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Abstract: Caloric restriction (CR) and dietary nitrate supplementation are nutritional interventions
with pleiotropic physiological functions. This pilot study investigates the combined effects of CR
and nitrate-rich beetroot juice (BRJ) on metabolic, vascular, and cognitive functions in overweight
and obese middle-aged and older adults. This was a two-arm, parallel randomized clinical trial
including 29 participants allocated to CR + BRJ (n = 15) or CR alone (n = 14) for 14 days. Body
composition, resting energy expenditure (REE), and hand-grip strength were measured. Resting
blood pressure (BP) and microvascular endothelial function were measured, and Trail-Making Test
A and B were used to assess cognitive function. Salivary nitrate and nitrite, and urinary nitrate
and 8-isoprostane concentrations were measured. Changes in body composition, REE, and systolic
and diastolic BP were similar between the two interventions (p > 0.05). The CR + BRJ intervention
produced greater changes in average microvascular flux (p = 0.03), NO-dependent endothelial activity
(p = 0.02), and TMT-B cognitive scores (p = 0.012) compared to CR alone. Changes in urinary 8-
isoprostane were greater in the CR + BRJ group (p = 0.02), and they were inversely associated with
changes in average microvascular flux (r = −0.53, p = 0.003). These preliminary findings suggest that
greater effects on vascular and cognitive functions could be achieved by combining CR with dietary
nitrate supplementation.

Keywords: dietary nitrate; nitric oxide; caloric restriction; cognitive function; endothelial
function; obesity

1. Introduction

Obesity is a complex condition characterised by excessive body fat accumulation
linked to the onset of serious comorbidities and increased risk of mortality [1–3]. Obesity-
related complications include diabetes, hypertension, coronary heart disease, and muscu-
loskeletal disorders [4–6]. Obesity has been linked to increased production of free radicals,
sub-chronic inflammation, and reduced nitric oxide (NO) production, which represent key
steps in the pathogenesis of metabolic, vascular, and neurodegenerative diseases [2,3,7–10].
Endothelial dysfunction is a key early pathogenetic step in the atherosclerotic process, and
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it is characterised by a reduction in the bioavailability of NO and loss or dysregulation of
homeostatic mechanisms that operate in healthy endothelial cells [11,12].

Caloric restriction (CR) is a dietary strategy that decreases calorie intake without
leading to malnutrition [13], which could help in losing body weight, especially FM re-
duction [14–17]. In addition, CR could increase the life expectancy [13,18–26] and improve
vascular [19,21] and cognitive [20,27] functions; these effects may be mediated by a decrease
in oxidative stress and inflammation [27–30] with consequent enhancement of mitochon-
drial efficiency, insulin sensitivity [22,31], and NO generation [32].

Dietary nitrate is a promising intervention that has been associated with improvement
in metabolic [33–35], vascular (endothelial function and BP) [33–36], and, less consistently,
brain (cognitive function, cerebral blood flow, and oxygenation) [37–41] functions. Nitrate-
rich foods include spinach, lettuce, rocket, cabbage, and beetroot [42,43]. These positive
effects are highly regulated by the induced production and bioavailability of NO via the
non-enzymatic pathway (nitrate-nitrite-NO) [33–41]. The biological effector of dietary
nitrate supplementation is NO, which is recognised for a wide range of cardiovascular and
metabolic actions mediated by modulation of reactive oxygen species (ROS) production and
degradation, immune response, endothelial function, insulin activity, and mitochondrial
biogenesis and efficiency [34].

We postulate that CR and dietary nitrate could have synergistic effects on metabolic,
vascular, and cognitive functions via their effects on common mechanistic pathways in-
volving up-regulation of metabolic, endothelial, and neuronal functions. The aim of this
pilot study was to investigate the impact of combining dietary nitrate and CR on metabolic
(i.e., resting energy expenditure (REE), body composition, muscular strength) vascular
(i.e., resting blood pressure and microvascular blood flow), and cognitive functions in
overweight and obese middle-aged and older subjects.

2. Materials and Methods
2.1. Study Design

This was a two-arm, open-label, parallel randomised clinical trial conducted between
February 2016 and December 2017 at the Nutrition and Dietetics facilities of the Faculty of
Medical School of the University of Federico II of Naples, Italy. Laboratory analysis was
completed in December 2018 at the University of Newcastle. Subjects were randomised
into either a CR-alone (control group) or CR-plus nitrate-rich beetroot juice (CR + BRJ)
intervention groups. This single-centre study was approved by the Ethics Committee of
the Faculty of Medicine of the University Federico II of Naples, Italy (Approval No.: 8615).
All subjects signed informed consent before participating in the study. The protocol was
registered retrospectively with the ISCTRN database (ISRCTN59029976).

2.2. Participants

The study was conducted on 36 (18 per arm) overweight and obese (BMI: 25–40 kg/m2)
middle-aged and older (50–75 years) men and women attending the research facilities.
Participants were non-smokers and had an overall stable body weight in the last three
months. A list of the inclusion and exclusion criteria for the selection of the participants is
provided in the online Supplementary Material.

2.3. Nutritional Interventions

The CR intervention was based on a hypocaloric low-fat diet, which was prescribed
to participants in both groups by a nutritionist. The REE was calculated using Fredrix’s
equation and multiplied by a PAL of 1.5 to estimate total energy requirements [44]. The
prescribed energy deficit was 40% of the total energy requirements, and the macronutrient
composition was approximately CHO = 55–60%, FAT = 20–25%, and PRO = 15–20%. Partic-
ipants were asked to maintain their habitual physical activity level and their consumption
of alcoholic and caffeinated beverages. Participants in CR + BRJ group were asked to drink
70 mL of concentrated beetroot juice (~400 mg of inorganic nitrate daily) every morning
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(Beet It, James White Ltd., Ashbocking, Suffolk, UK). Participants were provided with a
diary to record the time of the consumption and any problems that may have experienced.
Participants were considered non-compliant if they did not take the supplementation on
two or more days.

2.4. Study Protocol

Participants arrived in the morning for their first assessment visit. The study was
conducted by a team of clinicians and nutritionists. The aim of the study was explained to
eligible participants by a medically qualified investigator, and if the participants agreed,
they signed the informed consent. Anthropometric (weight, height) and BP measurements
were taken to confirm eligibility. Total energy requirements were determined to calculate the
40% caloric-restricted diet. Subjects were then randomised into one of the two interventions
(CR + BRJ or CR alone).

After seven days, participants returned to the research centre to obtain information on
the dietary and lifestyle intervention and to perform the baseline measurements. Partici-
pants arrived early in the morning after fasting for at least 8 h, provided urine and saliva
samples, and then their REE was measured by indirect calorimetry. This was followed by
measurements of endothelial function and resting BP. Next, bioelectrical impedance as-
sessed body composition, and readings of bilateral hand-grip strength were taken. Subjects
then completed a series of questionnaires, including an assessment of cognitive function,
dietary intake, and physical activity level. After that, participants were provided with
details about the CR interventions and, if allocated to the beetroot group, they were given
14 bottles of beetroot juice. The subjects started the intervention the day after the visit and
continued for 14 days. On the 15th day, subjects arrived early in the morning fasting, and
measurements were repeated in the same order as at the baseline visit. A description of the
study protocol is provided in Figure S1 of the online Supplementary Material.

2.5. Body Composition

Weight was measured to the nearest 1 g using a standard beam scale (Seca GmbH &
Co KG, Hamburg, Germany). Height was measured using a wall-mounted stadiometer to
the nearest 0.1 cm. Waist circumference (WC) was measured at the midpoint between the
last rib and the iliac crest on the midaxillary line. Bioelectrical impedance analysis (BIA)
was undertaken by a single frequency (50 kHz) tetrapolar device (RJL 101; Akern SRL,
Florence, Italy). BIA was performed with a single-frequency measurement. FM and FFM
were obtained from measures of resistance and reactance using the algorithm provided by
the manufacturer.

2.6. Indirect Calorimetry

REE was measured using indirect calorimetry (V MAX 29n, Sensor Medics, Yorba
Linda, CA, USA). The device was calibrated before each measurement. Measurements were
performed between 8:00 and 9:00 a.m. in a quiet, temperature-controlled room (22 ± 3 ◦C).
The readings were analysed to see if the subject reached a steady state condition, indicated
by the stability of oxygen and carbon dioxide volumes for at least five minutes. The
metabolic test lasted between 25 min and 45 min. REE was calculated according to Weir’s
Equation (7). Values of REE were presented unadjusted (kcal/day) and adjusted for FFM
(kcal/day/kg).

2.7. Resting Blood Pressure

Resting SBP and DBP was measured in triplicate using an automated BP monitor
(OMRON M3, OMRON Healthcare Europe, LR Hoofddorp, The Netherlands) after the
participant had rested for at least 15 min. The average of the three measurements was
calculated, and the obtained value was entered into the analysis.
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2.8. Endothelial Function

All measurements were undertaken in a temperature-controlled room (22 ± 3 ◦C). Skin
microvascular blood flow (SBF) was measured using a laser Doppler perfusion monitoring
apparatus (PeriFlux 5000 System, Perimed, Stockholm, Sweden). The laser Doppler probe
(PF 457, Perimed, Stockholm, Sweden), connected to a computer, was placed on the right
forearm volar surface. After 10 min of acclimatisation, the blood flow was recorded for
20 min by Perisoft software. The mean skin blood perfusion was expressed as arbitrary
perfusion units (PU). Next, for the measurement of post-occlusive reactive hyperemia, the
brachial artery was occluded by a BP cuff placed on the right upper arm and inflated up to
50 mmHg above the SBP. The BP cuff was rapidly deflated after 3 min of brachial artery
occlusion, and the peak value, expressed as PU, was determined by calculating the maximal
perfusion value reached during reactive hyperemia.

2.9. Spectral Analysis

Microvascular blood flow oscillations in the range of 0.005 to 2.0 Hz were evaluated
by Wavelet transform, a scale-dependent method comprising an adjustable window length
able to analyse both low and high frequencies [45]. Spectral analysis was performed
on the 20 min recordings under resting conditions to obtain a higher resolution of very
low-frequency components. Wavelet analysis, proposed by Morlet, permits the detection
of at least six frequency components in this interval, as reported by Kvandal et al. [46].
The contribution of endothelial NO-dependent and NO-independent blood flow was
determined, and the obtained value was entered into the analysis.

2.10. Hand-Grip Strength

HGS was measured on the dominant and non-dominant hands to the nearest kilogram
using a hand dynamometer (78010; Lafayette Instrument Company, Lafayette, IN, USA).
During the measurement, the participant was in an upright position, and the arm of the
measured hand was unsupported and parallel to the body. Three measurements were
performed for the non-dominant hand, and the average of recorded measurements was
used for the analysis.

2.11. Dietary Intake, Physical Activity, and Cognition Assessment

Dietary intake was assessed using a semi-quantitative food questionnaire based on
the European Prospective Investigation into Cancer and Nutrition (EPIC) FFQ [47]. Physi-
cal activity was evaluated using the Italian version of the International Physical Activity
Questionnaire—Short Form (IPAQ-SF) [48]. The Trail-Making Test (TMT) was administered
to provide information on visual search, speed of processing, mental flexibility, and execu-
tive functions. The TMT consists of parts A and B. TMT-A requires an individual to draw
lines sequentially connecting 25 encircled numbers distributed on a sheet of paper. Task
requirements are similar for TMT-B, except the person has to alternate between numbers
and letters in ascending order (e.g., 1, A, 2, B, 3, C, etc.). The score on each part represents
the amount of time required to complete the task [49].

2.12. Urine and Saliva Collection

A spot urine sample was collected in the morning at the beginning and end of the
intervention to measure nitrate concentrations. Stimulated saliva samples were collected
using validated sample collection kits (Salivette, Sarsted, Germany). Samples were stored
at −80 ◦C until analysis.

2.13. Compliance

The compliance with the dietary interventions was assessed by monitoring the dietary
intake at baseline, after seven days (telephone interview), and at the end of the study. Com-
pliance with nitrate supplementation was evaluated by completing a daily questionnaire
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and evaluating the changes in urinary nitrate concentration from baseline to the end of
the study.

2.14. Laboratory Analysis

Nitrate and Nitrite: The ozone-based chemiluminescence method was used to measure
plasma and salivary nitrate and nitrite concentrations, and urinary nitrate concentrations
using the Sievers gas-phase chemiluminescence nitric oxide analyser (NOA 280i, Analytix),
which has been described elsewhere [50].

Urinary 8-isoprostane: An ELISA Kit was used to analyse the amount of 8-isoprostane
in the urine samples as a measure of oxidative stress (abcam UK, Cambridge, UK). The kit
was a competitive immuno-enzymatic assay for quantitatively measuring 8-isoprostane
in biological samples. Urine samples were diluted 4-fold prior to analysis. The assay’s
sensitivity and precision (CV%) were 1 pg/mL and 1.75%, respectively.

2.15. Sample Size and Randomisation

The sample size calculation was performed using G-Power (version 3). The model
selected for the study was a t-test model for independent measures. The outcome of the
sample size calculation was the difference in REE between intervention and control. The
difference between intervention and control was set to 150 kcal/day (SD: ±150 kcal/day).
Power and significance levels were set at 0.80 and 0.05, respectively. Using these parameters,
we estimated a total sample size of 18 participants per group, i.e., 36 participants in total.
Randomisation was performed using an online service (www.envelope.com, accessed on
1 October 2015). Randomisation was run in blocks of 6 and letters (A and B) which were
allocated to each intervention by a member of staff not involved in the study.

2.16. Statistical Analysis

Data were analysed using IBM SPSS Statistics (version 28.0). The normality of variables
was checked visually by evaluation of the histograms and Shapiro—Wilks test. Descriptive
statistics include mean, SD, or SE for continuous variables, and percentages (%) for the
categorical variables. An independent t-test and chi-square tests were used to evaluate
the baseline difference between the two intervention groups. Repeated-measure ANOVA
was used to evaluate differences in physiological responses to the two interventions. Time
(baseline and end values, T) was entered as a within-subject factor, and intervention groups
(CR + BRJ or CR alone, I) as a between-subject factor. The interaction of the two terms
(T*I) was evaluated for differences between the two interventions over time. The percent
changes (∆%) from the baseline for the primary and secondary outcomes were calculated,
and an independent t-test was used to evaluate differences between groups. Pearson’s
correlation was used to evaluate the changes in biomarkers’ concentrations (i.e., nitrate,
nitrite, and 8-isoprostane) with physiological outcomes.

3. Results
3.1. Participants

A total of 178 participants were approached, and 36 were eligible and included in the
study (18 participants per arm). Seven participants could not complete the experiment
(three in the CR + BRJ and four in the CR group). Thus, 29 participants (22 females) were
included in the final analysis (Figure 1). The mean age was 61.3 ± 5.9 years, ranging from
52 to 74 years. The mean BMI was 34.5 ± 5.8 kg/m2. Seventeen participants were taking
medications or nutritional supplements (n = 17); they were equally distributed between
the CR + BRJ and CR intervention groups (64% vs. 53%, respectively, p = 0.55). There
were no significant differences between the groups for all baseline characteristics. Baseline
characteristics are presented in Table 1.

www.envelope.com
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Table 1. Baseline characteristics.

Total
(n = 29)

CR + BRJ
(n = 15)

CR
(n = 14) p

Age, y 61.3 ± 5.9 59.5 ± 5.9 63.2 ± 5.3 0.08
Female, n (%) 22 (75.9) 11 (73.3) 11 (78.5) 0.74

Weight, kg 89.0 ± 19.1 91.7 ± 19.6 86.1 ± 18.8 0.44
Height, cm 160.1 ± 10.3 161.5 ± 12.7 158.6 ± 7.0 0.46

BMI, kg/m2 34.5 ± 5.8 34.8 ± 4.4 34.1 ± 7.2 0.74
WC, cm 104.9 ± 13.2 104.6 ± 12.6 105.3 ± 14.2 0.88
FM, kg 35.2 ± 10.6 35.8 ± 9.5 34.5 ± 12.0 0.75

FFM, kg 53.7 ± 13.1 55.8 ± 15.6 51.5 ± 9.9 0.38
HGS, kg 25.7 ± 10.2 26.7 ± 12.2 24.7 ± 7.8 0.61

IPAQ, METs/w 3401 ± 4470 * 4030 ± 5319 2727 ± 3408 0.44
EI, kcal/d 1448 ± 165 1460 ± 183 1434 ± 149 0.68

The values of the continuous variables were presented as mean and standard deviation, whereas the categor-
ical variable (gender) was presented as percentages. * Non-normal distribution (median and IQR, tested by
Mann—Whitney test). Key: BMI, body mass index; CR, caloric restriction; CR + BRJ, caloric restriction with
beetroot juice; EI, energy intake; FFM, fat-free mass; FM, fat mass; HSG, hand-grip strength; IPAQ, international
physical activity questionnaire; IQR, interquartile range; p, p-value; WC, waist circumference.
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3.2. Body Composition, Hand-Grip Strength, and Resting Energy Expenditure

Body weight decreased by −2.8 ± 1.7 kg (p < 0.001) in the CR + BRJ and −2.2 ± 1.2 kg
(p < 0.001) in the CR alone group, but changes in body weight were not significantly
different between groups (p = 0.32). Similarly, changes in FM (−1.3 ± 2.1 kg in CR + BRJ vs.
−1.2 ± 2.1 kg in CR) and FFM (−1.4 ± 2.0 kg in CR + BRJ vs. −1.0 ± 2.3 kg in CR) in each
group were significant (p = 0.003 and p = 0.006, respectively), but there was no significant
difference between the two groups for both FM and FFM. HGS improved significantly in
both groups (p < 0.001), and the percentage increase from the baseline was significantly
higher in the CR + BRJ group (p = 0.04). The CR + BRJ and CR groups showed a similar
decrease in REE (−26.5 ± 133.8 kcal/day and −42.4 ± 93.4 kcal/day, respectively, p = 0.71)
post-weight loss. Post-weight loss changes in REE/FFM were not significantly different
between the two groups (p = 0.66) (Table 2).

Table 2. Anthropometry, body composition, hand-grip strength, and resting energy expenditure.

Variable
CR + BRJ CR

p
Baseline End ∆% Baseline End ∆%

Weight, kg 91.7 ± 19.6 88.9 ± 18.1 −2.8 ± 1.2 86.1 ± 18.8 83.8 ± 18.0 −2.5 ± 1.1

T < 0.001
I = 0.44

T*I = 0.32
∆% = 0.44

WC, cm 104.6 ± 12.6 101.0 ± 12.5 −3.4 ± 2.2 105.3 ± 14.2 102.5 ± 13.3 −2.6 ± 1.7

T < 0.001
I = 0.82

T*I = 0.33
∆% = 0.27

FM, kg 35.8 ± 9.5 34.5 ± 10.2 −4.4 ± 7.9 34.5 ± 12.0 33.3 ± 12.3 −3.7 ± 7.2

T = 0.003
I = 0.76

T*I = 0.91
∆% = 0.8

FFM, kg 55.8 ± 15.6 54.4 ± 15.7 −2.7 ± 3.5 51.5 ± 9.9 50.5 ± 9.2 −1.6 ± 4.3

T = 0.006
I = 0.4

T*I = 0.56
∆% = 0.47

HGS, kg 26.7 ± 12.2 29.7 ± 10.2 18.4 ± 25.0 24.7 ± 7.8 25.4 ± 7.1 4.0 ± 7.4

T < 0.001
I = 0.38

T*I = 0.34
∆% = 0.04

REE, kcal/d 1438 ± 222 1411 ± 263 −1.8 ± 10.3 1355 ± 216 1313 ± 213 −2.9 ± 6.7

T = 0.12
I = 0.28

T*I = 0.71
∆% = 0.74

REE/FFM,
kcal/d/kg 26.6 ± 4.2 26.6 ± 3.4 0.8 ± 9.9 26.5 ± 2.4 26.1 ± 1.8 −1.1 ± 8.3

T = 0.63
I = 0.79

T*I = 0.66
∆% = 0.56

Repeated measure ANOVA was used to evaluate the effect of the interventions on the selected outcomes. An
independent T-test was used to compare the difference in the percent change. Key: CR, caloric restriction;
CR + BRJ, caloric restriction with beetroot juice; FFM, fat-free mass; FM, fat mass; HSG, hand-grip strength; I,
intervention; p, p-value; REE, resting energy expenditure; REE/FFM, resting energy expenditure/fat-free mass; T,
time; T*I, time*intervention; WC, waist circumference; ∆%, change percentage.

3.3. Vascular Function

SBP and DBP were significantly improved in CR + BRJ (−7.9 ± 6.7 and −2.9 ± 4.2 mmHg,
respectively) and CR (−3.5 ± 5.9 and −1.6 ± 5.1 mmHg, respectively) (p < 0.01 for all), and
there was a trend towards greater reductions in SBP in CR + BRJ compared with CR alone
(p = 0.06). The average flux increased significantly in the CR + BRJ group compared to CR
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alone (+1.3 ± 2.4 PU vs. −1.2 ± 1.3 PU, respectively: T*I, p = 0.03). The NO-dependent
endothelial activity derived from the spectral analysis was significantly increased in the
CR + BRJ group (+7.0 ± 6.8%, T*I, p = 0.02) (Table 3).

Table 3. Vascular function.

Variable
CR + BRJ CR

p
Baseline End ∆% Baseline End ∆%

SBP, mmHg 131.2 ± 6.1 123.2 ± 6.0 −5.9 ± 4.9 129.0 ± 9.0 125.5 ± 8.4 −2.6 ± 4.4

T < 0.001
I = 0.97

T*I = 0.06
∆% = 0.06

DBP, mmHg 81.0 ± 8.0 78.1 ± 6.2 −3.2 ± 4.8 79.1 ± 7.3 77.5 ± 7.7 −1.8 ± 6.0

T < 0.01
I = 0.64

T*I = 0.46
∆% = 0.50

Average flux, PU 7.2 ± 3.0 8.5 ± 2.5 26.1 ± 35.8 7.6 ± 2.1 7.3 ± 1.8 −2.2 ± 21.2

T = 0.18
I = 0.57

T*I = 0.03
∆% < 0.01

Peak flux, PU 54.4 ± 10.8 58.1 ± 11.2 7.6 ± 13.7 46.6 ± 15.6 50.4 ± 22.3 9.2 ± 43.6

T = 0.13
I = 0.15

T*I = 0.99
∆% = 0.89

NO-dependent EA,
% 10.5 ± 4.7 17.4 ± 3.7 95.4 ± 96.3 10.4 ± 4.6 11.7 ± 5.0 24.9 ± 67.1

T < 0.001
I = 0.02

T*I = 0.02
∆% = 0.03

NO-independent
EA, % 2.2 ± 1.1 1.9 ± 1.6 10.7 ± 145.3 3.0 ± 2.0 3.5 ± 2.4 63.2 ± 161.3

T = 0.86
I = 0.03

T*I = 0.36
∆% = 0.36

Repeated measure ANOVA was used to evaluate the effect of the interventions on the selected outcomes. An
independent T-test was used to compare the difference in the change percentage. Key: CR, caloric restriction;
CR + BRJ, caloric restriction with beetroot juice; DBP, diastolic blood pressure; EA, endothelial activity; I, interven-
tion; NO, nitric oxide; PU, perfusion unit; p, p-value; SBP, systolic blood pressure; T, time; T*I, time*intervention;
∆%, change percentage.

3.4. Cognitive Function

TMT-A improved significantly (T, p < 0.005) in all groups but there was no significant
difference between the two intervention groups (T*I, p = 0.54). The time to completion
of the TMT-B was significantly reduced by the interventions (T, p = 0.002) with greater
improvements observed in the CR + BRJ (−12.6 ± 6.8 s) compared to CR alone (−4.3 ± 9.7 s)
(T*I, p = 0.012; Table 4).

3.5. Biomarkers

Salivary nitrate concentrations increased significantly by 1660 ± 1520 µmol/L in the
CR + BRJ and by 294 ± 1879 µmol/L in the CR group (T, p < 0.005), with significant
difference between the groups (T*I, p = 0.04, Figure 2A). Salivary nitrite concentrations
were higher in the CR + BRJ group but did not reach statistical significance (T*I, p = 0.26,
(Figure 2B). Changes in urinary nitrate concentrations were significantly higher in the
CR + BRJ (+6344 ± 6233 µmol/L) compared to CR alone (+1206 ± 6012 µmol/L, T*I,
p = 0.03; Figure 2C). Similarly, a greater decrease in urinary 8-isoprostane was observed in
the combined CR + BRJ intervention (−294 ± 277 pg/mL, T*I, p = 0.02; Figure 2D).
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Table 4. Cognitive function.

Variable
CR + BRJ CR

p
Baseline End ∆% Baseline End ∆%

TMT-A, s 40.8 ± 19.2 34.4 ± 12.3 −13.5 ± 12.6 49.2 ± 23.3 44.9 ± 17.5 −3.6 ± 19.9

T = 0.005
I = 0.16

T*I = 0.54
∆% = 0.12

TMT-B, s 94.1 ± 19.5 81.5 ± 19.7 −13.6 ± 8.7 95.8 ± 33.4 91.5 ± 30.7 −3.2 ± 11.6

T < 0.001
I = 0.54

T*I = 0.012
∆% = 0.011

Repeated measure ANOVA was used to evaluate the effect of the interventions on the selected outcomes. An
independent T-test was used to compare the difference in the change percentage. Key: CR, caloric restriction;
CR + BRJ, caloric restriction with beetroot juice; I, intervention; p, p-value; T, time; T*I, time*intervention; TMT-A,
trail making test part a; TMT-B, trail making test part b; ∆%, change percentage.
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3.6. Correlations

Overall, there were non-statistically significant correlations between the salivary
nitrate and nitrite, as well as urinary nitrate and 8-isoprostane and metabolic, vascular,
and cognitive outcomes. However, a significant negative correlation between urinary
8-isoprostane and average microvascular flux (r = −0.53, p = 0.003) was observed (Figure 3).
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Moreover, there was no modification of the association between 8-isoprostane and average
flux after adjustment for changes in body weight (r = −0.53, p = 0.003).
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4. Discussion

The results of this pilot study indicate the potential synergy between CR and dietary
nitrate interventions and measures of vascular and cognitive functions without ampli-
fication of the adaptive effects following weight loss on energy metabolism. The study
also indicates that the effects on endothelial function may be mediated by a reduction in
oxidative stress.

A key finding of the study is that similar weight reduction and body composition
changes occurred in both interventions; these were accompanied by the same extent of the
decline in REE as a result of weight loss triggering adaptive metabolic mechanisms. Dietary
nitrate supplementation has been associated with increased efficiency of mitochondria in
skeletal muscle, which is one of the mechanisms underpinning the ergogenic effects of
dietary nitrate [51]. The increased mitochondrial coupling produced a higher P:O ratio
but also a reduction in heat dissipation [51]. The macroscopic effect of these mechanisms
was tested in a 3-day dietary nitrate supplementation trial showing a reduction of REE
by 4.2% (−82 kcal/day) measured by indirect calorimetry in healthy subjects [52]. How-
ever, these initial findings have not been replicated in subsequent studies of different
duration (i.e., 2 h or 7 days) as no significant changes were found for REE after nitrate
supplementation [53,54]. All these studies were conducted in energy balance whereas our
study purposively investigated whether dietary nitrate may amplify the expected (i.e., due
to the decrease in metabolically active tissue) reduction in REE post-weight loss induced
by CR. The similar decrease in REE in the two intervention groups is reassuring as dietary
nitrate does not seem to amplify the initial adaptative metabolic responses to caloric restric-
tion, and no additional adjustments in energy intake may be needed to limit the risk of
weight regain.

Both CR and dietary nitrate supplementation have been independently linked to
improved BP and endothelial function in several studies [36,55], but the synergy of the
combination of the two interventions has not been tested so far. This study corroborates
these positive effects, but it also shows the potential existence of a synergy between
the two interventions as an almost statistically significant greater drop in systolic BP
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was observed in the CR + BRJ group, which also exhibited greater improvements in
endothelial function (average flux and NO-dependent endothelial activity). The vascular
effects could be explained by the enhancement of endothelial function mediated by various
mechanisms, such as (i) increased NO production through SIRT1/AMPK/Akt-eNOS-NO
pathway [32,56–59] and nitrate-nitrite-NO pathway via dietary nitrate [33–35], (ii) greater
insulin sensitivity [22,59–64], (iii) upregulation of antioxidants defenses [27–30,59,65–67]
and reduced ROS generation via increased mitochondrial efficiency.

The promising effects on ROS production were supported by a significantly greater
reduction in urinary 8-isoprostane concentrations in the CR + BRJ group, and a significant
inverse correlation between isoprostanes and average microvascular flux was observed.
Isoprostanes are prostaglandin-like compounds and are commonly used as biomarkers of
oxidative stress and increased levels have been associated with a greater risk for cardio-
vascular and neurodegenerative diseases in animal and human experiments [68,69]. This
result must e interpreted with caution as betanins present in beetroot may have antioxidant
properties and contribute to the reduction in isoprostanes concentrations [70,71].

Both interventions showed an overall improvement in cognitive function, but changes
in the TMT-B scores were only significant in the CR + BRJ group. Justice et al. [72] showed a
similar result in healthy older subjects as time to complete TMT-B was improved by 18% and
14% in response to supplementation with high and low doses of sodium nitrite for 10 weeks,
respectively. Potential mechanisms explaining the cognitive effects could include a CR-
induced Akt phosphorylation through the insulin-PI3K-Akt signalling pathway [73,74],
increased NO production, and potentiation of pre-synaptic neurotransmission [75,76]
occurring alongside an enhancement of neurovascular and metabolic coupling [77].

Babateen et al. [78] showed that different doses of beetroot supplementation for
13 weeks did not improve cognitive function and CBF. Therefore, the promising effects of
dietary nitrate and CR on cognition need confirmation in larger and longer studies em-
ploying sophisticated methods (i.e., computerized cognitive assessment tools and imaging
methods) to corroborate the results observed in this study.

Strengths and Limitations

This study is characterised by some limitations that need to be taken into account in the
interpretation of the results. First, the sample size and duration are important limitations.
However, this is the first pilot study to test the physiological effects of a concomitant CR and
dietary nitrate intervention. Previous RCTs investigating the effects of either CR or dietary
nitrate had similar sample sizes and study duration [36,79]. Some of the participants
were taking supplements, or medications (such as antihypertensive, antidyslipidemic,
antidepressant, and thyroxine), which may have influenced some of the results. However,
the doses of the drugs were stable prior to and during the study, and the distribution of
drugs and supplements among participants was not significantly different between the
two intervention groups. The unblinded design and the lack of a control group for the
dietary nitrate intervention (i.e., nitrate-depleted beetroot juice) are additional limitations,
and these factors should be considered in the design of future studies to test the combined
effects of CR and dietary nitrate. Urinary nitrate, nitrite, and isoprostane concentrations
were not adjusted for potential differences in renal function as 24 h total urine volume or
serum and urinary creatinine concentrations were not measured. Epidemiological studies
have suggested a potential carcinogenic association with dietary nitrate [80,81]. However,
the evidence of the association of dietary nitrate intake with cancer risk is still mixed [82],
which may be confounding by the consumption of processed meats containing nitrates and
nitrites used as food preservatives [82]. The current WHO acceptable and recommended
daily intake for nitrate is 3.7 mg/kg/day or lower, which approximately ranges from
260 mg/day to 370 mg/day of nitrate in individuals with a body weight between 70 and
100 kg. The daily dose of nitrate provided to the participants in this study was higher than
ADI recommendations but it was also considerably lower than nitrate doses provided in
several previous studies reporting beneficial effects on cardiovascular outcomes [36,55].
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Hord et al. have also calculated the nitrate content of healthy dietary patterns, such as the
Mediterranean diet or DASH diet, which could contain up to 1000 mg of dietary nitrate [43].

5. Conclusions

This pilot RCT showed that the supplementation of dietary nitrate alongside a calor-
ically restricted diet could be a promising strategy to improve vascular and cognitive
functions in older overweight subjects. Dietary nitrate does not appear to amplify the
drop in energy metabolism occurring with weight loss. Further investigations in studies
with more robust designs and larger study populations are warranted to substantiate these
promising initial findings.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu15040890/s1, Figure S1: Study Protocol; Table S1: Inclusion
and exclusion criteria.
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