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Abstract: With the increasing incidence of non-alcoholic fatty liver disease (NAFLD) and the aging
of the population, sarcopenia is attracting attention as one of the pathological conditions involved
in the development and progression of NAFLD. In NAFLD, sarcopenia is closely associated with
insulin resistance and results from the atrophy of skeletal muscle, an insulin target organ. In addition,
inflammatory cytokines that promote skeletal muscle protein breakdown, low adiponectin levels
leading to decreased insulin sensitivity, and hyperleptinemia are also involved in NAFLD pathogene-
sis. The presence of sarcopenia is a prognostic factor and increases the risk of mortality in patients
with cirrhosis and post-treatment liver cancer. Sarcopenia, the presence of which mainly occurs due
to decreased muscle mass, combined with increased visceral fat, can lead to sarcopenia-associated
obesity, which increases the risk of NASH, liver fibrosis, and cardiovascular disease. In order to
treat sarcopenia, it is necessary to properly evaluate sarcopenia status. Patients with high BMI, as in
sarcopenic obesity, may improve with caloric restriction. However, inadequate oral intake may lead
to further loss of muscle mass. Aerobic and resistance exercise should also be used appropriately.

Keywords: non-alcoholic fatty liver disease 1; sarcopenia 2; non-alcoholic steatohepatitis 3; sarcopenia-
associated obesity 4

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH)
are among the most common liver diseases, with the number of patients increasing rapidly
worldwide due to the increasing prevalence of obesity and type 2 diabetes. NASH is con-
sidered to be the most common liver disease [1] and is recognized as a chronic progressive
disease that increases the risk of various complications such as chronic liver disease, obesity,
cancer, and cardiometabolic diseases such as T2DM [2]. With the increase in the number
of patients with NAFLD, sarcopenia has attracted attention as one of the pathological
conditions involved in the development and progression of NAFLD. Sarcopenia was first
reported in 1989 as a condition characterized by age-related loss of muscle mass [3], and in
2010, the European Working Group on Sarcopenia in Older People published a diagnostic
criteria [4], making sarcopenia a widely recognized disease. For many years, sarcopenia
was thought to occur exclusively in the geriatric population; however, it is now recognized
that sarcopenia can occur early in life [5]. In recent years, several studies have shown a
correlation between sarcopenia and chronic diseases such as type 2 diabetes (T2DM) [6],
metabolic syndrome (MetS) [7], and liver disease [8]. Sarcopenia has been reported to be
associated with increased morbidity and mortality, worse quality of life, and disability [9].
This article outlines the current status of NASH/NAFLD and the clinical significance of
sarcopenia and its pathogenesis in NASH/NAFLD.

2. Epidemiology of NAFLD/NASH

NAFLD is classified into nonalcoholic fatty liver (NAFL) with slow progression to
liver fibrosis and NASH with hepatocellular damage and liver fibrosis. According to a
meta-analysis, the prevalence of NAFLD is 25.2% worldwide, 27.4% in Asia [10], and
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22.3% in Japan [11]. Projection models have predicted that by 2030, the number of NAFLD
cases would increase by 18.3% and reach 109 million, with a prevalence rate of 28.4% [12].
According to the model, the number of patients with NAFLD is expected to increase
significantly in China and the United States by 2030, while this number is expected to level
off in Japan, partly due to population decline. The proportion of patients with NASH in the
NAFLD population will also increase in the coming decades due to an aging population
and the projected increase in the prevalence of DM among older adults. Approximately
20% of NAFLD cases were classified as NASH in 2015 and this rate is expected to reach
27% by 2030. The incidence of non-compensated cirrhosis will increase by 168% from
39,320 cases to 105,430 cases by 2030. Similarly, the incidence of hepatocellular carcinoma
will increase by 137% from 5160 to 12,240 cases by 2030, and liver deaths are predicted to
increase by 178% from 28,200 to an estimated 78,300 by 2030.

In Japan, the proportion of cases with advanced liver fibrosis is expected to increase as
the population ages [12], and similarly, the number of cases with sarcopenia complications
is expected to increase.

3. Sarcopenia in Chronic Liver Disease

Skeletal muscle as a metabolic organ as well as a locomotor organ is increasingly
attracting researchers’ and physicians’ attention. Sarcopenia is defined as an age-related
disease involving a decrease in muscle quantity and quality as well as physical perfor-
mance [3,13]. Specifically, sarcopenia is probable when low muscle strength is detected.
A sarcopenia diagnosis is confirmed by the presence of low muscle quantity or quality.
When low muscle strength, low muscle quantity/quality and low physical performance
are all detected, sarcopenia is considered severe [3]. Primary sarcopenia is caused solely
by aging, secondary sarcopenia is defined as sarcopenia caused by various factors such
as liver disease. The three types of secondary sarcopenia include those related to chronic
disease, those related to inactivity, and those associated with nutrition. There is a close
relationship between skeletal muscle and liver, in particular, in terms of glucose, amino
acid, and ammonia metabolism [14].

Nutritional disorders, low levels of branched-chain amino acids (BCAAs), hyperam-
monemia, abnormal gut microbiota, insulin resistance, and lipid factors are thought to
contribute to sarcopenia in patients with chronic liver disease [15]. Cirrhosis, a terminal
manifestation of chronic liver disease, often results in protein-energy malnutrition (PEM).
When protein hyponutrition was evaluated by albumin level (<3.5 g/dL) and energy hy-
ponutrition by respiratory quotient (<0.85) in indirect calorimetry, 48% of patients with
cirrhosis were reported to be energy hyponutrient and 67% were protein hyponutrient,
with 18% of PEM patients having both [16]. Although glucose is an important energy-
producing substance, amino acids are used for glycogenesis due to low glycogen stores
in the liver and the unavailability of fatty acid carbons for glycogenesis in patients with
chronic liver disease. Amino acids are mainly supplied by the breakdown of skeletal
muscle, in which BCAAs are mainly degraded and used for glycogenesis [17]. Because
BCAAs activate the mechanistic/mammalian target of rapamycin complex 1 (mTORC1)
and induces protein anabolism in muscle cells [18], sarcopenia is more likely to progress
with decreased blood BCAAs in chronic liver disease. Hyperammonemia may contribute
to decreased muscle protein synthesis by interfering with the tricarboxylic acid (TCA)
cycle [19,20]. Hyperammonemia is also associated with increased reactive oxygen species
and may lead to muscle loss [19]. Deterioration of the intestinal environment leads to an
increase in anaerobic Gram-negative rods and an increase in lipopolysaccharide (LPS) in
the blood, which is a component of the outer wall membrane of Gram-negative rods and
a positive endotoxin [21]. Patients with cirrhosis show an increased LPS concentration in
the portal vein in proportion to the degree of progression [22,23]. Endotoxin is a member
of the pathogen-associated molecular patterns (PAMPs), which comprise a group of re-
ceptors such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain
receptors (NLRs). In particular, TLR4 is expressed on the plasma membrane of hepatocytes
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and Kupffer cells, and TLR4-mediated signals are thought to activate signaling molecules
such as NF-kB, leading to the production of inflammatory cytokines (IL-1b and IL-18) and
the induction of liver damage [24]. Furthermore, for patients with cirrhosis, dysbiosis of
intestinal bacteria causes hyperammonemia and is considered to be involved in sarcopenia
and insulin resistance [25]. It has also been suggested that amino acids synthesized by
the microbiome are associated with sarcopenia [26]. Insulin resistance is largely related
to sarcopenia and liver diseases including NAFLD (described in the Insulin Resistance
in Sarcopenia of NAFLD/NASH section). Lipid factors are related to the release of in-
flammatory cytokines (described in the Hormonal and Cytokine Changes in Sarcopenia in
NAFLD/NASH section).

It has been reported that sarcopenia is associated with cirrhosis that has progressed
to liver failure in approximately 60% of patients and is a prognostic determinant in cir-
rhosis [14,27,28]. Sarcopenia is also an independent predictor of mortality in cirrhosis
and is associated with a higher prevalence of portal hypertension, higher infection rates,
longer hospital stays, hepatocellular carcinoma, and worse outcomes after liver transplan-
tation [29]. In one meta-analysis, sarcopenia was associated with 48.1% of all cirrhosis
cases. In terms of prognosis, survival was significantly worse in the sarcopenia group, with
more cases dying due to infection [30]. High mortality rates have been reported in cirrhotic
patients with sarcopenia when the death is associated with sepsis [31]. These studies
suggest that the increased risk of sepsis is the primary reason contributing to mortality in
cirrhosis with sarcopenia.

4. Insulin Resistance in Sarcopenia of NAFLD/NASH

Skeletal muscle plays a major role in glucose transport and processing, fatty acid
oxidation, and energy homeostasis, all being key determinants in the pathophysiology of
NAFLD [32–34]. Orally ingested proteins are broken down into amino acids and peptides
by the action of digestive juices (especially gastric and pancreatic juices) and absorbed via
the small intestine. The absorbed amino acids are transported via the portal vein to the liver
for the synthesis of various proteins and are then stored throughout the body [35–38]. The
skeletal muscle is the largest amino acid storage organ in the body and plays an important
role in glucose metabolism and fat deposition in the liver. Sarcopenia characterized by
skeletal muscle loss, NAFLD, and abnormal glucose metabolism such as insulin resistance
are closely related to each other (Figure 1). The progression of insulin resistance is consid-
ered to be a factor in the development of NAFLD and especially NASH [39–41]. Insulin
resistance increases lipolysis in adipose tissue, leading to an increase in free fatty acids in
the blood and FFA influx to the liver [42]. Sterol regulatory element binding protein-1c
(SREBP-1c) is also activated when insulin resistance induces compensatory hyperinsuline-
mia. The activation of SREBP-1c results in increased fatty acid synthesis, and the excess
fatty acids accumulate in the liver in the form of triglycerides, thereby contributing to the
formation of fatty liver [43,44]. However, NAFLD could exacerbate insulin resistance by
the following mechanisms. Hepatokines (cytokines secreted by the liver) such as Fetuin-A
and fibroblast growth factor (FGF)-21 that are secreted due to endoplasmic reticulum stress
in NAFLD/NASH were found to increase insulin resistance [45].

It has been reported that patients with NAFLD/NASH are prone to sarcopenia despite
their high BMI, and the complication rate of sarcopenia ranges from 20.8% to 43.6%, with
the complication rate increasing as fibrosis progresses [29,46]. Whether NAFLD contributes
directly to sarcopenia remains controversial.

It has been suggested that the pathogenesis of sarcopenia is closely related to the de-
velopment of insulin resistance. Sarcopenia and insulin resistance have reciprocal effects as
described here. Sarcopenia promotes insulin resistance independent of obesity, since skeletal
muscle is the major tissue involved in insulin-mediated glucose disposal [47,48]. However, it
has been reported that insulin resistance promotes the progression of sarcopenia through the
following mechanisms. In skeletal muscle, mTORC1 signaling has an important role. Hyperin-
sulinemia activates mTORC1, but prolonged mTORC1 activity causes negative feedback with
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insulin signaling, leading to decreased mTORC1 signaling [49]. mTORC1 is also a negative
regulator of autophagy, and suppressor of mTORC1 Inhibition of mTORC1 causes accelerated
autophagy and increased protein disassembly [50]. Chronic hyperinsulinemia results in the
exacerbation of the pathogenesis of sarcopenia.

Figure 1. FFA, free fatty acid; FGF21, fibroblast growth factor 21; GF, growth factor; IGF-1, insulin-like
growth factor: mTORC1, mechanistic/mammalian target of rapamycin complex 1; SREBP1c, Sterol
regulatory element binding protein-1c. Upward arrows indicate enhancement and downward arrows
indicate inhibition.

5. Hormonal and Cytokine Changes in Sarcopenia in NAFLD/NASH

In NAFLD/NASH, adipose tissue macrophages secrete inflammatory cytokines such
as tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), and interleukin-
1 and -6 [2,51–53]. These cytokines promote protein decay in skeletal muscle [2,51,54]. In
addition, growth hormone (GH) and insulin growth factor-1 (IGF-1) may be decreased
in NAFLD/NASH, which may contribute to the progression of sarcopenia, since IGF-1
produced in the liver has a muscle-retaining effect [55].

In NAFLD/NASH, adiponectin is decreased and hyperleptinemia is observed. Adiponectin
is a protein secreted exclusively from adipose tissue and is negatively correlated with fat accu-
mulation. Adiponectin promotes insulin sensitivity by enhancing glucose uptake in skeletal
muscle and adipose tissue and increases fatty acid oxidation [54,56]. In addition, adiponectin
exerts anti-inflammatory effects and plays a hepatoprotective role in liver inflammation and
cell damage [57–60]. It also improves mitochondrial function and insulin resistance in skeletal
muscle [61,62].

Leptin stimulates fat oxidation in skeletal muscle. Hyperleptinemia due to leptin
resistance is a condition in which leptin is less effective even when leptin levels are high.
Hyperleptinemia is positively correlated with fat mass (FM) [63] and may promote insulin
resistance, liver inflammation, and fibrosis [64]. Myostatin, which causes skeletal muscle
atrophy, is a member of the TGF-α superfamily of glycoproteins and is produced by skeletal
muscle. Myostatin enhances proteolysis via autophagy. Autophagy-mediated proteolysis
is reported to be enhanced in muscle during cirrhosis and hyperammonemia [65]. It has
been reported that blood myostatin levels increase in cirrhosis especially in the presence of
a portal vein major circulation shunt [66], and is a factor in the pathogenesis of sarcopenia.
Cirrhotic patients with high serum myostatin levels have a significantly lower cumulative
survival rate than those with low serum myostatin levels [67]. It has also been reported that
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the hepatokine selenoprotein P, which is frequently expressed in type 2 diabetes, fatty liver,
and elderly patients, acts on skeletal muscle and causes “exercise resistance” that nullifies
the effects of exercise [68].

6. Prevalence and Clinical Significance of Sarcopenia in NASH/NAFLD

In recent years, clinical data have reported the coexistence of NASH/NAFLD and
sarcopenia (Table 1). It is reported that the risk of NAFLD is significantly higher in patients
with sarcopenia, regardless of the presence of obesity or metabolic syndrome [46], and
that the presence of sarcopenia increases the risk of NAFLD more than fivefold [69]. The
presence of sarcopenia has been reported to increase the risk of not only NAFLD but
also fibrosis development with a risk ratio of 2.05 times [70]. Furthermore, sarcopenia
increases mortality in patients with NAFLD [71–73]. Conversely, subjects with NAFLD
have been reported to have significantly lower skeletal muscle index (SMI) compared with
controls [74]. This finding was supported by a subsequent meta-analysis suggesting a
direct relationship between sarcopenia and NAFLD [75]. However, it is difficult to establish
a causal relationship. Cross-sectional studies of Asians have all reported that patients with
NAFLD/NASH have a higher complication rate of sarcopenia, which also contributes to
liver fibrosis [2,30,45,70], but the diagnostic methods for sarcopenia may differ, contributing
to the difficulty in understanding the pathogenesis.

Baumgartner proposed sarcopenia obesity as a condition caused by the combination
of sarcopenia, which mainly comprises a decrease in muscle mass, and obesity, which
comprises an increase in visceral fat [76]. It has been estimated that one in ten elderly
people were diagnosed with sarcopenia obesity [77]. Shida et al. used the skeletal muscle
mass-to-visceral fat area ratio (SVR) as an indicator of sarcopenic obesity and found that
the SVR was strongly associated with liver stiffness and liver fibrosis markers, such as
M2BPGi, as well as insulin resistance [78]. Other reports also support the association of
sarcopenic obesity with NASH and liver fibrosis [70,79]. Other studies have reported that
sarcopenia combined with obesity can increase the risk of cardiovascular diseases (CVD)
such as type 2 diabetes, hyperlipidemia, and hypertension [80]. Sarcopenic obesity is also
associated with higher morbidity and mortality than both sarcopenia alone and obesity
alone [81]. Sarcopenia obesity was associated with multiple morbidities including CVD
events (heart diseases and stroke), metabolic disorders, cognitive impairment, arthritis,
physical disability, and lung diseases [82].

Table 1. Previous reports on the association between sarcopenia and nonalcoholic fatty liver disease.

Study and Year Study Design, Sample
Size, Population

Diagnosis of
NAFLD

Diagnosis of
Sarcopenia Main Findings

Yong-ho Lee et al.,
2015 [83]

Retrospective cohort
2761 subjects in

Republic of Korea

NAFLD liver fat
score DEXA method

The risk of progression was
significantly higher in patients
with sarcopenia on NAFLD.

Ho Cheol Hong et al.,
2014 [69]

Prospective
observational cohort

452 subjects in Republic
of Korea

The liver
attenuation index

on CT scan.
DEXA method

Individuals with lower muscle
mass exhibited increased risk of

NAFLD.

Koo, et al. [70]

Cross-sectional cohort
(prospectively enrolled)
309 subjects in Republic

of Korea

Liver biopsy BIA method
Sarcopenia was significantly
associated with NASH and

significant fibrosis.
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Table 1. Cont.

Study and Year Study Design, Sample
Size, Population

Diagnosis of
NAFLD

Diagnosis of
Sarcopenia Main Findings

Golabi, et al. [71] Retrospective cohort
1351 subjects in USA

U.S. Fatty Liver
Index DEXA method

Compared with NAFLD without
sarcopenia, NAFLD with

sarcopenia was associated with a
higher risk of mortality.

Kim, et al. [72] Retrospective cohort
11,065 subjects in USA Ultrasonography BIA method

Only in individuals with
NAFLD, sarcopenia was

associated with a higher risk for
all-cause mortality, while this

association was absent in those
without NAFLD.

BIA, bioelectrical impedance analysis; CT, computed tomography; DEXA, dual energy X-ray absorptiometry;
NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis.

7. Evaluation of Sarcopenia in NASH/NAFLD

A variety of tests and tools are available to assess sarcopenia. The European consensus
on definition and diagnosis (EWGSOP2) recommends the SARC-F questionnaire to discover
cases of sarcopenia [3]. The SARC-F includes the following five components: strength,
walking with assistance, rising from a chair, climbing stairs, and falling [84]. Another study
reported that the specificity of the test is very high [85].

This section describes the methods of assessing muscle strength, muscle mass and
quantity, and physical performance, which define sarcopenia. The most useful methods
of assessing muscle strength are grip strength measurements and chair stand tests. The
grip strength test is very simple, and it is possible to measure grip strength in a wide range
of practice settings. Poor grip strength is a strong predictor of a poor prognosis [86,87].
Among a cohort of NAFLD patients, low grip strength was independently associated with
long-term all-cause mortality, suggesting that grip strength is also a useful prognostic tool
for NAFLD [88,89]. The chair stand test measures the time required for a patient to stand
up five times from a seated position without using the arms. This test is a reliable indicator
of lower body muscle strength [90,91].

Skeletal muscle mass is measured to diagnose sarcopenia, and currently there are
several methods for measuring skeletal muscle mass, including the dual energy X-ray ab-
sorptiometry (DEXA) method, computed tomography (CT) scan to measure skeletal muscle
cross-sectionality at the level of the third lumbar vertebra, and the bioelectrical impedance
analysis (BIA) method. For liver disease, CT scan which measures SMI, and the simple
BIA method are often used. Recommendations for the CT method are based primarily on a
2017 multicenter retrospective study that examined wait-list mortality in patients based
on pre-transplant sarcopenia [92]. This study established that the cutoff values for SMI at
the level of L3 are <50 cm2/m2 for men and <39 cm2/m2 for women. The DXA method
noninvasively measures a patient’s total body lean tissue mass or appendicular lean soft
tissue mass [93]. DXA can easily provide reproducible estimates of accessory limb skeletal
muscle mass in a matter of minutes [3]. The BIA method was developed based on the
idea that tissues such as skeletal muscle, which are rich in water and electrolytes, offer
less resistance to electric current than tissues such as bone, which are rich in lipids [94].
The BIA method does not directly measure muscle mass but derives an estimate of muscle
mass from whole-body electrical conductivity [95]. BIA instruments are affordable, widely
available, and portable, especially single-frequency instruments. The BIA method has been
recognized as a viable means of assessing skeletal muscle mass in clinical studies with large
sample sizes [96]. Since the DEXA and BIA methods are calculated from standard Japanese
values, it is unclear whether they can be applied to patients with excessive obesity or edema
such as in hepatic insufficiency, pleural effusion, or ascites. Although various modalities
have been investigated to assess sarcopenia in liver disease, none have proven to be as
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clinically important a tool in screening for sarcopenia as the CT scan [97–99]. However,
these tools are not commonly used in primary care due to the high cost of the equipment,
lack of portability, and the need for highly trained personnel to use the equipment [100].
Recently, a new definition of sarcopenia combining muscle mass (e.g., grip strength) and
physical activity (e.g., walking speed) in addition to muscle mass was published as a con-
sensus in Europe, the United States, and Asia [101,102]. In addition, the Japanese Society of
Hepatology has proposed its own sarcopenia diagnostic criteria [28]. In addition to muscle
mass, skeletal muscle quality is also evaluated using CT and magnetic resonance imaging
scans. Intramuscular adipose tissue content (IMAC), which is calculated by measuring the
intensity of the multifidus muscle and dividing it by subcutaneous fat, reflects the adiposity
of skeletal muscle, and magnetic resonance spectroscopy (MRS) has been used to evaluate
the intramyocellular lipid content in muscle. Qualitative evaluation of skeletal muscle has
been attempted by measuring intramyocellular lipid (IMCL) [46] in muscle by MRS.

Physical ability can be measured in a variety of ways by tests such as the gait speed
test and the Timed-Up and Go (TUG) test. The gait velocity test requires the patient to
walk 4 m. The simplicity of this test allows it to be performed in a wide range of medical
settings [103,104]. The EWGSOP2 recommends a cutoff speed of 0.8 m/s or less as an
indicator of severe sarcopenia [3]. During the TUG test, the patient is asked to rise from a
chair, walk a distance of 3 m, turn around, return to the chair, and sit down again [105].

8. Treatment of Sarcopenia in NAFLD/NASH

The primary goal of treatment of NAFLD/NASH is weight loss by diet and exer-
cise [106,107]. It is reported that 5% weight loss can improve the quality of life (QOL) as
assessed by the chronic liver disease questionnaire (CLDQ). In addition, more than 7%
weight loss is reported to improve liver steatosis in NASH [108], and more than 10% weight
loss is reported to improve liver fibrosis [109]. Patients with high BMI may improve with
caloric restriction, but conversely, weight loss may lead to further loss of muscle mass in
patients with inadequate oral intake and increased muscle catabolism [110].

It is important to properly evaluate the state of sarcopenia and to appropriately
combine aerobic exercise (such as walking) and anaerobic exercise (resistance exercise such
as muscle training) in patients with NAFLD complicated with sarcopenia [111]. Exercise
promotes the secretion of IGF-1 and decreases inflammatory cytokines such as IL-6, reactive
oxygen species (ROS), and myostatin, thereby preventing sarcopenia [112,113]. In practice,
exercise is not always possible for patients with physical mobility difficulties. Blood flow
restriction (BFR) exercises are recommended as a training method that can achieve the
same or better exercise results with very light weights compared with typical resistance
exercises by restricting blood flow with a belt over a defined area [114].

Nutritional support such as providing BCAAs may also be useful in cases of cirrhosis.
A retrospective study of cirrhotic patients with sarcopenia reported a significantly better
prognosis in patients receiving BCAAs compared with those not receiving BCAAs [115].
In addition, vitamin D levels are considerably lower in patients with sarcopenia, irrespec-
tive of the presence of obesity [83,116]. It has been suggested that vitamin D deficiency
is independently associated with the severity of NAFLD damage [117]. Vitamin D sup-
plementation increases vitamin D receptor expression in skeletal muscle and improves
sarcopenia [118].

Diet quantity and quality are vital for muscle health and are often overlooked [119],
despite the consensus on adequate protein intake [120]. Because protein supplementation as
a stand-alone intervention seems ineffective for improving muscle mass and strength [121],
the ideal strategy involved the combination of exercise and adequate protein intake to
mitigate sarcopenia in several contexts.

Recently, the efficacy of anabolic-androgenic steroids for sarcopenia has been re-
ported [122]. Anabolic-androgenic steroids exhibit anabolic and androgenic effects via
binding to androgen receptors and stimulate protein synthesis [123]. Whether drug treat-
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ment for sarcopenia can halt the progression of NAFLD/NASH may be an important
clinical question for the future.

9. Conclusions

Sarcopenia in patients with NASH/NAFLD based on various factors such as insulin
resistance and lipid factors may correlate with the progression of liver fibrosis and its
prognosis. The condition of sarcopenia should be evaluated appropriately, and therapeutic
interventions centered on diet and exercise therapy are necessary.
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