support for bone-related diseases,
including pharmacological and prosthesis interventions. However, therapeutics and post-surgery
complications are often reported due to side effects associated with modern-day therapies. Thus,
therapies utilizing natural means with fewer toxic or other side effects are the key to acceptable
interventions. Flavonoids constitute a class of bioactive compounds found in dietary supplements,
and their pharmacological attributes have been well appreciated. Recently, flavonoids’ role is gaining
renowned interest for its effect on bone remodeling. A wide range of flavonoids has been found to
play a pivotal role in the major bone signaling pathways, such as wingless-related integration site
(Wnt)/β-catenin, bone morphogenetic protein (BMP)/transforming growth factor (TGF)-β, mitogen-
activated protein kinase (MAPK), etc. However, the reduced bioavailability and the absorption of
flavonoids are the major limitations inhibiting their use against bone-related complications. Recent
utilization of nanotechnological approaches and other delivery methods (biomaterial scaffolds,
micelles) to target and control release can enhance the absorption and bioavailability of flavonoids.
Thus, we have tried to recapitulate the understanding of the role of flavonoids in regulating signaling
mechanisms affecting bone remodeling and various delivery methods utilized to enhance their
therapeutical potential in treating bone loss.

Keywords: flavonoids; signaling mechanism; delivery methods; therapeutics; bone loss

1. Introduction

Skeletal disabilities are a prominent modern-day problem and have become a concern
lately. An increase in life expectancy and a growth in the elderly population worldwide
have substantially burdened the existing health systems [1,2]. Bone is a living organ,
constituting 30% organic and 70% inorganic material with various functions such as pro-
tecting internal organs, making the body frame, and safe storage for some vital minerals
in the body [3,4]. There are various classes of bone cells, such as osteoblasts, osteocytes,
bone-lining cells, and osteoclasts [4]. All these cells are responsible for bone metabolism,
characterized by a constant equilibrium of bone formation (by the osteoblasts) and bone
resorption (mediated by osteoclasts). Despite that, the disruption between bone formation
and bone resorption contributes to several metabolic bone disorders, namely osteoporosis,
osteopetrosis, and Paget’s disease [5,6]. Osteoporosis is regarded as a health problem affect-
ing over 200 million people globally, according to the World Health Organization [7]. The
crucial risk factor for osteoporosis is age-associated bone loss, which occurs in people over
50 years of age, including approximately 25% of men and 50% of women [8]. Osteoporosis
can be categorized into two main groups, primary and secondary. Primary osteoporosis is
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the most typical type and is mainly caused by loss of bone mass during the aging process or
in postmenopausal women because of decreased estrogen levels. Secondary osteoporosis is
associated with lifestyle, secondary systemic disorders such as diabetes, hypothyroidism,
etc., and long-term use of drugs such as glucocorticoids [9]. The method of treating bone
loss during osteoporosis is to stimulate bone growth. The understanding of why a differ-
ence in normal osteoblastogenesis regulation can result in bone disorders has improved
due to recent advancements and expanded knowledge in the regulation of osteoblastic
bone growth and maintenance of bone mass [10].

The current therapeutic approach to treat bone loss includes either inhibiting elevated
bone resorption or stimulating suppressed bone formation. Drugs used for antiresorptive
characteristics included bisphosphonates, hormone replacement therapy (HRT) (estrogen),
Raloxifene, and monoclonal such as Denosumab and Romosozumab; while for inducing
bone formation and increasing bone density, anabolic drugs such as Teriparatide (parathyroid
hormone/PTH 1-34) are recommended [11]. However, estrogen replacement therapy has been
found to be associated with heart attack, stroke, and risk of cancer. The use of Teriparatide
as a drug for osteoporosis has highlighted the risk of osteosarcoma in rodent models [12].
Moreover, long-term bisphosphonates treatment could lead to skeletal lesions, developing into
bisphosphonate-related osteonecrosis of the jaw [11,13]. Though the commercially available
drugs have been remarkable in treating bone loss during osteoporosis, a few cases of side
effects may make them consider before prescribing. Hence, finding a new, effective, safe
therapeutic agent with no or fewer side effects is essential for bone loss pathologies.

Flavonoids are present in dietary supplements, including vegetables, grains, fruits,
stems, bark, flowers, etc. [11,14] and have been well acknowledged for their diverse bioac-
tivities, including anti-oxidant, anti-allergic, anti-inflammatory, anti-carcinogenic, and
antiviral activities [15]. The flavonoids contain over 5000 polyphenol compounds and are
divided into seven flavonoid groups: anthocyanidins, flavanols, flavanones, flavanonols,
flavones, flavonols, and isoflavones, categorized on the presence of hydroxyl groups struc-
ture and their glycosylation or alkylation status [16,17]. Recent studies on flavonoids have
shown their notable effect on bone cells, such as increasing osteoblast activity, suppressing
osteoclast activity, and protecting against bone loss, in addition to decreasing calcium
and phosphate urinary excretion [18]. Some in vivo studies proved that flavonoids, such
as Daidzein, Quercetin, Kaempferol, and Genistein, could affect osteogenesis and bone
formation, while some studies report inhibiting effect on osteoclastogenesis and bone
resorption [19,20]. Some of the flavonoids, such as isoflavones, accelerate bone formation
by inducing osteoblasts differentiation and cell proliferation along with the inhibition of
adipogenesis through the nitric oxide and estrogen receptor pathways [21,22].

Low systemic bioavailability is a general problem for flavonoids [23]. Mostly, it is
associated with the absorption of flavonoids. The majority of flavonoids reach the colon
unabsorbed [24]. Even then, several studies have reported the efficacy of flavonoids for
bone health, such as stimulating osteoblastogenesis in in vitro and in vivo models [25–28].
Overcoming the low absorption and bioavailability of flavonoids, recent advancements in
delivery systems are offering flavonoids as potential therapeutics for bone loss. Delivery
vehicles such as nanoparticles, micelles, biomaterials, and scaffolds are commonly used
carriers of flavonoids for bone [14,29]. In this review, we summarize the potential effect
of flavonoids on stimulating bone formation by regulating various signaling pathways.
In addition, the variety of methods used for delivering the flavonoids is also discussed to
assess their possibility as a next-generation therapeutic for bone loss.

2. Types of Flavonoids

There are seven classes of flavonoids, namely anthocyanidins, flavanols, flavanones,
flavanonols, flavones, flavonols, and isoflavones (Figure 1A).
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Figure 1. The chemical structures of flavonoids. (A) The chemical structure of different types of
flavonoids. (B) The chemical structure of flavonoids involved in the different bone–related signaling
pathways. (Chemical structures source: PubChem (NCBI, NIH, USA; https://pubchem.ncbi.nlm.nih.
gov/) accessed on 7 February 2023).

2.1. Anthocyanidins

Anthocyanidins are purple, blue, or red pigments in many foods, vegetables, and
fruits, particularly in berries such as bilberries, blackberries, raspberries, blueberries, grapes,
etc. [30,31]. Red or blue pigments of the anthocyanidins depend on their acid-base balance.
Anthocyanin’s appearance varies in different conditions. For instance, it is red in acidic
conditions, while blue pigment exists in alkaline conditions. It carries a positive charge
in the C-ring oxygen called the flavylium or 2-phenylchromenylium ion. The stability of
anthocyanin depends on its structure, pH, light, and temperature [30,32]. Anthocyanin is
mainly synthesized with glucose, galactose, and rhamnose in natural products. According
to the different substituent groups on the flavylium ring, anthocyanins can be differentiated
into each other, such as Delphinidin, Petunidin, Pelargonidin, Cyanidin, Peonidin, and
Malvidin [33].

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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2.2. Flavanols

Flavanol monomers known as procyanidins are abundant in the tea plant’s leaves,
cocoas, apples, grapes, and wine. An (−)-epicatechin (EC), (−)-epigallocatechin (EGC),
(−)-EC-gallate (ECG), and (−)-EGC-3-gallate (EGCG) are involved in the foremost
flavanols [34,35]. Catechins are the most readily absorbable flavonoids because they are
the only form not bound to sugars (flavonoid glycosides are more easily absorbed after
transformation in a glycan form). The flavonol chemical structure has a hydroxyl group on
C3 and no double bond between C2 and C3 [36,37].

2.3. Flavanones

Flavanones are capable of attaching to various kinds of receptors in the body. Owing to
this potential, they are remarked as “privileged structures” and represent various biological
reactions [38]. Citrus juices derived from blond or blood and sour oranges, limes, grape-
fruits, lemons, mandarins, and tangerines belong to the natural sources of flavanones [39].
Hesperidin and Naringin, such as citrus flavanone glycosides, are mostly found in Yuja
peel [40]. The chemical structure is remarked by the absence of the ketone group in the C4
position and the presence of a double bond between C2 and C3.

2.4. Flavanonols

Flavanonols are the 3-hydroxy derivatives of flavanones and are also referred to as
dihydroflavanonols [41]. Flavanonols are not abundant in plants and plant parts that are
used for the human diet and are commonly found in wood as free aglycones [42].

2.5. Flavones

Flavones broadly exist as glucosides in leaves, flowers, and fruits. The common
sources of flavones are celery, parsley, citrus fruits, chamomile, mint, and vegetables. This
subclass of flavonoids comprises compounds such as Luteolin, Apigenin, and Tangeritin.
Moreover, polymethoxylated flavones such as Tangeretin, Sinensetin, and Nobiletin are
found mostly in the peels of citrus fruits [43]. The differentiation between other flavonoids
and flavones is a double bond between C2 and C3, which have no alternative to the C3 in
flavonoid chemical structure. The oxidation process takes place in the C4 position [44].

2.6. Flavonols

Flavonols are also one of the most well-known subclasses of flavonoids. There are
two types of flavonols: aglycone form, which is not connected to sugar moieties, and
flavonol glycosides, which connect to sugar moieties [45]. Flavonols are pale yellow or
colorless compounds that have been shown to impact anthocyanin-mediated coloration by
co-pigmentation effects [46,47]. Flavonols are mostly found in fruits and vegetables such as
apples, grapes, berries, onions, lettuce, and tomatoes. In addition, flavonols are abundant
in tea and red wine. Kaempferol, Quercetin, Myricetin, and Fisetin are the most commonly
recognized flavonols [43]. Flavonols chemical structure is remarked by the hydroxyl group
in the C3 position [48].

2.7. Isoflavones

Isoflavones belong to a subclass of flavonoids that contain phytoestrogen chemi-
cals generated from plants with estrogenic activity [49]. Bioflavonoids, called soybean
isoflavones, can interact with a variety of hormones, including estrogen, and they are found
in some plants and soy products. It has a molecular structure comparable to estrogen and
exists in nature as a molecule with a polyphenolic hydroxyl group called β-glucoside and
can be induced by estrogen. Owing to the antiestrogenic and estrogenic activities, it is often
referred to as a selective estrogen receptor modulator [50,51]. These compounds may be
protective against osteoporosis due to their ability to exert osteogenic and antiresorptive
actions on bone, particularly on bone turnover and growth [52,53].

Some of the flavonoids, along with their effect on the bone, are listed in Table 1.
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Table 1. Flavonoids and their effect on bone.

Class Example Source Function to Bone Reference

Anthocyanidins

Delphinidin
Grapes, berries, sweet

potatoes, and
pigmented cabbages

Inhibiting differentiation
of osteoclasts [54,55]

Cyanidin Berries, red cabbages, black
currant, purple rice bran Promote osteoblast differentiation [56,57]

Malvidin Red grape skin, blueberries
and red wine Stimulate bone formation [58,59]

Petunidin Chokeberries and
Saskatoon berries Inhibit osteoclastogenesis [60]

Peonidin Raw cranberries
Increase osteoblast differentiation

followed by the decrease in
osteoclast formation

[61]

Flavanols

Catechin Red wine, Green tea Stimulate osteoblast growth [62]
EGCG

Green tea
Promote osteogenesis [63]

EAF Reduce osteoclastogenesis [64]
ECAP Antiosteoclastogenic activity [65]

Flavanones

Hesperetin
Citrus fruit

Inhibit osteoclast formation [66]
Hesperidin Promote osteogenesis [67]
Naringenin Grape fruit, tomatoes Inhibit osteoclastogenesis [68,69]
Eriodictyol Citrus fruit Inhibit osteoclastogenesis [70]

Flavanonols Taxifolin
(Dihydroquercetin) Green tea Promote osteogenic differentiation [71]

Astilbin Wine, plants Inhibit osteoclastogenesis [72]

Flavones

Luteolin Celery, Cabbage,
honeysuckle Promote osteogenic differentiation [73]

Tangeretin Orange peels Inhibit osteoclast formation [74]
Corylin Psoralea Fructus Induce osteoblastogenesis [75]

Apigenin Olive, parsley and apple Inhibit formation of osteoclast [76]

Chrysin Mushroom, chamomile,
honey Enhance osteogenesis [77]

Nobiletin Citrus fruit Enhance osteoblastogenesis [78]

Baicalein Scutellaria baicalensis root
chinese herb

Stimulate differentiation
of osteoblast [79]

Flavonols

Quercetin Onions, broccoli, grapes,
berries and red wine

Promote osteogenic differentiation
Inhibit osteoclast activation [80,81]

Kaempferol Green leafy vegetables Induce osteogenic activity [20]
Galangin Lesser galangal Inhibit osteoclastogenesis [82]

icariin Horny goat weed Induce osteoblast differentiation [83,84]
Rutin Buckwheat Promote osteoblast differentiation [85]

Myricetin Berries, nuts, red wine Enhance osteoblast differentiation [86]

Fisetin Apples, grapes and
strawberries Promote osteoblast differentiation [5]

Isorhamnetin Pears, olive oil, tomato
sauce and wine Inhibit osteoclastogenesis [87]

Isoflavones

Genistein Soy-based foods Promote osteoblastogenesis [21,88]

Daidzein Soybeans, tofu Promote osteoblast proliferation
and differentiation [89]

Glycitein Soycheese, soymilk Decrease osteoclast formation [90]
Puerarin Root of Pueraria Accelerate osteoblast differentiation [91]

Equol Soybeans Promote osteoblast proliferation
and differentiation [92]

Cladrin Soybeans Stimulate osteoblast differentiation [93]
Calycosin Soybeans, peanuts Inhibit osteoclastogenesis [94]

Formononetin Beans, soy Suppress osteoclastogenesis [95]
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3. Bone Signaling Mechanism Affected by Flavonoids

Many studies have demonstrated that flavonoids can induce osteoblast differentia-
tion/proliferation and inhibit osteoclast differentiation/proliferation. The mechanism of
action includes the expressions of cytokines, transcription factors, bone-specific matrix
proteins, bone signaling pathways, and receptor activators of nuclear factors κB ligand
(RANKL)/osteoprotegerin (OPG) system hormone-like biological mechanisms [51]. The
most important bone signaling pathways that can be targeted for stimulating bone forma-
tion are wingless-related integration site (Wnt)/β-catenin, bone morphogenetic protein
(BMP)/transforming growth factor-beta (TGF-β) signaling, mitogen-activated protein
kinase (MAPK) signaling, reactive oxygen species (ROS) signaling, nuclear factor kappa-
light-chain-enhancer of activated B cells (NFκB) signaling and inflammatory NFκB/nuclear
factor of activated T cell c1 (NFATc-1) signaling. The chemical structures of flavonoids
involved in different bone–related signaling pathways are illustrated in Figure 1B.

3.1. Wnt/β-Catenin Signaling Pathway

Wnt/β-catenin signaling pathway regulates numerous physiological events in many
organs, tissues and during growth and development, varying from functions of cell determi-
nation, polarity, migration, differentiation, and proliferation [96]. It can be segregated into
two groups namely β-catenin (canonical or, β-catenin-dependent) and the non-canonical
pathways (β-catenin-independent). The canonical pathway is one of the most important
pathways responsible for fracture healing and bone homeostasis. [42].

The Wnt/β-catenin signaling pathway comprises a family of essential proteins for
both embryonic development and homeostasis of adult tissues [97]. Wnt proteins, including
Wnt3a, Wnt1, and Wnt5a, play a major role in transmitting extracellular signals. The Wnt
receptors lipoprotein receptor-related protein (LRP) 5/6 and Frizzled (a unique sevenfold
transmembrane receptor Frizzled protein: FZD) are primarily found embedded in the
cell membrane. The glycogen synthase kinase-3 (GSK-3) complex, β-catenin, disheveled
proteins (DVL), axis inhibition protein (AXIN), adenomatous polyposis coli (APC), and
casein kinase 1 (CK1) make up most of the cytoplasmic cascade of Wnt signaling. T-cell fac-
tor/lymphoid enhancing factor (TCF/LEF) family members of the β-catenin downstream
target gene family include matrix Metalloproteinases (MMPs) and c-Myc, and β-catenin
(which translocate to the nucleus) are the key components of the nuclear cascade of Wnt
signaling [98]. Once the Wnt ligand binds to its receptor, most DVL protein moves toward
the plasma membrane. The clustering of LRP6 and FZD, including the phosphorylation of
LRP6, is directed by activated DVL [99–101]. Additionally, AXIN and GSK-3β are attracted
to the plasma membrane by activated DVL, where they are inhibited from functioning
(ubiquitinated degradation of β-catenin) [100,102]. Stabilization of β-catenin in the cy-
toplasm leads to its nuclear translocation, and it then acts as a coactivator of TCF/LEF
transcription factors leading to gene transduction [103,104].

Various types of flavonoids have the ability to affect the Wnt signaling pathway to alter
osteoblast differentiation/proliferation (Figure 2A). Tian X. et al. reported that flavonoid
Baicalein could enhance the osteogenic differentiation of tendon-derived stem cells by the
induction of the Wnt/β-catenin signaling pathway. The involvement of Wnt/β-catenin
signaling was validated by the treatment of DKK-1 (Wnt signaling inhibitor), which reduced
the effect of Baicalein on osteogenic differentiation [105]. Moreover, Baicalein was shown to
enhance osteogenic differentiation in the pre-osteoblastic cell line, MC3T3-E1, by activating
Wnt signaling through MEK/ERK signaling [106]. In another study, Icariin was found to
stimulate human bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation
via activation of Wnt signaling. Icariin increased the expression of low-density LRP5, TCF1,
and β-catenin. Icariin-activated Wnt signaling and inhibited adipogenesis by regulating the
expression of miR-23a [107]. In the rat femoral fracture model, Pan F.F. et al. showed that
aApigenin stimulates the osteogenesis of mesenchymal stem cells (MSCs) by increasing the
expression of LRP5 and FZD receptors, elevating the level of β-catenin. Apigenin restored
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the inhibition of osteogenesis when the expression of β-catenin was inhibited by small
interfering RNA [108].
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the Lipopolysaccharide (LPS)-induced apoptosis and suppressive effect on the osteogen-
esis of MC3T3-E1 cells. The protective effect of Quercetin was abolished after the pretreat-
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tin was shown to protect TNFα induced inhibition of osteoblast differentiation by inacti-
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Figure 2. The role of flavonoids in two major signaling pathways inducing bone formation. (A) The
figure illustrates the stimulatory effects of quercetin, hesperidin, corylin, icariin, apigenin, baicalein on
the Wnt/β-catenin signaling pathway. (B) Some of the flavonoids such as icariin, nobiletin, myricetin,
and kaempferol stimulate osteogenic differentiation by stimulating the BMP2, whereas quercetin
targets the Smad 1/5/8 molecule involved in the BMP signaling pathway for stimulating osteogenesis.
WNT: Wingless-related integration site; DVL: Disheveled; LRP 5/6: Lipoprotein receptor-related
protein 5/6; GSK3β: glycogen synthase kinase 3 beta ; Axin-2: Axis Inhibition protein-2; APC:
Adenomatous polyposis coli; CK1: casein kinase 1; BMP: Bone morphogenetic protein; Smad:
Suppressor of mothers against decapentaplegic. (Chemical structures source: PubChem (NCBI,
NIH, USA; https://pubchem.ncbi.nlm.nih.gov/) accessed on 7 February 2023, Figures created with
BioRender.com)).

Sharma A.R. et al. reported that Kaempferol activated Wnt signaling to induce os-
teogenesis in the human osteoblast cell line, SaOS-2. Involvement of Wnt signaling was
confirmed by inhibiting the expression of β-catenin by its specific inhibitor, FH535. The
effect of Kaempferol was further confirmed in primary human osteoblasts and drill-hole
mice model. As observed in SaOS-2, both osteogenic models showed induction of β-catenin
after Kaempferol treatment [20]. Similarly, Quercetin was shown to promote the protein
expression levels of Wnt3 and β-catenin in osteoblasts. Pretreatment of Quercetin rescued
the Lipopolysaccharide (LPS)-induced apoptosis and suppressive effect on the osteogenesis
of MC3T3-E1 cells. The protective effect of Quercetin was abolished after the pretreatment
of MAPK inhibitors or the Wnt/β-catenin inhibitor XAV939 [109]. Likewise, Quercetin
was shown to protect TNFα induced inhibition of osteoblast differentiation by inactivation
NFkB and degradation of β-catenin in rat BMSCs [110].

Another flavonoid, Hesperidin, can promote differentiation of alveolar osteoblast
cells via activation of Wnt signaling, and it was induced by increasing the expression of
β-catenin and cyclin D1. After treating with a Wnt signaling inhibitor, DKK-1, Hesperidin-
induced expression of β-catenin and cyclin D1 was decreased, proving Hesperidin’s role
in activating Wnt signaling [111]. Chang Y.W. et al. studied the Neohesperidin effect
on osteogenic differentiation in BMSCs. Neohesperidin stimulated the Wnt signaling by
inducing the expression of β-catenin expression. The use of Wnt signaling inhibitors, DKK1
and XAV939, confirmed the effect of Neohesperidin. In treatment with Wnt signaling
inhibitors, Neohesperidin-induced β-catenin expression was decreased [112].

https://pubchem.ncbi.nlm.nih.gov/
BioRender.com
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Yu A.X. et al. reported that Corylin could induce osteoblast differentiation on primary
osteoblast from calvaria of rats via Wnt signaling. Treatment of Corylin increased the rate of
phosphorylation of GSK-3β, promoting Wnt signaling, while the treatment of antagonists
such as DKK1 blocked its effect on osteogenesis [75]. In dexamethasone (DEX)-induced
osteoporosis mouse model, the role of EGCG on osteogenesis was elucidated. Treatment of
EGCG considerably increased the expression of cyclin D1 and β-catenin, stimulating Wnt
signaling [113].

3.2. BMP/TGF-β Signaling Pathway

BMPs are multifunctional growth factors belonging to the TGF-β superfamily. These
proteins represent their fundamental roles in bone repair and skeletal development by
interacting with a tetrameric receptor complex leading to intracellular signal transduction
with the help of the suppressor of mothers against decapentaplegic (Smad) proteins and
expressing the osteoclastogenic genes with the help of transcription factor, runt-related
transcription factor 2 (RUNX2) [27]. The noncanonical-Smad-independent pathway is
another mechanism involved in TGF-β and BMP2-mediated osteogenesis, resulting in the
phosphorylation and activity of RUNX2 [114].

It is well-known that the Smads proteins function as transcription factors and are essential
intracellular effectors for BMP and TGF-β family members that influence osteoblast and
osteoclast activities [115]. TGFβ or BMP ligands connect to particular type II receptors to
attract the associated type I receptor and start a chain of events that phosphorylates their
particular Smad receptor (R-Smads). Smad2 and Smad3 are typically required for TGFβ
signaling, whereas Smad1, 5, and 8 are required for BMP signaling. The phosphorylated R-
Smad and Smad4, the shared partner Smad, come together to form a heterocomplex (Co-Smad).
The R-Smad/Co-Smad complex subsequently moves into the nucleus, where it attaches to
target genes’ promoters to control the transcription of certain osteoblastic genes [116].

Various studies have highlighted the role of flavonoids in affecting the BMP/TGF-
β signaling pathway (Figure 2B). Pang Y. et al. reported that Nobiletin could stimulate
osteogenic differentiation by BMP signaling in MG-63 cells. Treatment of Nobiletin induced
the expression of BMP2 in a dose and time-dependent manner, elevating the expression of
RUNX2 and leading to induction in osteogenic differentiation [78]. Moreover, Icariin could
reverse vancomycin-induced inhibition of osteogenesis of rat calvarial osteoblasts. After
treatment with vancomycin BMP2 and RUNX2, mRNA expressions were reduced, but
Icariin co-treatment with vancomycin was able to rescue BMP2 and RUNX expressions [117].
Adhikary S. et al. showed that Kaempferol could reverse the effect of glucocorticoid-
induced bone loss on rat calvarial osteoblast cells in vitro and in vivo. The study concluded
that glucocorticoid treatment reduced the expressions of RUNX2, BMP2, and BMP4, which
was reversed after the treatment of Kaempferol. Similarly, DEX was used to confirm the
effect of Kaempferol on BMP signaling. DEX reduced the expressions of RUNX2 and BMP2,
but the treatment of kaempferol reversed their expression levels. In addition, Smad1/5/8
phosphorylation was decreased with DEX, followed by the suppressed stimulation of
RUNX2 and osteoblast proliferation [118].

Furthermore, Quercetin which chemically resembles estrogen, could induce osteo-
genesis in BMSCs, as was evidenced by the increased expression of RUNX2, osterix, and
osteopontin. The treatment of ICI1827280 (ER inhibitor) to BMSCs was used to validate
the presence of estrogen signaling. BMP2, Smad1, Smad4, and p-Smad1 expressions were
inhibited by ICI182780, highlighting Quercetin’s role in inducing BMSC differentiation
through BMP and ER signaling [119]. Kim H.Y. et al.’s result elucidated that Myricetin
could induce osteoblast differentiation in human periodontal ligament cells via BMP sig-
naling along with Wnt/β-catenin and MAPK signaling pathways. BMP2, phosphorylation
of Smad1/5/9, and BMP receptor IB levels were increased after treatment with Myricetin,
which resulted in the stimulation of osteogenic-related proteins RUNX2 and osterix [120].
Moreover, evidence also suggests that Isoquercetin could induce cell proliferation of BMSCs
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via BMP signaling. BMP4 was stimulated after treatment with Isoquercetin, and Noggin
(BMP antagonist) was able to inhibit the BMP signaling induced by Isoquercetin [121].

In brief, the flavonoids, namely Kaempferol, Nobiletin, Icariin, and Myricetin, target
the BMP receptor, whereas Quercetin targets the Smad 1/5/8 molecule involved in the
BMP signaling pathway.

3.3. MAPK Signaling Pathway

MAPKs are composed of a messenger’s family, which transports various signals from
the cell surface to the nucleus, depending on different stimulants such as stress, hormones,
and chemicals [122]. Cell migration, differentiation, and proliferation can be regulated by
MAPK signaling. The extracellular-signal-regulated kinase (ERK), c-Jun N-amino-terminal
kinase (JNK), and P38 are the key members of the MAPK signaling [123].

In multicellular organisms, controlling cell proliferation is a complicated process
mostly mediated by external growth factors mediated by the neighboring cells [124]. In or-
der to control cell proliferation, many protein kinases cascades, known as MAPK pathways,
are essential [125–127]. In order to activate or deactivate their target, mitogen-activated
protein kinases phosphorylate either their dual threonine and serine residues (autophos-
phorylation) or those present on their substrates. As a result, MAPKs control crucial cellular
functions such as immune defense, stress reactions, and apoptosis. A MAP3K stimulates
a MAP2K, which activates a MAPK in a MAPK module [128–132]. MAPK protein phos-
phatases (MKPs) dephosphorylate phosphotyrosine and phosphothreonine residues on
MAPKs and can inhibit MAPK phosphorylation processes [126,128,133]. The ERK1/2,
JNK1/2/3, and the p38 MAPK α, β, δ pathways are three well-known MAPK pathways in
mammalian cells. According to their structure, activation motif, and functional forms, they
are categorized as ERK, p38, and JNK isoforms [133–135]. Growth factors, proinflammatory
stimuli, and hormones cause ERK1/2 to become active, while cellular and environmental
stressors also cause JNK1/2/3 and p38 MAPK α, β, δ to become active [131,134].

Xing L.Z. et al. examined the effect of Quercitrin on an ovarian-ectomized rat model.
After ovariectomization, expressions of osteoblast markers were decreased. Quercitrin
increased the expression of the osteogenic marker alkaline phosphatase (ALP) as well as the
osteogenic transcriptional factor RUNX2 in the treated ovariectomized rats. Administration
of Quercitrin increased the phosphorylated forms of ERK, P38, and JNK in ovariectomized
rats, implying that Quercitrin reversed the osteoporosis effect in ovariectomized mice
model by employing MAPK signaling [136]. Similarly, Baicalein attenuated osteomyelitis
by inhibiting Toll-like receptor 2 (TLR2) and MAPK signaling in Staphylococcus aureus-
treated mice and MC3T3-E1 cells. Treatment with Staphylococcus aureus increased the
expressions of TLR2 and MAPK signaling (p-ERK and p-JNK) in treated MC3T3-E1 cells.
The knockdown of TLR2 with shRNA reversed the effect of Staphylococcus aureus on MC3T3-
E1 cells. Baicalin utilized a similar mechanism of inhibition of TLR2 to induce osteogenesis
in MC3T3-E1 cells [137].

Xu Q. et al. evaluated the effect of Icariin on RAW 264.7 cells treated with RANKL to
induce osteoclastogenesis. Treatment of RAW 264.7 cells with RANKL increased NFkB and
MAPK signaling pathway. The phosphorylated forms of P38, ERK, and JNK were found to
be elevated. Treating RAW 264.7 cells with Icariin reversed the RANKL effect of inducing
osteoclastogenesis by inhibiting NFkB and MAPK signaling [138].

Liu H. et al. studied the role of Hesperetin on LPS-induced osteoporosis. Hesperetin
rescued the osteoclastogenesis-inducing effect of RANKL in RAW 264.7 cells. Hesperetin
mediated effect was due to the inhibition of NFkB and MAPK signaling pathways in
RAW 264.7 cells. Similar to in vitro results, Hesperetin rescued LPS-induced bone loss,
decreased osteoclast numbers, and suppressed the RANKL/OPG ratio in mice [139]. In
addition, Kaempferol can also stimulate osteoblastogenesis in MC3T3-E1 cells treated with
DEX by activating MAPK signaling. Treatment with DEX suppressed the expression of
RUNX2, Osterix, and ALP activity. However, treatment of Kaempferol attenuates the
DEX-induced inhibition of osteogenesis. In the MC3T3-E1 cells treated with DEX, p-P38
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decreased significantly, but no significant changes were observed in p-JNK. However, after
treatment with Kaempferol, both the phosphorylated forms were shown to increase [140].

3.4. Antioxidant/ROS

The ROS molecule contains unstable oxygen, which can affect other molecules in
the cell. When ROS is less, these molecules are able to mediate several signals for cell
differentiation, proliferation, and self-renewability. On the contrary, excess ROS will
increase oxidative stress following an imbalance in normal tissue homeostasis, resulting
in poor tissue management and wound healing. Oxidative stress can lead to cell death
and damage to the proteins and nucleic acid [141,142]. In mitochondria, ROS are mainly
produced in the electron transport chain as oxidative phosphorylation byproducts [143].

Enzymes produce intracellular ROS, generally as O2, hydrogen peroxide (H2O2), and
OH [144–146]. H2O2 functions as a second messenger that can integrate environmental
cues, swiftly diffuse through membranes, trigger downstream signal transduction cascades,
and have a variety of downstream destinations [146,147]. Studies have also elucidated
that the family of MAPK, such as p38 MAPK and ERK1/2, are some of the well-known
downstream effector molecules of the ROS and usually play an important role in the
differentiation of osteoblasts [148,149], probably by activating the p38 MAPK and ERK1/2
pathways. However, more detailed studies are required to ascertain these facts [150].

Flavonoids have high antioxidant activity against ROS and have been reported to
rescue the negative effect of ROS on bone. The effect of different flavonoids on the ROS,
namely iron, DEX, H2O2, and 2-deoxy-D-ribose (dRib), are shown in Figure 3. Icariin can
suppress oxidative stress induced by iron on MC3T3-E1 cells. The viability of MC3T3-
E1 cells was decreased after treatment with iron chloride. ROS production was induced
by iron chloride. Nevertheless, cell viability was increased after treatment with Icariin,
and the ROS production was inhibited dose-dependently. Furthermore, osteogenic differ-
entiation markers such as RUNX2 and Osterix were significantly increased after Icariin
treatment. Moreover, iron chloride stimulated osteoclast formation, but the treatment of
Icariin inhibited it [151]. Similarly, the effect of Kaempferol was studied on MC3T3-E1 cells
treated with dRib. dRib produces oxidative stress through autooxidation and glycosylation.
The treatment of dRib notably decreased cell viability, collagen content, and mineraliza-
tion of MC3T3-E1 cells, but Kaempferol significantly reversed the dRib-induced effects
in osteoblasts. Moreover, the treatment of dRib to MC3T3-E1 cells increased the levels of
Malondialdehyde (MDA), an indicator for ROS. However, the increased MDA level by
dRib was reversed by Kaempferol [152].

Qi X.C. et al. reported that another flavonoid Hyperoside (Quercetin 3-O-β-D-galactose)
could protect against the oxidative stress induced by H2O2 in MC3T3-E1 cells. Hyperoside
decreased apoptosis induced by H2O2 and rescued the osteogenesis-related markers col-
lagen I and osteocalcin (OCN). Additionally, H2O2 treatment increased MAPK signaling
(p-P38 and p-JNK) to inhibit the effect of H2O2, concluding that oxidative stress induced
by H2O2 can be reversed by the antioxidant property of Hyperoside [153]. Huang Q. et al.
showed the effect of Myricitrin on oxidative stress induced by H2O2 on human BMSCs
and ovariectomy-induced osteoporosis model. Treatment of H2O2 results in decreased
cell viability, mineralization, and expression of osteogenic markers ALP and OCN. How-
ever, the application of Myricitrin reversed the effect of H2O2 in human BMSCs. In the
ovariectomized mice model, increased levels of MDA (end product of lipid peroxidation)
and reduced glutathione (intracellular antioxidant) are observed. Treating Myricitrin to
ovariectomized mice model attenuated the oxidative effect of H2O2 [154].

Chen L. et al. demonstrated that Proanthocyanidins (PAC) could suppress oxidative stress
in primary osteoblasts induced by DEX. DEX-treatment induces cell apoptosis in osteoblasts by
enhancing the expression of several apoptotic markers such as Caspase 3 and Bax. However,
PAC reversed the DEX effect, stimulated Bcl2 expression, and inhibited Bax and Caspase 3.
Moreover, DEX inhibited the Nrf2 transcription factor related to the regulation of oxidative
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stress. The effect of PAC was analyzed in the DEX-treated rat model. Nrf2 expression was
higher in DEX-PAC treated model compared to the only DEX-treated one [155].
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NIH, USA; https://pubchem.ncbi.nlm.nih.gov/) accessed on 7 February 2023, Figures created with
BioRender.com).

3.5. NFκB/NFATc-1 Signaling

NFκB is one of the most important regulators involved in bone remodeling and
inflammation. The NFκB activity is promoted when the rate of bone resorption exceeds
bone formation [156]. RelA (p65), p52, c-Rel, RelB, and p50 are the key members of NFκB
signaling. The canonical p65/p50 and NFκB heterodimeric complex is a prevalent isoform
of NFκB. Several pro-inflammatory stimulants such as Interleukin (IL)-1 and TNF can
stimulate the NFκB pathway. However, the non-canonical NFκB pathway is induced by
releasing a small subgroup of TNF family members [157].

The canonical NFκB pathway reacts to a variety of stimuli, such as ligands for pattern-
recognition receptors (PRRs), various cytokine receptors, members of the TNF receptor
(TNFR) superfamily, and T-cell and B-cell receptors [158]. The inducible degradation of
inhibitor of nuclear factor kappa B alpha (IκBα), which is brought on by its site-specific
phosphorylation by a multi-subunit IκB kinase (IKK) complex, is the main mechanism for
canonical NFκB activation [159,160]. Two catalytic subunits, namely IKKα and IKKβ, as

https://pubchem.ncbi.nlm.nih.gov/
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well as a regulatory component known as NFκB essential modulator (NEMO) or IKKγ,
constitute the IKK molecule [161]. Various stimuli, such as cytokines, growth factors,
mitogens, microbial components, and stressors, can activate IKK [162]. When IKK is
activated, it phosphorylates IκBα at two N-terminal serines, which causes IκBα to be
degraded in the proteasome in a ubiquitin-dependent manner. This causes the nuclear
translocation of canonical NFκB members, primarily the p50/RelA and p50/c-Rel dimers,
to occur very quickly and causes gene transduction [160,163,164].

Flavonoids have a role in effectively hindering the transcription of the NFATc-1 gene
by targeting RANKL (Figure 4). Xiao L. et al. studied the effect of Puerarin on the differ-
entiation of osteoclasts where RANKL was treated to RAW 264.7 cells. TRAF6 and ROS
expressions were elevated in RANKL-stimulated RAW 264.7 cells, and the Puerarin treat-
ment reversed the effect. Furthermore, NFκB and MAPK signaling were related to the effect
of Peurarin on RANKL treatment. The phosphorylated form of p65 and IkBα expressions
were increased with RANKL treatment, followed by the increase in p-p38, p-JNK, and
p-ERK. After treatment with puerarin, phosphorylated forms of NFkb and MAPK signaling
were significantly decreased. Puerarin inhibited osteoclastogenesis by suppressing NFkb
and MAPK signaling [165]. Alternatively, the flavonoid molecule Epicatechin 3-O-β-D-
allopyranoside (ECAP) has an anti-osteoclastogenesis effect on RANKL-stimulated RAW
264.7 cells. RANKL treatment activates the NFATc-1 and NFκB, which is important for
osteoclastogenesis. ECAP altered the effect of osteoclastogenesis induced by RANKL by
downregulating the phosphorylation of p65, IkBα, as well as NFATc-1 expression dose-
dependently [65].

Similarly, Hyperoside can protect against ovariectomy-induced bone loss. The bone
resorption markers, namely C-terminal telopeptide of type I collagen (CTX) and tartrate-
resistant acid phosphatase 5b (TRAP-5b) were increased after ovarian resection, but treat-
ment with Hyperoside resulted in decreased bone resorption. In ovariectomized mice
model p-p65, p-IkBα and NFATc-1 expression levels were increased, which was further
attenuated by Hyperoside. These results indicate that NFκB and NFATc-1 signaling path-
ways are related to the mechanism of Hyperoside in the ovariectomy-induced osteoporosis
mice model [166]. EGCG can suppress osteoclastogenesis by inhibiting osteoclast-specific
markers as well as NFκB and MAPK signaling in RANKL-stimulated RAW 264.7 cells [167].

Studies elucidated the effect of Daidzin on RANKL stimulation on the BMSCs. Daidzin
can protect osteoclastogenesis on bone marrow-derived macrophages (BMMs) by inhibiting
osteoclast-specific transcript factors such as NFATc-1, c-Fos, TRAP, CTSK, and the NFκB sig-
naling pathway [168]. Lastly, Delphinidin-enriched maqui berry extract (MBE) was shown
to improve the osteogenic activity of MC3T3-E1 cells. MBE inhibited the transnucleation of
p65 induced by LPS. The osteoclastogenesis effect was evaluated by RANKL treatment on
primary mouse bone marrow cells. The NFATc-1 and CTSK were increased with RANKL
but time-dependently reversed with MBE treatment. Therefore, MBE can be associated
with osteoblastogenesis by impeding the NFκB signaling pathway [169]. Zhang H.Q. et al.
indicated that Taxifolin could suppress osteoclast differentiation induced by RANKL on
BMMs. mRNA expressions of osteoclast markers such as TRAP, NFATc-1, and CTSK were
increased with RANKL treatment, whereas treatment of Taxifolin reversed the expressions
in a dose-dependent manner [170].

3.6. Other Signaling Pathways

Numerous studies reported the effects of flavonoids on osteoblastogenesis and osteo-
clastogenesis through many signaling pathways.

Zhou L. et al. examined Icariin’s effect in the ovariectomized rat model, MC3T3-E1
cells, and BMSCs. BMSCs isolated from the ovariectomized rat model shows a decrease
in ALP and enhanced osteoclastogenesis. Icariin treatment reversed the effect similarly
with a positive control E2 (phytoestrogen). Insulin-like growth factor I (IGF-I) signaling
can activate estrogen receptors by stimulating phosphoinositide 3-kinase (PI3K). Icariin
treatment stimulated the levels of ERα and IGF-IR on BMSCs. In MC3T3-E1 cells, Icariin
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stimulated the expression of IGF-IR, but after blocking the IGF-IR with PPP (IGF-IR kinase
inhibitor picropodophyllin), the Icariin effect was inhibited. Moreover, Icariin can stimu-
late bone formation by IGF-I1 and ER signaling in the ovariectomy-induced osteoporosis
model [171]. Additionally, Icariin treatment elevated collagen 1-α1, OCN, and ALP lev-
els. Notch signaling molecules were suppressed by Icariin treatment, such as Hes1 and
Hey1. Moreover, inhibiting Notch signaling with DAPT (N-[N-(3, 5-difluorophenacetyl)-l-
alanyl]-s-phenylglycinet-butyl ester), a γ-secretase inhibitor, enhanced the effect of Icariin.
Ovariectomized mice model had increased expression levels of NFATc-1 and Notch 1,
which was attenuated by Icariin, indicating its role in osteoblastogenesis by regulating
Notch signaling [172]. Icariin also plays a major role in osteoblastogenesis by activating
cAMP signaling in rat calvarial osteoblasts. Icariin treatment increased ALP activity and
cAMP contents with an elevation in the level of p-PKA and p-CREB [173].
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Another flavonoid, Luteoloside, is shown to inhibit osteoclastogenesis on RANKL-
stimulated BMMs. Luteoloside inhibited the osteoclast markers NFATc-1, CTSK, and
calcitonin dose-dependently. RANKL induced the Ca2+ oscillation and NFATc-1, but
Luteoloside rescued the effect. Treatment of Luteoloside also reversed the effect of MAPK
signaling. Activation of NFkB was significantly reduced with the Luteoloside treatment.
Luteoloside also suppressed RANKL-induced osteoclastogenesis through NFATc-1 and
Ca2+ signaling, as well as NFkB and MAPK signaling [174]. Cai P. et al. reported the effect
of Baicalein on MC3T3-E1 cells treated with glucocorticoid. Baicalein directly targeted
genes were Ak strain transforming (AKT) 1, forkhead box protein O (FOXO) 1, and FOXO3.
The glucocorticoid treatment decreased the levels of several osteoblastogenesis markers,
namely ALP, RUNX2, and OCN. Treatment of Baicalein attenuated glucocorticoid’s effect,
inhibited the p-AKT expression level, and stimulated the FOXO1 expression. Silencing
of the AKT with siRNA-AKT increased FOXO1, suppressing OCN, ALP, and RUNX2. All

https://pubchem.ncbi.nlm.nih.gov/
BioRender.com


Nutrients 2023, 15, 919 14 of 33

evidence shows that Baicalein can inhibit glucocorticoid-induced osteoporosis by regulating
AKT/FOXO1 signaling [175].

Similarly, Kaempferol can induce osteoblastogenesis by mTOR signaling on BMSCs
from the ovariectomized mice model. BMSCs from ovariectomized mice have decreased
osteoblastogenesis markers ALP, RUNX2, and osterix, but the treatment of Kaempferol
increased their expressions. Rapamycin, an mTOR inhibitor, was used to assess the effect
of Kaempferol. The downstream regulators of mTOR, 4E/BP1, and S6K1 concentrations
were induced in the ovariectomized mice model, but Kaempferol reversed the effect in-
dicating its potency to stimulate osteoblast differentiation on ovariectomized BMSCs by
regulating mTOR signaling [176]. Zhou Y. et al. demonstrated that Puerarin stimulated
osteoblastogenesis in BMSCs via p53/TNFα/STAT1 signaling. Treatment with Puerarin
suppressed the pro-inflammatory cytokines such as IL-6, TNFα followed by the increased
production of anti-inflammatory cytokines such as IL-2 and IL-10. Apoptotic markers such
as caspase 3 and caspase 9 were decreased, followed by the upregulation in miR-155-3p
level. Additionally, the levels of TNFα, STAT1, and p53 were decreased. Inhibiting miR-155
increased the TNFα, STAT1, and p53, showing that Puerarin can regulate osteoblastogenesis
by inhibiting p53/TNFα/STAT1 signaling [177].

4. Absorption of Flavonoids

One of the most pivotal factors responsible for maintaining the normal physiological
functions of flavonoid molecules in the body is its bioavailability [178]. In plant diets,
flavonoids are primarily found as glycosides. Since they are bonded to sugars in the form
of beta-glycosides, flavonoids found in food were formerly thought to be indigestible [43].
The aglycone part penetrates the epithelial cells of the intestine after undergoing the process
of hydrolysis, where it is processed by the phase II enzymes to produce the corresponding
conjugated metabolites [24]. Following the consumption of flavonoids, the conjugated
metabolites are identified in the plasma, as the majority of flavonoids undergo methylation,
glucuronidation, and sulfation in the liver and small intestine [178]. Most dietary nutrients
are primarily absorbed in the small intestine [27]. The lacteals or portal veins receive the
absorbed flavonoids after conjugation through the small intestine. Only the aglycone parts
are generally absorbed since the glycosides were deemed extremely hydrophilic for passive
diffusion via the small intestine. Thus, only a small amount of glycosylated flavonoids are
absorbed. One of the theories for the tea flavonoids’ poor bioavailability and absorption is
that they are unstable in the colon [24].

5. Delivery System of Flavonoids for Bone

The highly unsaturated structure of flavonoids causes reduced potential bioactive
benefits by easy oxidation and degrading of flavonoids [179]. Flavonoids as therapeutic
agents are more limited applications because of their low bioavailability and aqueous
solubility. A strategy to overcome the limitations mentioned above is to apply the delivery
system for flavonoids by carriers using chemical and biological methods [180,181]. For
example, liposomes formed by lipid and water bilayers can catch both substances that
have hydrophilic or hydrophobic properties, respectively. Some structures of flavonoids
can indicate significant loading abilities in membranes of liposomes and can affect the
properties of encapsulating and stabilizing liposomes by binding structures of loaded
flavonoids and liposomes [179,180]. Recent advancements have elucidated the use of
lipid nanoparticles, liposomes, micelles, scaffolds, and hydrogen nanocomposite to deliver
different flavonoids (Figure 5).

5.1. Lipid Nanoparticles

Quercetin-loaded solid lipid nanoparticles (oral administration, 5 mg/kg/day) have
higher abilities to alleviate bone loss and enhance bone strength compared to only quercetin
treatment in the ovariectomized rat model [182].
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5.2. Liposome

For delivering the osteogenic phytomolecule to cells, Asp8-liposome can be an ef-
ficient delivery system. In an estrogen depletion-induced osteoporosis mice model by
ovariectomy, Asp8-icaritin-liposome can prevent osteoporosis by inducing bone forma-
tion [183]. Asp8-liposome-Icaritin bone-targeting delivery system effectively prevents
steroid-associated osteonecrosis in the rat model. In addition, the Asp8-liposome delivery
system also can enhance osteogenesis and inhibits osteoclast activity [184]. Sun X. et al.
have developed a novel formulation that is biomineral-binding liposomes (BBL) loaded
with icariin as a new therapeutic candidate for osteoporosis. In BBL formulation, pyrophos-
phate acts as the bone-binding moiety, and drug-conjugated liposome rapidly strongly
binds to hydroxyapatite (HA). BBL loaded with Icariin has good therapeutic efficacy on the
ovariectomized + glucocorticoid group in the rat model [185].

5.3. Metal Nanoparticles

Isoliquiritigenin-encapsulated mesoporous silica nanoparticles (MSNs-ISL) suppress
the remarkable RANKL-induced osteoclastogenesis and inhibit osteolysis by osteoclast in
BMMs. Therefore, MSNs-ISL can protect against the destruction of bone inflammation [186].
SiO2-CaO systems with a hollow core surrounded by mesopores in a radial arrangement
are called NanoMBGs. It induces the response of macrophages against stimulation of LPS
and IL-4. Moreover, it does not induce the polarization of macrophages regarding the
M1 pro-inflammatory phenotype. NanoMBGs loaded with Ipriflavone do not affect cell
proliferation and cell viability of osteoblasts in coculture with osteoclasts while remarkably
inhibiting the proliferation of osteoclasts and activating resorption [187].

5.4. Bioactive Glass Nanoparticles

Mesoporous bioactive glass nanoparticles suppress the inflammatory responses of
macrophages. Bioactive glass nanoparticles was modified with β-cyclodextrin and was
loaded with Naringin (Aladdin, Shanghai, China) (are called as NG@CD- bioactive glass
nanoparticles). NG@CD-bioactive glass nanoparticles facilitates the transformation to
the M2 phenotype in macrophages. In addition, NG@CD- bioactive glass nanoparticles
synergistically promotes osteogenesis and suppresses osteoclast formation in the local
immune microenvironment. In a rat model with a femoral defection, NG@CD-bioactive
glass nanoparticles increases the expression level of osteogenesis-related genes and the
formation of new bone [188].

BioRender.com


Nutrients 2023, 15, 919 16 of 33

5.5. Micelles

Nobiletin-PEG-PCL micelles developed by loading Nobiletin to poly(ethylene glycol)-
block-poly(e-caprolactone) could increase its circulation time by preventing the rapid
release of Nobiletin from micelles. Nobiletin-PEG-PCL restrains osteoclast differentiation in
BMMs via the MAPK signal pathway by RANKL. In addition, Nobiletin-PEG-PCL reduces
the loss of bone and enhances bone density in ovariectomized mice model [189]. Baicalein
encapsulated D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) polymeric micelles
(PMs) effectively reduced the damaged gingival fiber and destructed alveolar bone by direct
injection in a rat model with periodontal disease [190]. The AL-P(LLA-CL)-PEG-P(LLA-
CL)-Myricetin-loaded micelles are expected as a bone-targeting delivery system for the
treatment of osteoporosis. In an ovariectomized rat model, AL-P(LLA-CL)-PEG-P(LLA-
CL)-Myricetin-loaded micelles showed the improved oral bioavailability of Myricetin
and excellent capability for bone-targeting [191]. Self-assembled nanomicelles could act
as useful oral carriers to deliver therapeutics with low bioavailability for osteoporosis
treatment. Circinal–Icaritin by self-assembled nanomicelles (CIT-SO-DOC) improved the
bioavailability of CIT and increased the effect of preventing osteoporosis by reducing the
size and enhancing the absorption of CIT [192].

5.6. Scaffolds

Porous composite scaffolds with Icariin-loaded HA/alginate (Icariin/HAA) stimu-
lated cell proliferation in BMSCs, meanwhile no cytotoxicity. Especially porous composite
scaffolds with icariin/HAA suppressed osteoclast activation in vivo. Moreover, it enhanced
gene expression levels of osteogenic markers and the Wnt signaling-related genes. Further,
bone regeneration of rabbits with radius bone defection was improved by porous composite
scaffolds with Icariin/HAA [193].

Composite hierarchical porous scaffolds were developed for carrying the BMP2 and
Icariin under a controlled drug delivery system (SFBMP2/SBA15IC) and composed of
silk fibroin micropores and SBA15 mesopores (SF/SBA15). SFBMP2/SBA15IC has an
excellent induction ability of osteogenesis than other BMP2 or Icariin-loaded groups by
showing higher increased osteogenic differentiation gene expression and ALP staining and
mineralization in co-cultured BMSCs [194].

Calcium phosphate cement (CPC) scaffolds loaded with Icariin were synthesized for
successfully delivering Icariin. Icariin enhances the osteogenic and angiogenic effects in
BMSCs and inhibits osteoclastogenesis. CPC scaffolds are a better delivery system for repairing
bone defects because of their capability to improve osteogenesis and angiogenesis. Thereby,
systemic administration of CPC scaffolds loaded with Icariin could promote the repair of
bone defects and the prevention of osteoporosis in the ovariectomized rat model [194]. Dual
drug release is achieved by incorporating Icariin and vancomycin into an injectable CPC.
It is a notable potential therapeutic candidate for bone infection disease or contaminated
bone injury because Icariin-VA-CPC scaffolds have antibiotic and osteoinductive effects. [195].
Icariin–small-intestine submucosa scaffolds (Icariin-SIS) elevated osteogenic markers such
as ALP, bone sialoprotein (BSP), and OCN in MC3T3-E1 cells. The formation of new bone
was accelerated after implanting IC-SIS in mice with calvarial defects [196]. Another study
reported that icariin–extracellular matrix (ECM)-SIS induced higher expression levels of
markers of osteogenic differentiation (such as ALP, BSP, and OCN) and BMP4 expression
than ECM-SIS (same as Icariin-SIS). Moreover, Icariin-ECM-SIS implanted mice with defective
calvaria have increased bone regeneration and a higher new bone formation ratio compared
to ECM-SIS or Icariin-SIS implantation ground [197]. Hesperedin/gel sponge scaffolds
successfully carried Hesperedin to human MSCs and induced osteogenic differentiation
by activating the ERK and Smad signaling pathways. Hesperedin/gel sponge scaffolds
significantly promoted fracture healing of rat tibia in the rat osteotomy model [198]. Layer-
by-layer (LBL) nano-matrix, incorporated with Kaempferol characterized as stable, increased
drug delivery ability and pharmacokinetics, and inhibited enzyme degradation. Therefore,
the LBL nano-matrix incorporated with Kaempferol stimulated osteogenesis in the osteopenic



Nutrients 2023, 15, 919 17 of 33

rats [199]. Alginate/gelatin-Silibinin scaffolds could be usefully applicated to bone tissue
engineering because they enable continuous release of Silibinin during an extended time and
induction of bone formation in vitro [200].

5.7. HA Bioceramic Microspheres

For application in carrying Quercetin, nHA bioceramic microspheres developed hav-
ing a micro–nano hybrid surface. nHA bioceramic microspheres sustained the release
of Quercetin. Moreover, nHA bioceramic microspheres with Quercetin could induce the
formation of bone and angiogenesis in femur defect rats with ovariectomy [201].

5.8. Hydrogel Nanocomposite

Improved alginate dialdehyde–gelatin hydrogel nanocomposite by incorporating meso-
porous silica–calcium nanoparticles and Icariin loading assures enhanced osteoblast prolif-
eration, adhesion, and differentiation in MC3T3-E1 cells [202]. The hydrogel loaded with
Naringin indicated the rapid release of Naringin at pH 5.5 to 6.5. Cell viability increased at
0.85% after Naringin treatment. Especially, CHC-β-GP-glycerol hydrogel that carries Naringin
inhibited loss of periodontal bone and infiltration by inflammation. Further, it meaningfully
suppressed the expression of TLR2, RAGE, and TNFα in periodontitis [203].

5.9. Phase-Transited Lysozyme (PTL)-Primed Ti Surface

PTL-primed titanium surface can locally deliver Icariin through a layer-by-layer self-
assembly system. PTL-primed titanium surface with Icariin-immobilized HA/chitosan
multilayer enhances the osteogenesis on osteoblasts and improves early osseointegration
in vivo by continuously releasing icariin [204].

5.10. Nano Coating

Flavonoids can be coated on the surface of osseo-integrable implants and can be made to
release at the desired site of action. The Quercetin was grafted on titanium coins (between
64 ± 10 and 842 ± 361 nmol on 6.2 mm). Quercetin-nanocoated titanium surface promotes
mineralization in human BMSCs and can accelerate osteointegration in bone implants [205].

6. Conclusions

Diseases associated with the skeletal system can limit an individual’s mobility and
can often result in considerable morbidity. The increase in the activity of osteoclasts or
decreased activity of osteoblasts is the underlying molecular cause of osteoporosis. This
imbalance in the bone remodeling process causes accelerated bone resorption and sup-
pressed bone formation [206]. Moreover, the pathophysiology of osteoporosis is now
understood to include decreased bone density and skeletal fragility brought on by several
factors, including (1) defects in the trabecular microarchitecture; (2) flaws in the intrinsic
materials of the bone tissue; (3) imperfections in the repair of microdamage from routine
daily activities; and (4) excessive rates of bone remodeling [207]. Numerous drugs and ther-
apeutical approaches have been tested to establish an efficient cure for osteoporosis [208].
Patients with osteoporosis can employ pharmaceutical treatments to lower their fracture
risk and boost bone mineral density. Still, their usage is constrained by the side effects,
which depend on a variety of factors, including past medical history, genetics, and patient’s
nutritional habits [209–213]. Commercially available drugs for osteoporosis, their signaling
mechanism of action, and known side effects are listed in Table 2. The long-term use
of commercially available bisphosphonates such as Alendronate, Zoledronate, and Rise-
dronate has been reported to cause some substantial side-effects such as diarrhea, gastritis,
nausea, and flatulence [214]. In addition, the implementation of RANKL inhibitors such as
Denosumab has potential side effects such as urinary tract infection, polyoma (BK) viremia,
and flu-like syndrome compared to the control subjects [215]. The prevention of osteoporo-
sis by hormone-replacement therapy, including estrogen, has the chance of developing
cardiovascular diseases, breast cancer, thromboembolic disorders, and stroke [216]. An
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anti-sclerostin antibody, namely Romosozumab, increases the Wnt signaling activity to
maintain a homeostatic balance between bone resorption and bone formation. However, it
has been shown to increase the chances of stroke and cardiovascular difficulties in seven
patients in the first year of the trial [217]. New advancements in the field of therapeutics
against bone diseases are urgently required to effectively treat osteoporosis while reducing
side effects and regardless of changing patient-related circumstances [208].

Table 2. Therapeutical options for the treatment of bone loss and their mechanisms of action and side
effects. (Protelos® and Osseor® (Servier, France)).

Anti-Resorptive Agents

Drug Class/Name Actions Side Effects References

Nitrogen-containing
bisphosphonates

Alendronate
Ibandronate
Risedronate
Zoledronate

Restraint of the mevalonate
pathway through disruption of

protein prenylation by suppressing
the farnesyl pyrophosphate

synthase enzyme
Release of osteoclasts

Dysphagia
Nausea/Flatulence

Gastritis
Constipation/Diarrhea

[208,211,218,219]

Non-nitrogen-containing
bisphosphonate

Clodronate
Etidronate

Tiludronate

Disturbance the cell metabolism by
using their metabolites instead of

ATP
Osteoclast apoptosis

Acid regurgitation
Esophageal ulcers

Hypocalcemia
Osteonecrosis of the jaw

Atypical femoral fracture

[213,220–222]

Monoclonal antibody against
RANKL

Denosumab

Inhibition of RANK/RANKL
signaling pathway through

competitive binding to RANKL
Inhibition of differentiation and

function of osteoclasts

Gastrointestinal disorders
Musculoskeletal-related pain

Osteonecrosis of the jaw
Atypical femoral fracture

[218,223,224]

Selective estrogen receptor
modulator

Bazedoxifene
Lasofoxifene
Raloxifene
Tamoxifen

Combine with estrogen receptors
and acting selective estrogenic

activity
Osteoclast apoptosis

Cramps of muscle
Venous thromboembolic disorder

Stroke
[218,225,226]

Estrogen replacement therapy
Oestrogen

Induction of caspase-8 cleavage
through the combination of Fas and

Fas ligand on the surface of
pre-osteoclasts after promoting the

transcription of Fas ligand by
binding to estrogen receptor-α

Osteoclast apoptosis

Breast cancer
Heart disease

Stroke
Venous thromboembolic disorder

[208,216,220]

Calcitonin

Reducing the level of blood calcium
by binding to calcitonin receptors

on osteoclasts
Transcriptional regulation through

cyclic adenosine
monophosphate/protein kinase

A-cAMP-response element binding
protein pathway

Nasal adverse reaction
Anti-calcitonin antibody formation

Hypocalcemia
Prostate cancer

[227–229]

Cathepsin K inhibitor
Balicatib

Odanacatib
ONO-5334

Preventing the collagen cleaves by
binding to cathepsin K

Increase bone mineral density by
suppressing the osteoclast activity

by inhibiting the cathepsin K

Stroke
Pycnodysostosis

Atypical femoral fracture
[230–232]

Strontium ranelate
Protelos®

Osseor®

Reduction of osteoclast activity by
inducing the production of

osteoprotegerin
Induction of osteoclast apoptosis
through directly binding to the

calcium sensing receptors

Venous thromboembolic disorder
Myocardial infarction

Cardiovascular disorder
[231,233,234]
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Table 2. Cont.

Anabolic Agents

Drug Class/Name Actions Side Effects References

Parathyroid hormone
analogue

Teriparatide

Increasing bone formation through
binding to the parathyroid

hormone-1 receptor on osteoblasts

Nausea
Headache/Dizziness

Leg cramps
Osteosarcoma

[235–237]

Parathyroid hormone
related-protein
Abaloparatide

Increasing bone formation through
binding to the parathyroid

hormone-1 receptor on osteoblasts

Injection site reaction
Dizziness
Myalgia

Gastrointestinal symptoms
Osteosarcoma

[238–240]

Monoclonal antibody against
sclerostin

Romosozumab
Blosozumab

Increase the activation of Wnt
signaling by degrading

the sclerostin

Stroke
Myocardial infarction

Cardiovascular disorder
[241–243]

Flavonoids have favorable and preventive effects on the pathological aspect of bone
loss and the emergence of osteoporosis. Administering substances that have an impact on
bone deposition and remodeling at the same time is one of the potential therapy options
using purified chemicals. Dietary supplements consist of a range of natural bioflavonoids
as essential components. Flavonoids have been shown to possess various therapeutic
potentials such as antitumor, antimicrobial, anti-oxidant, anti-cancer, anti-inflammatory
properties, stimulating osteogenic abilities, etc. Some flavonoids, including anthocyanins,
flavonols, and isoflavones, have dual osteoclast and osteoblast stimulatory effects [11].
Compared to pharmaceutical treatments, these naturally occurring phytochemicals with
powerful bone-conserving qualities beyond vitamin D and calcium have fewer or no
adverse effects. In addition to their inherent chemical anti-oxidant abilities, flavonoids
are also being researched for their potential anti-inflammatory properties. As discussed
in previous sections, some flavonoids such as Cyanidin, Daidzein, Cladrin, Calycosin,
Icariin, and Petunidin have been shown to function by activating osteoblasts and inhibiting
osteoclasts [11]. Few clinical trials have been carried out, although several flavonoids
have demonstrated to have largely preventive properties aimed at preventing pathological
bone loss, highlighting their specific effects on osteoblast and osteoclast differentiation and
activity through the same interactors. The preventive properties of flavonoids have been
shown in a number of preclinical studies. Even though these chemicals definitely play
epigenetic roles, only a few chemical studies have elaborated on their mechanism [244].
These bioactive substances are thought to stimulate bone formation and prevent bone
resorption by controlling cell signaling pathways such as Wnt and BMP signaling that
affects osteoblast and osteoclast development in tandem. For instance, with minimal or no
carcinogenic side effects, the bioavailability of isoflavones possessing the selective estrogen
receptor affinity can potentially prevent osteoporosis [245].

Additionally, data from a randomized, double-blind, placebo-controlled trial por-
trayed the beneficial effect of the flavonoid icariin in treating osteoporosis which has
comparatively lower chances of causing cardiovascular ailments and breast cancer [246].
Nevertheless, the activities of flavonoids are not explained by a single mechanism but rather
by a confluence of numerous routes. Studies currently underway point to the potential
for including flavonoids in grafts and bone scaffolds to ensure local administration and
continuous release of flavonoids that can speed up bone healing [247].

Numerous studies have studied the interaction of flavonoids with various target
proteins involved in osteogenesis. Jiang J. et al. performed molecular docking studies to
predict and verify the roles of some flavonoids, Icariin, Baohuside-I, and Icartin, in reversing
the inhibitory effect of the glucocorticoid-induced bone formation. These flavonoids were
docked with some of the proteins such as RANKL, RUNX2, OPG, BMP2, and BMP4 [248].
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Hu Y. et al.’s molecular docking studies also delineated the mechanism of using quercetin
against osteoporosis. NFKB1, IL-1β, and RelA had an increased binding potency which
mainly explains Quercetin’s anti-osteoporosis activity [249]. Additionally, the role of
Kaempferol in curing senile osteoporosis was also confirmed by performing molecular
docking studies. The study revealed that Kaempferol is a potent curative agent against this
musculoskeletal disease as it can regulate oxidative stress, various inflammatory pathways,
and bone homeostasis [250]. For the first time, molecular docking investigations performed
by Yu X. et al. revealed that Naringin might treat osteoporotic fracture, presumably via
modulating a variety of signaling pathways and targets associated with the development
of osteoclasts and oxidative stress. The docking study was performed using 8 proteins,
namely SERPINE1, CASP3, PPARG, ESR1, MMP1, TNF, CYP19A1 and ACE [251].

However, poor bioavailability and long-term stability issues have hindered their
clinical impact. Recently, with the advent of new-age delivery methods, including polymer
science and nanotechnology, the issues with flavonoid bioavailability and toxicity are being
resolved. Thus, flavonoids with bone-sparing properties are being considered for bone
tissue engineering and regenerative medicine for unmet needs for bone augmentation.
Even the inclusion of certain biomaterials to deliver flavonoids can contribute to bone
tissue engineering. A synergistic interaction between nanoscience and flavonoids might
enable the formation of hybrid nanocomposites to enhance their epidemiological properties.
However, researchers should consider each delivery system’s pros and cons before deciding
the delivery method for flavonoids for therapeutic purpose (Table 3).

Table 3. Advantages and Disadvantages of delivery systems for flavonoids.

Types Advantages Disadvantages References

Lipid nanoparticles
Low toxicity

Low side effects
High biocompatibility

High production costs
Comparatively reduced loading

efficiency
Expulsion

[182,252]

Liposome

Low toxicity
Low side effects

Increased efficacy
High biocompatibility

High production costs
Short half-life

Expulsion
Low solubility
Low stability

[185,253]

Metal nanoparticles
High stability

Possibility of large-scale production
High biocompatibility

Toxicity
Complicated synthetic route [186,254]

Bioactive glass nanoparticles High biocompatibility Mechanical weakness
Low fracture resistance [187,255]

Micelles
Easy and reproducible scale-up

Low side effects
Longer circulation

Low stability [189,256]

Scaffolds
High biocompatibility
Low immunogenicity

Excellent cytocompatibility

Poor mechanical properties
High production costs
Low reproducibility

[201,257]

HA bioceramic microspheres Low toxicity
High biocompatibility

Poor mechanical properties
High production costs
Low reproducibility

[203,258]

Phase-transited
lysozyme-primed Ti surface

High biocompatibility
High biocompatibility

Fabricating long-term antibacterial
multilayer coatings

Toxicity [204,259]

Nano coating Low toxicity
High biocompatibility Low stability [205,260]
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In this review, we have discussed the role of flavonoids on the various osteogenic
signaling pathways and how various studies have highlighted the potential of flavonoids
on bone-forming ability. Natural flavonoids are often cost-effective and possess fewer side
effects than their chemically synthesized counterparts (Figure 6). Though tons of research
has been performed to decipher the mechanism of action of flavonoids on osteogenesis
and osteoclastogenesis, no flavonoids have been approved as a drug for any bone diseases.
However, in recent times, to validate the effect of flavonoids, few studies have been
undertaken to assess their potential in human subjects (Table 4). Moreover, a few patents
have been registered for flavonoids’ role in treating bone-related diseases (Table 5). More
such clinical trials are required to tap the potential and ability of flavonoids to influence the
bone remodeling process and project them as potential therapeutics.
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Table 5. Patents of flavonoids for treating bone loss.

Patent No. Patent Type Application No. Publication Date Content of the Patent Inventors Applicant

US2008003300A1 US US81952707A 3 January 2008

A combination of flavan and
Free-B-Ring flavonoid with
Mg/Zn/F-CaP to prevent

osteoporosis and other bone
diseases.

Gaffar Maria C. -

KR100345825B1 Republic of Korea KR20000003048A 24 July 2002

Method to isolate, identify
and extract flavonoids and

serotonins lignans for
enhancing bone formation.

Choi Sang-Won;
Wonjeong Lee; Kang

Ga-hwa; Seonghee Cho

Woori Honghwa
Farming

Association
Corporation

CN102600126B China CN 201210071686 4 May 2011

The implication of prenylated
flavonoid for the prevention

of osteoporosis and the
accelerates the process of

bone formation

Li Rongtao; Li Yanping;
Deng Xuliang; Li

Hongmei

Kunming
University of
Science and
Technology

WO2002017909A1 WIPO (PCT) PCT/KR2001/000368 7 March 2003 The employment of quercetin
against osteoporosis

Chung-Sook Kim;
Hye-Kyung Ha;
Kye-Yong Song

Korea Institute of
Oriental
Medicine

CN103989732A China CN201410183257.5A 11 July 2017

The employment of
kaempferitrin, total

flavonoids and Beggarweed
extract against osteoporosis

Zheng Chengjian; Qin
Luping; Ma Xueqin;

Zhang Qiaoyan; Han
Ting; Zhang Hong

Second Military
Medical

University

Despite the pharmacological potential of flavonoids, dietary flavonoids have a number
of drawbacks. When consumed with other food ingredients, flavonoids may experience
greater precipitation, complexation, and microbial degradation, significantly affecting their
stability and bioavailability [261,262]. Even flavonoids in higher concentrations have the
potential to be mutagens and pro-oxidants and can create free radicals and inhibitors of
important enzymes involved in the metabolism of hormones. Because of this, flavonoids
should only be consumed in reasonable amounts that are generally found in a regular
vegetarian diet. High dosages may have more negative effects than positive ones. Increased
flavonoid exposure from food or supplementation can potentially overwhelm the body,
developing reactive oxygen species and ultimately causing DNA damage. Furthermore,
due to the rapid cell proliferation that occurs during fetal development, adverse effects
might be amplified and lead to increased sensitivity to phytochemical exposure [263]. When
consumed at levels of 1000 mg per day, flavonoids frequently cause nausea, headaches,
or tingling in the extremities in some persons. Similarly, a study found that some cancer
patients may have liver damage from tea extract supplements. In addition, as the safety of
flavonoid supplements in pregnancy and lactation has not been demonstrated, it is better
to avoid them during these times [264].

The structural components present in flavonoids are also responsible for their po-
tential side effects. When peroxidases oxidize phenol ring-containing flavonoids, they
produce cytotoxic phenoxyl radicals, which co-oxidize the unsaturated lipids moieties
such as NADH, GSH, nucleic acids, and ascorbate, generate ROS and induce mitochon-
drial toxicity [265–268]. The electrophilic quinone/quinone methides formed by flavonoids
with catechol rings have been found to bind to GSH, protein, and DNA [267,269–272].
Because flavonoids have been demonstrated to both promote [273] and inhibit [274] drug-
metabolizing enzymes, there are further reasons to be concerned about mega flavonoid
supplementation. If flavonoids and other dietary phenolics are to be employed as therapeu-
tic agents, it is clear that more investigation into their possible side effects is necessary [275].

Thus, a plethora of studies will be required to assess the benefits of the bioactivity
of flavonoids and their reported drawbacks as therapeutics. Moreover, research must be
continued to develop materials or delivery methods that can deliver controlled release
kinetics and degradation and directly influence the rate of new bone formation. While
developing such strategies, the researcher has to consider factors such as mimicking the
bone microenvironment at the implantation site, promoting angiogenesis, stage of inflam-
mation, and osteogenesis phases of new bone formation. Since flavonoid action is well
acclaimed in improving bone health, the efficient delivery methods enabling them with
easily absorbable and sustained release would benefit bone regeneration in vivo.
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