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Abstract: The intestinal microbial population is recognized for its impact on cancer treatment out-
comes. Little research has reported microbiome changes during cancer progression or the interplay of
disease progression, dietary sugar/fat intake, and the microbiome through surgery and chemotherapy.
In this study, the murine gut microbiome was used as a model system, and changes in microbiome
diversity, richness, and evenness over the progression of the cancer and treatment were analyzed.
Mice were categorized into four diet cohorts, combinations of either high or low sucrose and high or
low omega-3 fatty acids, and two treatment cohorts, saline vehicle or chemotherapy, for a total of
eight groups. Fecal samples were collected at specific timepoints to assess changes due to diet imple-
mentation, onset of cancer, lumpectomy, and chemotherapy. Akkermansia muciniphila abundance was
very high in some samples and negatively correlated with overall Amplicon Sequence Variant (ASV)
richness (r(64) = −0.55, p = 3 × 10−8). Throughout the disease progression, ASV richness significantly
decreased and was impacted by diet and treatment. Alpha-diversity and differential microbial abun-
dance were significantly affected by disease progression, diet, treatment, and their interactions. These
findings help establish a baseline for understanding how cancer progression, dietary macronutrients,
and specific treatments impact the murine microbiome, which may influence outcomes.

Keywords: cancer; murine microbiome; alpha diversity; dietary composition; chemotherapy; disease
progression; omega-3; sucrose

1. Introduction

The prevalence of cancer remains high [1]. Currently, it is expected that there will be
1,918,030 incident cases of cancer and 609,360 cancer deaths, this year [1]. Breast cancer
is considered “fairly common” by the National Institute of Health [2], and is anticipated
to account for 15% (287,850) of those new cases and 7.1% (43,250) of cancer deaths [1].
Women have a 13% lifetime chance of developing breast cancer, requiring them to receive
therapeutic treatment [2].

An important aspect of achieving the best cancer treatment outcomes is maintaining
patient health against infectious disease and opportunistic pathogens throughout treatment.
When patients receive any systemic treatment against breast cancer (e.g., chemotherapy
or chemo-radiation), a surgery, or a combination of treatments, their immune system be-
comes depressed [3]. These therapies target rapidly dividing cells, such as aggressive
cancer cells, and many cells which are vital to host immunity (red blood cells, lympho-
cytes, macrophages, and neutrophils) [4], leading to patients’ increased susceptibility to
infections [5] including, among others, foodborne pathogens such as Salmonella spp., STEC
(Shiga-toxin producing E. coli), and Listeria monocytogenes [5,6]. As both the treatment and
disease progress, maintaining gastrointestinal health becomes increasingly difficult [7]. In
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particular, the intestinal microbial population may be affected, leading to dysbiosis, and
triggering additional inflammatory responses.

Both the composition of the intestinal microbial populations and their diversity are
vital to maintaining patient health [8]. There is a cyclical relationship between the gut micro-
biome and cancer treatment responsiveness, in which each impacts the other [9]. It has been
well documented that the state of the gastrointestinal (GI) microbial community correlates
with efficacy and outcomes related to chemotherapy [10,11]. The diversity and composition
of the gut microbiome is posited to affect the outcome of cancer treatment [12,13], and a de-
pleted microbiome with minimal bacterial diversity is believed to further depress immune
system efficacy. This increases the susceptibility of the host to infection, and colonization of
the GI tract with unfavorable bacteria has been shown to worsen disease outcomes and can
cause long-term damage to the host immune system [14,15].

Diet is inextricably linked to shaping the microbiome [14], as well as correlated to
the onset of cancer and its treatment outcomes. Diet also directly impacts inflammation
and can indirectly affect it through changes in the microbiome [16–18] For instance, it has
been shown that a diet high in fat and red meat correlates to an elevated risk of colorectal
cancer diagnosis [19]. Diet has been particularly highlighted as a factor which affects the
diversity and composition of the GI microbiome [20,21]. Both the diversity and population
composition of the microbiome are important factors when considering host resilience [22].
Decreased diversity has been associated with a high fat, high sugar diet, a combination
that is typically considered a “Western” diet [22]. This kind of diet has been linked to
inflammation and dysbiosis through the microbiome [16]. For instance, a diet high in fats
and sugars is also associated with a predomination by Mollicutes, a parasitic bacterial class
in the Firmicutes phylum that is commonly linked to inflammation [23,24].

However, little research currently exists on the effect of cancer treatments on the state
of the microbiome, and the factors that mediate that relationship. This is vital to understand,
as the toxicity of chemotherapy may reduce the diversity of the microbiome, thus increasing
GI side-effects of treatment and increasing patient susceptibility to opportunistic infections.
Because dysbiosis of the microbiome may lead to patient health concerns [14,25] and,
ultimately, cause disruptions in patient treatment or reduce treatment options for those
patients, it is critical to fill this gap in knowledge. Until the impact of cancer progression
and the intersection of diet and treatment on the microbiome is better understood, it will
be challenging to appropriately treat cancer patients and to mitigate potential side-effects.

The objective of this study is to determine changes in the richness and diversity of
the gut microbiome over the course of cancer and subsequent treatment, dependent on
different dietary patterns. This study uses fecal samples as a proxy for analysis, and tracks
changes in the microbiome through breast cancer progression and therapy in mice fed diets
with various levels of fat and sugar, to emulate dietary recommendations [26] and common
intake levels in a Western diet [27]. In this study, we follow a timeline of breast cancer
onset and progression, to surgical treatment, to chemotherapy. This timeline is designed
to represent a typical experience of cancer patients. We hypothesize that this progression
will result in (i) a decrease in the diversity of the gut microbiome, independent of diet,
and (ii) an increased presence of pathogenic commensals and bacterial species commonly
linked to inflammation. Additionally, we hypothesize that consumption of a high omega-3
or high sucrose diet will exacerbate negative microbiome effects, with a combination diet
compounding this impact. Finally, treatment with chemotherapy is expected to further
decrease the diversity and density of the gut microbiome population, whereas a lack of
chemotherapeutic treatment is not expected to negatively impact the microbiome.

2. Materials and Methods
2.1. Animals

Mice were chosen as the model organism for control of diet, control of cancer, control
of treatment, cost of maintenance, and space availability. A total of 116 C57bl/6 female
mice, 7–8 weeks old, were purchased from Charles River Laboratories (Wilmington, MA,
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USA). After arrival, mice were housed in an Association for Assessment and Accreditation
of Laboratory Animal Care-approved vivarium and fed a normal chow diet, prior to the
start of this experiment.

2.2. Diet

Mice were randomly assigned to one of four diet groups (n = 29/group) using a lottery
system, and each group was assigned to a semi-purified diet produced by Research Diets,
Inc. (Newark, NJ, USA) beginning one week after recovery from ovariectomy surgery. The
first diet was a low sucrose (9% of kcal), high omega-3 fatty acid diet (LS, HF), with 2% of
daily kcal coming from omega-3 fatty acids. Microencapsulated EPA and DHA was present
in this diet at a ratio of 1.5:1. High omega-3 consumption is expected to be associated
with decreased inflammation [28]. The second was a low sucrose, low omega-3 fatty acid
diet (LS, LF) with alpha linolenic acid (plant-based) at a low dose to prevent essential
fatty acid deficiency; EPA and DHA were not components of the diet. Low omega-3 diets
are representative of common fatty acid intakes in Western culture, in which omega-3
fatty acids are typically from plant sources [27]. Low sucrose diets were constructed in
accordance with dietary recommendations [26]. Third was a high sucrose (47% of kcal),
high omega-3 fatty acid diet (HS, HF). High sucrose has been documented to counter the
positive effects of high omega-3 fatty acid consumption [29]. Fourth was a high sucrose, low
omega-3 fatty acid diet (HS, LF). The combination of low omega-3 intake compounded with
high sucrose makes this diet the closest representative of a “Western diet”. All semi-purified
combinations had food dye added, with colors of red (LS, HF), yellow (LS, LF), blue (HS,
HF), and green (HS, LF). Diets were stored under refrigeration and changed every three to
four days in cages to prevent fatty acid oxidation.

All diets used in the experiment were comparable or equivalent in calories, minerals,
vitamins, and macronutrient distribution. Diet composition and ingredients were previ-
ously described in Ormiston et al., 2021 [27]. Additional data of mouse body weights,
tumor weights, and proportional tumor weight at necropsy, by noted time point, were
collected by the Orchard laboratory throughout the project.

2.3. Experimental Design

Mice were acclimated to facilities for approximately two weeks, then underwent an
ovariectomy to mimic the postmenopausal state common to the majority of breast cancer
patients [30]. Following ovariectomy, mice were weighed and housed individually. After
recovering from ovariectomy surgery for one week, the semi-purified diets were introduced
(Figure S1).

One week following initiation of semi-purified diets, all mice were inoculated with
100 µL of 1× 105 E0771 murine mammary cancer cells into right abdominal (4th) mammary
fat pad. Twelve days after inoculation with cancer cells, all mice underwent lumpectomy
in which the intact tumor was excised along with any visible fat pad. Eight days following
the lumpectomy procedure, body weight assessment was performed again. Ten days
following lumpectomy, mice from each dietary cohort were treated with either a saline
vehicle injection or a chemotherapy injection (n = 16 per chemo/diet group and n = 13 per
vehicle/diet group). Chemotherapy composition was 9 mg/kg body weight of doxorubicin
and 90 mg/kg body weight of cyclophosphamide (50% of human equivalent dose). The
experiment ended early, one week after either saline vehicle or chemotherapy injection,
because tumor regrowth was detected. All mice were euthanized, according to IACUC
guidelines. Briefly, mice were injected with euthasol (270 mg/kg) and when deeply anes-
thetized, cardiac perfusion was performed, and tissues were collected. Tumors and organs
were weighed and stored in −80 ◦C until further analysis.

2.4. Sample Collection

Throughout the course of the study, tumors were palpated, to assess growth, and were
measured using calipers. During the experiment, mouse feces were collected, and samples
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were stored in pre-labeled collection tubes. Each mouse had its own cage, and a sterile
pair of forceps was used for each collection. Up to 2 mL of feces was collected for each
mouse on days D-1 (baseline), D6 (diet effect), D16 (cancer effect), D29 (surgery effect), and
D35 (treatment effect). Bedding was changed after each fecal collection and three days
following administration of chemotherapy/vehicle injections. Individual day/mouse tubes
were stored in labeled and sealed Whirl-Pak bags and preserved at −80 ◦C.

2.5. DNA Isolation and Processing

Using a random number generator, four representative samples were selected for
each collection timepoint, diet, and treatment combination, with the exception of samples
collected one day before diet introduction, for which six samples were collected. Selected
fecal samples were processed according to instructions given for the QIAmp® PowerFecal®

DNA isolation kit (Qiagen; Hilden, Germany, 2017). Upon completion of DNA isolation, we
measured the concentration and purity of each sample using NanoDrop (Thermo Scientific
Nanodrop 1000 Spectrophotometer). Each sample was then diluted to a concentration of
5 ng/µL and suspended in Tris buffer solution (ThermoFisher Scientific; Waltham, MA,
USA). Following isolation, samples were sent to the Molecular and Cellular Imaging Center
(MCIC) core facility at the Ohio State University, Wooster campus, for 16S ribosomal genetic
profiling. A genomic library was generated after amplification with the following primers,
as in previous studies [31,32]: Forward-S-D-Bact-0564-a-S-15 (5′-AYT GGG YDT AAA
GNG) and Reverse-S-D-Bact-0785-b-A-18 (5′-TAC NVG GGT ATC TAA TCC), amplifying a
fragment of 206 bp.

2.6. Morphological Analysis

Diet and treatment effects on morphological measurements of mice were analyzed
over the course of the experiment, using a regular Analysis of Variance (ANOVA) for
body weight and body weight change, and an ANOVA using M-estimators (pbad2way()
function from the R package WRS2, version 1.1.3 [33]) for the non-normally distributed
measurements of tumor weight and tumor weight as a proportion of body weight.

2.7. Microbiome Data Analysis

All code used for the analyses can be found in our GitHub repository for this study
(https://github.com/jelmerp/mouse-cancer-metabarcoding, accessed on 26 January 2023).
Computation was performed at the Ohio Supercomputer Center [34] using project PAS0471.
After confirming that FASTQ files for all samples were of an appropriate quality for analysis
using FastQC (version 0.11.8 [35]) and MultiQC (version 1.11 [36]), primers were removed
using cutadapt (version 3.4 [37]).

All downstream analyses were performed in R (version 4.1.1 [38,39]). The R/Bioconductor
package DADA2 (version 1.16 [40]) was used to generate a count table with counts
of each inferred Amplicon Sequence Variant (ASV) for each sample. Briefly, this con-
sisted of the following consecutive steps: sequence quality filtering and trimming (fil-
terAndTrim()function), dereplication (derepFastq() function), sequence error modeling
(learnErrors() function), denoising/ASV inference (dada() function), merging forward and
reverse read pairs (mergePairs() function), creating a sequence table (makeSequenceTable()
function), inferring and removing chimeric ASVs (removeBimeraDenovo() function), and
taxonomic assignment (assignTaxonomy() and addSpecies() functions) using the Silva [41]
database version 138.1 (available at https://zenodo.org/record/4587955, accessed on
26 October 2021) (Figure S2). Next, several filtering steps were performed: ASV were
filtered by length (retaining only ASVs that were 204–209 bp long), contaminants were
inferred and removed with the R/Bioconductor package decontam (version 1.14.0 [42])
using a negative control and DNA concentration measurements, ASVs assigned to the
order Chloroplast, the family Mitochondria, or the domain Eukaryota were removed, and
samples with a total ASV count below 1000 were removed.

https://github.com/jelmerp/mouse-cancer-metabarcoding
https://zenodo.org/record/4587955


Nutrients 2023, 15, 724 5 of 16

A phylogenetic tree for all ASVs was inferred using the R package phangorn
(version 2.8.1 [43]). The R/Bioconductor package phyloseq (version 1.38.0 [44]) was used
to store the resulting count table, taxonomy table, phylogenetic tree, and a metadata table
as a single R object and perform a number of downstream analyses, such as calculating
weighted UniFrac distances among samples, performing a Principal Coordinate Analysis
(based on UniFrac distances), and agglomerating counts at higher taxonomic levels. To
examine overall differences in microbiome composition between days, diet, and treatment,
we used the adonis2() function from the R package vegan (version 2.5.7 [45]) to run a
PERMANOVA with the weighted UniFrac distance between samples as the responding
variable. Pairwise PERMANOVA comparisons were done with the pairwise.adonis2 function
from the R package pairwiseAdonis (https://github.com/pmartinezarbizu/pairwiseAdonis,
accessed on 28 December 2022 version 0.4.1).

In the Supplementary, sequence data removal and filtering in different steps of the
pipeline are visualized in Figure S2a and taxonomic assignment success for ASVs is visual-
ized in Figure S2b. An average of 158,455 reads per sample (minimum: 54,644; maximum:
301,865) were sequenced, and an average of 142,898 (minimum: 47,581; maximum: 284,075)
were retained after quality control measures at the end of the ASV inference pipeline.
Taxonomy was assigned to ASVs at high rates at the order level (97.48%), declining at the
family (81.68%), genus (55.66%), and especially species (5.59%) levels.

Taxonomic richness was estimated for each sample and compared between days, diet,
and treatment using the R package breakaway (version 4.7.6 [46,47]). Other measures of
alpha-diversity (Simpson and Shannon indices) were estimated and compared among
days, diet, and treatment using the R package DivNet version 0.4.0 [48]). The approaches
implemented in these packages robustly estimate diversity measures while accounting for
unobserved species and not requiring rarefaction [49].

Differential abundance analysis at the ASV, genus, and family level was performed
using the R/Bioconductor package ALDEx2 (version 1.24.0 [50]). Reported p-values were
adjusted using the Benjamini–Hochberg multiple-testing correction method. For consis-
tency with this analysis, ASV counts of differentially abundant taxa were visualized after
normalization with the ALDEx2 function aldex.clr().

A list of taxa of interest (n = 43) was compiled, based on previously reported commen-
sal human bacteria which are associated with influencing cancer and treatment outcomes
or are opportunistic commensal pathogens associated with foodborne disease. Representa-
tives of these taxa or the closest higher taxonomic level that was present in our data were
singled out to assess differential abundance, plot abundances, and, where appropriate,
perform separate ordination analysis.

3. Results
3.1. Morphometric Measures

Body weight of adult mice significantly increased over the 5 weeks of the experiment
(F(2, 64) = [1.103 (0.367)], p < 0.01) regardless of diet (baseline: 19.434 g ± 2.399 g; necropsy:
21.736 g ± 1.755 g; d = 1.096, r = 0.480) (Figure 1a).

Food intake was significantly higher in both diet groups of mice consuming high
sucrose, compared to mice consuming low sucrose. Tukey’s test for multiple comparisons
showed that the mean food intake for LS, LF was significantly lower than either HS, HF or
HS, LF (p = 0.093, 95% CI = (−0.273 to −0.010); p = 0.0253, 95% CI = (−0.278 to −0.013),
respectively). The same test showed that mean food intake of LS, HF was significantly
lower than LS, LF; HS, HF; and HS, LF (p = 0.024, 95% CI −0.274 to −0.014; p < 0.0001,
95% CI = −0.416 to −0.156; p < 0.0001, 95% CI = −0.421 to −0.159, respectively). The mice
that received chemotherapy showed significantly less weight gain compared to the control
group (F(2, 64) = [−1.856 (0.522)], p < 0.001). In a two-tailed t-test, body weights were
significantly higher in the vehicle treatment group than in the chemotherapy treatment
group, by the end of the study (t(107) = 4.179, p < 0.0001) (Figure 1b).

https://github.com/pmartinezarbizu/pairwiseAdonis
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Figure 1. (a) Body weight of mouse diet cohorts at diet implementation and necropsy by diet only;
(b) necropsy body weight of mouse diet cohorts by chemotherapy or saline vehicle treatment.

3.2. Microbial Diversity, Richness, and Abundance

Overall, microbial diversity significantly changed over the course of the experiment
(i.e., by day) and differed by diet. The model for day and diet was found to be the best
fit; effects of day, diet, and their interactions on richness are shown in Table 1. With LSHF
acting as the intercept, significant differences were found between the intercept and LSLF
(F(2, 65) = [−36.3 (14.1)], p < 0.01), as well as HSHF (F(2, 65) = [−90.5 (13.3)], p < 0.001). Rich-
ness significantly decreased six days after diet implementation (F(2, 65) = [−132.4 (15.7)],
p < 0.001). The trend of decreasing richness continued with day 16 after diet implementation
(F(2, 65) = [−164.3 (16.1)], p < 0.001), day 29 (F(2, 65) = [−219.1 (16.2)], p < 0.001), and day 35
(F(2, 65) = [−263.3 (11.6)], p < 0.001) (Figure 2). Effects of diet, the interactions between day
and diet, and the interactions between diet and treatment are shown in the Supplementary
(Figure S3).

Table 1. Comparison of richness of ASV/per-sample modeled by day and diet. Number of taxa
in observed time points and dietary combinations demonstrate significant effects of day, diet, and
their interactions.

Variable Day Diet × Day

Diet Effect 1 −132.4 (15.7) ***

Cancer −164.3 (16.1) *** −33.4 (15.3) *

Surgery −219.1 (16.2) *** −61.5 (15.5) ***

Treatment −263.3 (11.6) *** −139.8 (11.1) ***

LS, LF 2 −36.3 (14.1) **

HS, HF −90.5 (13.3) ***

HS, LF 11.6 (13.9)

LS, LF × Cancer −44.9 (34.3)

HS, HF × Cancer 86.9 (28.4) **

HS, LF × Cancer −58.9 (29.1) *

LS, LF × Surgery −59.2 (32.0) +
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Table 1. Cont.

Variable Day Diet × Day

HS, HF × Surgery 12.8 (32.0)

HS, LF × Surgery −80.6 (31.4) **

LS, LF × Treatment −27.8 (22.5)

HS, HF × Treatment 68.4 (21.1) ***

HS, LF × Treatment −16.9 (22.3)

AIC 3 968.5 906.7

Log. Lik. −478.268 −436.327

formula estimate ~ day estimate ~ diet × day
1 + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001; 2 LS, LF: low sucrose, low omega-3 fatty acid diet. LS, HF: low
sucrose, high omega 3 fatty acid diet. HS, LF: high sucrose, low omega-3 fatty acid diet. HS, HF: high sucrose,
high omega 3 fatty acid diet; 3 AIC: Akaike Information Criterion, where lower values indicate a better model fit.
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Figure 2. Estimated richness over progression of cancer and treatment, by diet. Microbiome popula-
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Other alpha-diversity measures, such as the Shannon index, also take into account
evenness in abundance among ASVs. The Shannon index was also significantly affected by
day and diet (Figure 3), as well as by treatment. Day-only and treatment–diet interaction
reporting can be found in the Supplementary (Figure S4).

3.3. Overall Microbiome Composition

A PERMANOVA analysis by day and diet, using UniFrac distance as the respon-
dent variable, showed significant differences in overall microbiome composition by day
(F(3, 76) = 7.0097, R2 = 0.2075, p = 0.0001), diet (F(3, 76) = 2.1859, R2 = 0.0647, p = 0.0001),
but not by the interaction between the two (F(9, 70) = 1.087), R2 = 0.0965, p = 0.32457).
Pairwise comparisons among diets in the above model revealed significant differences
between the two low sucrose diets (R2 = 0.0707, p = 0.006), and between LSLF and HSHF
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(R2 = 0.04921, p = 0.024). When considering the chemotherapy treatment in a model that
also included diet, significant differences were observed between mice that had received
chemotherapy versus placebo (F(1, 30) = [2.7814], R2 = 0.0974, p = 0.04170). Ordination
plots using principal coordinate analysis indicated that one ASV, which was classified as
Akkermansia muciniphila, had a large impact on this analysis (Figure S5). This was overall by
far the most abundant ASV (ASV1 mean proportional abundance = 0.233; 26 of 86 samples
showed ASV1 proportional abundance > 0.5), but its pattern of abundance among samples
was clearly bimodal after baseline (Figure 4). Of individual mice that had been randomly
sampled at more than one timepoint, 11 experienced an increase of A. muciniphila abun-
dance, while four experienced a decrease, and two experienced both an increase and a
decrease at separate time points (Figure S6). The abundance of A. muciniphila and overall
sample taxonomic richness was negatively correlated (r(64) = −0.55, p = 3.00 × 10−8).
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3.4. Differential Abundance

An analysis of differential abundance showed that a total of 65 ASVs significantly
differed in abundance by day, as did 13 genera and 11 families (Figure 5).

In a model that considered both the day of disease progression and the diet, one ASV
showed a significant increase by day (ASV 21; p = 4.04 × 10−4). ASV50 was identified as
Oxalobacter formegenes, and was significantly less abundant in mice fed low omega-3 diets,
with low or high sucrose supplementation, respectively (p1 = 6.41 × 10−3, p2 = 2.86 × 10−2)
(Figure 6A). This relationship was retained in the model that considered chemotherapy
treatment and diet interactions (ASV 50; p1 = 7.88 × 10−3, p2 = 2.52 × 10−3, low omega-3
diet with low and high sucrose, respectively). The genus Romboutsia increased by disease
progression day in the day–diet interaction model (p = 4.12 × 10−2). At the family level,
Peptostreptococcaceae increased by disease progression day (p = 3.86 × 10−2) (Figure 6B) and
Oxalobacteraceae showed lower abundance in mice consuming either of the low-fat diets
with low and high sucrose, respectively (p1 = 4.92 × 10−4, p2 = 2.67 × 10−4).
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When treatment and diet were considered, the family Streptococcaceae was less abun-
dant in mice that received chemotherapy (p = 4.00 × 10−2) and Oxalobacteraceae were
significantly lower in the low sucrose, low omega-3 diet group, regardless of treatment
(p = 3.66 × 10−2).

3.5. Taxa of Interest

Genera identified in the samples included Bacteroides, Bifidobacterium, Enterococcus,
Lactobacillus, Legionella, Mycobacterium, Proteus, Pseudomonas, and Streptococcus. Bilophila
wadsworthia, Staphylococcus aureus, Klebsiella spp., and Peptococcus spp. were identified to the
genus and species level. These four taxa did not show significant differences in abundance
by disease progression, diet, or treatment.

Bacteroides intestinalis (p = 1.72 × 10−7), Bacteroides acidifaciens (p = 3.06 × 10−2), Bac-
teroides uniformis (p = 1.88 × 10−5), and the genus as a whole (p = 1.81 × 10−4) increased
during the progression of cancer, as did the genera Lactobacillus (p = 3.47 × 10−4) and
Streptococcus (p = 3.93 × 10−2).

The identified families included Peptostreptococcaceae, Clostridiaceae, Enterobacteriaceae,
Oscillospiraceae, and Listeriaceae. Three ASVs from the genus Romboutsia¸ in the family
Peptostreptococcaceae, increased by day, as did the overall family (p = 8.58 × 10−13). Addi-
tionally, the abundance of the Peptostreptococcaceae family was impacted by the interaction
between day and diet (p = 3.86 × 10−2). The Clostridiaceae family fluctuated by day
(p = 3.77 × 10−2).

At the order level, Campylobacterales and Bacteroidales were detected and Bac-
teroidales abundance was significantly impacted by day (9 ASVs). At the class level,
Gammaproteobacteria (189 ASVs) was impacted by day and diet.
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4. Discussion

In this study, we have demonstrated changes in diversity and composition of the
mouse microbiome during cancer progression and treatment. As anticipated, alpha-
diversity decreased as the disease progressed and differed between diet types. However,
though there were significant differences between the diets, conclusive results could not
be drawn on if certain nutrients protected or exacerbated this decrease in diversity. It
is well documented that diet is a major determinant of the richness and diversity of the
microbiome [51], as supported by our results. Oligosaccharides are known to be used by
opportunistic pathogens within the gut, and can lead to, or worsen, the state of disease
and limit treatment opportunities [52]. Though no pathogenic commensals were able to be
identified to the species level, there were multiple ASVs, families, and classes of focal taxa
which were impacted by dietary patterns, which warrants further investigation.

Diets high in sugar or fat have been previously shown to promote inflammation associ-
ated with the gut microbiome [16]. Sucrose, in particular, has been associated with changes
in the microbiome and to permeability of the intestinal mucosal barrier, an important factor
in maintenance of host immunity [53]. This study used a high sucrose, low omega-3 diet to
simulate common Western dietary patterns, as the Western diet typically involves obtaining
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fatty acids from plants, rather than marine sources [27]. While some dietary effects were
seen, more investigation is required, as dietary intake and its effects on the microbiome may
be much more intricately linked to additional factors, such as genetics and environment.
The changes in abundance, from this study, can largely be attributed to a decrease in overall
richness throughout the disease progression, rather than explicitly to diet.

The abundance of several ASVs, genera, and families were significantly impacted by
diet, treatment, disease progression, and their interactions. However, a distinct link was not
able to be determined between disease progression or diet and an increase in pathogenic
commensals or inflammatory bacterial species, as hypothesized. Unexpectedly, Akkermansia
muciniphila demonstrated a bimodal polarization after baseline, without regard for diet.
Akkermansia is a mucin-degrading bacterium [54] and its presence is highly associated with
favorable outcomes for cancer patients [55]. It is usually a minor resident of the gut, and is
the only known bacterium in the Verrucomicrobia phylum [14]. It is generally associated
with positive health outcomes and increased longevity [8], and its presence in the murine
gastrointestinal microbiome has previously been shown to increase in mice fed fish-oil [17].
Akkermansia populations have been shown to be negatively impacted, in mouse model
systems, by the administration of cyclophosphamide [10]. In this study, no association was
found between Akkermansia and diet or treatment. The abundance distribution was bistable
and switched randomly, in direction and magnitude, within individual mice, for reasons
unable to be explained by the scope of this experimental design. Further analysis is needed
to determine why this occurred.

The microbiome influences innate immunity [56] and affects the response of the host
to cancer therapies, such as chemotherapy or immunotherapy [57]. A cyclical relationship
exists between the composition and diversity of the microbiome and cancer therapy [58].
In this study, we specifically investigated the combination of doxorubicin and cyclophos-
phamide and found significant changes in richness and alpha-diversity associated with
chemotherapy treatment, dependent on diet. Some microbial communities contribute
to resilience against doxorubicin toxicity [59], but the administration of doxorubicin still
causes changes in the composition of the gut microbiome [60]. Cyclophosphamide has been
shown to drive the murine microbiome towards dysbiosis, significantly decreasing Lacto-
bacilli and Enterococci populations, while increasing Clostridium group IV [11]. Depletion
of the diversity of the intestinal microbial population is associated with negative cancer
outcomes, while in a healthy individual, the composition of the microbiome remains stable
for 60% of bacterial species and diversity is commonly high [61]. Many commensals, such
as Bifidobacteria, have been shown to be susceptible to the toxicity of chemotherapeutic
treatments and can become depleted [62], allowing for an overabundance of opportunistic
pathogens. Despite the clear risk that this combination may pose to the host microbial
population, combinations of anthracyclines with cyclophosphamide have been the primary
chemotherapeutic treatment for metastatic breast cancer since the 1990s [63]. Yet, there are
still relatively few studies investigating the interaction between chemotherapy and the gut
microbiome [64].

Beyond this analysis of the interplay between cancer treatment and the gastrointesti-
nal microbiome, there are also very few studies that assess the relationship between the
microbiome and cancer itself. In one study, cancer progression was associated with a
decreased bacterial load in the microbiome: patients with stage 1 cancer showed a greater
total bacterial DNA load than patients with stage 2 or stage 3 cancer [25]. However, these
results were analyzed from the perspective of the impact of the microbiome on tumorigen-
esis, rather than assessing the interaction between cancer progression and the microbial
population [65]. In this study, we found that microbiome richness significantly decreased
after onset of cancer, as did alpha-diversity. Future studies should consider that onset of
cancer correlates with a decrease in microbiome diversity, which may further exacerbate
tumor progression. Additionally, this study was performed only with breast cancer cells,
and so results should not be extrapolated to different types and sites of cancer.
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Despite general profiles being documented, interactions between the gut microbiota
and the host are specific to the host, and are dependent on genetic, historical, and physical
factors, making the composition and cross-talk of the microbiome unique [66]. Therefore,
there is no one specific “optimal” microbiome population, as there are many factors which
shape the microbial population specifically for the host [67], and it is commonly accepted
that a healthy microbiome is one in which the pathogenic bacterial populations are in
balance with the symbiotic populations [68].

In this study, the richness of the gastrointestinal microbiome began decreasing prior to
inoculation with breast cancer cells, and the presence of Akkermansia muciniphila occurred
independently of diet and prior to cancer inoculation. These results may be linked to the
ovariectomy performed on the mice prior to sample collection and diet administration.
Previous studies have indicated that surgery allows for bacterial translocation, and this
is associated with changes in the composition of the gastrointestinal microbiome [69].
Therefore, the changes in richness observed in this study may also be attributable to the
performance of surgery prior to sample collection.

Mice are effective preclinical models and help to establish an understanding of the
mechanism of changes in the microbiome due to treatment [51]. However, this model is
limited by differences in anatomy and genetics, and so is not a perfect comparator for
humans [66]. This limitation can be addressed in future studies by using other model
systems and, eventually, human patients in order to more accurately understand relevant
microbiome shifts throughout the onset and progression of cancer and treatment. Addi-
tionally, fecal samples have been accepted as an adequate proxy for assessing the microbial
community of the gut microbiome and are less invasive than taking samples directly from
the GI tract. However, community structure is frequently lost, leading to an incomplete
picture of the microbiome [70]. Future studies would benefit from taking samples directly
from the GI tract, when possible.

5. Conclusions

In this study we determined how richness, evenness, and composition of the murine
gastrointestinal microbiome are impacted by the progression of cancer, macronutrient
dietary composition, chemotherapeutic treatment, and the interplay between the three.
The microbiome has been well analyzed for its contribution to cancer treatment outcomes,
but little focus has yet been given to how it is cyclically impacted by cancer, even prior to
treatment. Projections for new cancer cases remain high, which means that, at any given
time, there are a large number of patients receiving treatment. As the composition and
diversity of the microbiome contributes to host immunity and resilience, understanding
the complex relationship between disease progression and microbial populations is vital
to improving treatment outcomes. These results should be considered, when designing
clinical studies, with regards to how the richness and diversity are negatively impacted by
changes in diet and the progression of cancer. The overgrowth of commensal pathogens
and the depletion of beneficial commensals needs to be quantified and addressed. This
study contributes to a better understanding of how the microbial population is impacted by
cancer treatment and the course of the disease, leading to potentially better patient support
and improved treatment outcomes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu15030724/s1, Figure S1: Experimental design for (a) assigning
mice to cohorts, (b) experiment timeline and fecal collection points, and (c) dietary macronutrient
balance; Figure S2: Quality control and sample processing (a) filtering and read removal along
the data processing pipeline (b) proportion of ASVs assignments by taxonomic level; Figure S3:
Estimated richness by diet and treatment (a) microbiome population richness significantly decreased
over time (b) microbiome population richness differed by diet and treatment interactions. Figure S4:
Richness and evenness of ASV/per-sample, weighted by the Shannon and Simpson diversity in-
dices (a) demonstrate differences in alpha-diversity modeled by study timepoint (b) demonstrate
differences in alpha-diversity modeled by diet and treatment. Figure S5: Ordination from principal

https://www.mdpi.com/article/10.3390/nu15030724/s1
https://www.mdpi.com/article/10.3390/nu15030724/s1


Nutrients 2023, 15, 724 14 of 16

coordinate analysis which (a) includes ASV1 and (b) excludes ASV1. Figure S6: ASV1 abundance of
individual mice by timepoint.
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