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Abstract: Cognitive disorders have become important public health issues around the world. Studies
evaluating the association between cognitive decline and food timing are lacking. The objective of
this study was to examine the potential association between energy intake distribution during the
day and cognitive performance in cognitively healthy and mildly cognitive impaired individuals.
Data were derived from the ongoing Albion study which includes people aged 40 years or older
who have a positive family history of cognitive disorder or concern about their cognitive status. A
thorough dietary and cognitive assessment was performed. Participants consuming low energy
intake at the beginning of the day or high energy at the end of the day had higher cognitive function
compared to participants characterized by the opposite pattern. This trend remained statistically
significant even after adjustment for potential confounders (p = 0.043). This study suggests that
individuals with worse cognitive function may choose to eat earlier during the day, when cognitive
performance is better, and it might be hypothesized that a meal pattern characterized by high energy
consumption at the beginning of the day or low energy at the end of the day could be a marker of
cognitive impairment.

Keywords: energy intake distribution; timing of food intake; dietary patterns; mild cognitive
impairment; cognitive function; cognitive decline

1. Introduction

As life expectancy increases and the number of older people is growing, cognitive
disorders have become an important rapidly growing public health problem around the
world [1]. Currently, it is known that over 50 million people suffer from Alzheimer’s disease
(AD) worldwide. AD is the most common type of dementia, and it is expected that this
number will reach 81.1 million by 2040 and 152 million by 2050 [2]. These numbers imply
a remarkable economic and social burden for not only healthcare systems, but also for
families, caregivers and older people themselves [3]. Individuals who ultimately develop
a degenerative dementia such as AD will likely pass through several stages of cognitive
deterioration [4]. Mild cognitive impairment (MCI) has been defined as a transition state
between healthy aging and AD [4]. Individuals who have MCI are at greater risk of
developing AD compared to individuals with normal cognition [5]. More specifically, the
rate of progression is variable but is in the range of 10% to 15% per year, in contrast to
the progression rate from normal cognitive status to AD, which ranges from 1% to 2%
per year [5]. Individuals with MCI are characterized by subjective memory impairment
and objective memory impairment, compared to individuals of similar age and education,
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while their general cognitive function and the activities of daily living are still normal [4].
As pathological changes in the brain are initiated long before clinical manifestations [6],
there is a large time period to implement prevention strategies that could potentially delay
age-related cognitive decline and dementia.

However, there have been no effective medical therapies so far to prevent, delay,
or modify dementia [7]. Therefore, other strategies should be considered. A substantial
amount of evidence indicates that lifestyle factors such as physical activity and sleep habits
could influence cognitive dysfunction [8,9]. Dietary intake is another lifestyle factor which
is consistently proposed to exert beneficial or detrimental influences on cognition [10,11].
Particular nutrients, food groups, and dietary patterns have been linked to cognitive
changes in older adults [10,12]. According to the GRADE approach there are seven key
nutritional recommendations with regard to managing cognitive decline. Specifically, the
significant consumption of mono- or poly- unsaturated fatty acids in combination with
the low consumption of saturated fatty acids, vitamin D intake that is higher than the
recommended daily allowance, high consumption of fruits and vegetables, as well as good
adherence to a Mediterranean dietary pattern might protect against cognitive deterioration.
Additionally, a ketogenic diet, low consumption of whole-fat dairy products or a caloric
restriction are promising nutritional interventions, although the evidence does not yet
support widespread uptake [12].

On the other hand, daily energy intake does not seem to be associated with cognitive
function, as patients with AD and MCI do not differ from individuals with normal cognitive
function in their total energy intake [13]. As can be observed, most of the existing studies
have evaluated total dietary intake per day, and there has been much less focus on the
timing of intake, i.e., the distribution of intake throughout the day and/or during specific
eating occasions. The timing of food intake has been linked thus far with several health
outcomes, including obesity and glycemic control. For example, higher caloric intake early
compared to later in the day is associated with reduced susceptibility to weight gain [14]
and greater weight loss [15], whereas the consumption of meals early in the day improves
glycemic response [16]. Meal timing is considered to be an external signal which might
interfere with the circadian clocks and may disrupt the physiologic harmony between
predicted and actual behavior [14]. Such a desynchronization may favor the development
of a wide range of disease-related processes, including obesity and its comorbidities [14].

In relation to cognitive decline, the evidence is scarce. It has been found that meal
patterns oriented towards the early day, such as breakfast, compared to breakfast skip-
ping [17], or having breakfast 4–6 times a week, compared to ≤3 times a week [18], are
associated with decreased odds of having mild cognitive impairment. On the other hand,
having lunch after 12:00 pm compared to having lunch earlier is associated with decreased
odds of having mild cognitive impairment [18], whereas dinner consumption has not been
associated with cognitive decline [17]. It is worthy of note that existing data refer to the con-
sumption of the socially accepted main meals as classified by the individuals themselves,
and there is little or no information on the specific time of day they were consumed or the
energy content for each eating episode, whether meal or snack.

Considering that it is largely unknown whether the three-main-meal pattern (breakfast,
lunch, and dinner) still exists [19], the consumption of main meals, in the aforementioned
studies, is roughly self-assessed by relevant dietary behavior questionnaires and the fact
that there is no consensus on meal and snack definition and classification [20], it seems
more important, at a first stage, to explore and map energy intake distribution throughout
the day. Data derived from 24 h dietary recalls containing information on the timing of
each eating occasion allow for the evaluation of energy intake distribution ona continuum.
Thus, the purpose of the present analysis is to examine the potential difference in energy
intake distribution during the day between participants with normal cognitive function
and mild cognitive impairment as well as the potential association between energy intake
distribution during the day and cognitive performance in cognitive healthy and mildly
cognitively impaired individuals.
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2. Materials and Methods
2.1. Study Design and Population

ALBION (Aiginition Longitudinal Biomarker Investigation of Neurodegeneration)
is a longitudinal study initiated in 2018. It takes place in the Cognitive Disorders Clinic
of Aiginition Hospital of the National and Kapodistrian University of Athens, and is
designed to address research questions regarding the preclinical and prodromal stages of
AD. A detailed description of the study protocol has been published previously [21,22].
Briefly, study participants include people aged 40 years or older who are either referred
by other specialists or self-referred to the cognitive disorders outpatient clinic of a tertiary
university hospital. These participants may have a positive family history or concern about
their cognitive status, or they may be asymptomatic with a commitment to contributing to
medical science. Furthermore, in order to be included, a lumbar puncture as well as a whole-
brain imaging on a 3T Philips Achieva-Tx MR scanner (Philips, Best, The Netherlands)
should be performed. Exclusion criteria are diagnosis of dementia, neurological, psychiatric
or medical conditions associated with a high risk of cognitive impairment or dementia,
MRI contraindications, as well as the use of anticoagulant medication.

A thorough interview and a clinical examination were performed by specialist neu-
rologists to assess all of the participants. Vital signs and physical strength data were
also recorded. Participants’ weight and height were measured and Body Mass Index
(weight/height2) was calculated. Each participant underwent an extensive assessment
of several parameters, including several demographic (years of age, years of education,
sex), medical, social, environmental, clinical, nutritional, neuropsychological determinants
and lifestyle activities through a range of questionnaires. Furthermore, data from portable
devices, neuroimaging techniques and biological samples were collected. Included individ-
uals were diagnosed as either having normal cognitive function (NCF) or having at most
mild cognitive deficits, i.e., mild cognitive impairment (MCI) as determined by a specialist
neurologist after an extensive standardized neuropsychological assessment; diagnoses were
reached using established diagnostic criteria [23]. An MCI diagnosis is assigned when the
participant has cognitive complaints and a measurable deficit in cognition with a standard
deviation below 1.5 in at least one domain in the absence of dementia or impairment in
everyday functioning. The study protocol was approved by the National and Kapodistrian
University Ethics Committee. Written informed consent was obtained from all participants
at the time of enrollment.

2.2. Cognitive Function Assessment

Global cognition was assessed using the Mini Mental State Examination (MMSE) [24]
and the Addenbrooke’s Cognitive Examination Revised (ACE-R) [25] by trained neuropsy-
chologists. A variety of neuropsychological tests were performed to provide information
on five main cognitive domains: (a) attention (Trail Making Test A [26] and Digit Span
Forwards [27]), (b) executive function (Trail Making Test B [26], the Stroop Test [28], and
Digit Span Backwards [27]), (c) visuo-spatial abilities (the Medical College of Georgia
Complex Figure Test/copy and the visuo-spatial component of ACE-r), (d) memory (verbal
memory: the Greek Verbal Learning Test and story recall, both immediate and delayed [29];
nonverbal memory: the Medical College of Georgia Complex Figure Test, both immediate
and delayed), and (e) language (the semantic and phonological verbal fluency component
of ACE-r, the language component of ACE-r, and a 40-item naming test). Participants’
raw scores on the individual neuropsychological tests for each cognitive domain were
transformed to z-scores using mean and standard deviation values derived from the non-
MCI group of the total study sample. Therefore, an average domain score for attention,
executive and visual-spatial functioning, memory and language was produced. Individual
cognitive domain scores were then averaged to calculate a global cognitive z score (a higher
score indicated better performance).
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2.3. Dietary Intake Assessment

Dietary intake was evaluated by four 24-h recalls using the five-step multiple-pass
method [30], a method which can accurately assess energy and macronutrient intakes in
both women and men [31,32]. Participants were asked by appropriately trained registered
dietitians to report in detail all foods and beverages consumed the day before (i.e., between
waking up in the morning and going to bed at night) the assessment. Specific timing as
well as location, parallel activities, and companions were also recorded for each eating
occasion. The first recall was conducted in person and the subsequent ones were conducted
over the telephone. The telephone-administered recall was as effective as the face-to-face-
administered recall [33]. Three of the recalls were conducted on weekdays and one on
a weekend day in order to more accurately estimate usual intake throughout the week.
Participants were not aware of the day of the recall in advance, so they could notchange
their diet in anticipation of the interview. Energy and macronutrient intake were calculated
per 2-h intervals using the dietary analysis software Nutritionist ProTM (version 4.2, 2007,
Axxya Systems, WA, USA).

2.4. Statistical Analysis

Characteristics of participants with NCF were compared with those with MCI. For
normally and non-normally distributed quantitative variables, a t-test and Mann–Whitney
test were performed, respectively. For categorical data, Pearsons’χ2 test was used to check
for differences between groups. The association between total energy intake and cognitive
status as well as cognitive performance was also assessed using binary logistic and linear
regression models, respectively. Models were adjusted for age, sex, education, and BMI.

We used generalized additive models (GAMs) to model the relationship between
energy intake and time of day. A GAM is a generalized linear model with a linear predictor
that includes smooth functions of one or more covariates, hence allowing the modeling of
non-linear relationships [34]. Two different models were constructed:

(1) Energy intake trends for different levels of cognition

To assess for differential energy intake trends for different levels of cognition, we fitted
a model of the following form:

g(µi) = α0 + α1 Cognitioni + f(Timei) + fc(Timei | Cognition = MCI)

µi ≡ E(Energy = Energyi | Time = Timei),

Energy~Twp (µ, σ2) such as Var(Energy) = σ2µp

where α0 is the model intercept (the mean energy of individuals in the reference [i.e., NCF]
cognition category), α1 is the difference in mean energy between individuals with MCI and
those with NCF, and f and fc are centered smooth function of the time variable, representing
the trend of energy over the course of the day for the reference cognition category and the
deviation of the MCI cognition category from this energy trend, respectively. Energy follows
a prespecified distribution family, and g is a monotonic and differentiable linearizing link
function that transforms the expectation of the response variable (Energy) at a specific
time point to the linear predictor. The models also included terms for random intercepts,
considering that different participants may have different energy intakes at the beginning
of the day, as well as random slopes, considering that different participants may have
different energy intake trends over the course of the day (for simplicity, the random part of
the model is not included in the above equation). Thin-plate regression splines were used
to parametrize the f and fc [35]. Considering the positively skewed distribution of energy
intake data, different combinations of conditional distributions and link functions were
tested; a Tweedie distribution family (Tw) with a log link function provided the best fit for
the data. Model diagnostics revealed significant overdispersion and heteroscedasticity of
deviance residuals for the default Gaussian family models, which was to be expected given
the zero-inflated, positively skewed nature of energy intake data (Supplementary Figure S1).
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These issues were largely resolved by specifying a Tweedie distribution family (Tw) with
a log link function (Supplementary Figure S2). Despite the significant improvement in
model fit, a minor trend was still present in model residuals. This was likely related to
some remaining temporal autocorrelation in model errors given the time series nature of
our data (Supplementary Figure S3), and could have easily been addressed by including
anautoregressive term in the model. However, the gam function of mgcv does not currently
allow for autoregressive terms, and other functions that do, do not support the extended
family of distributions, such as Tweedie, that gam supports [36].

The basisdimension (k) was set to 12 to allow for maximal flexibility (“wiggliness”),
since GAMs remove redundant degrees of freedom, thus protecting from overfitting, by
applying a “wiggliness” penalty equal to: λ

∫ [
f′′
]2dx, where λ is known as the smoothing

parameter that controls the tradeoff between model fit and model smoothness [34]. Re-
stricted estimated maximum likelihood (REML) was used to estimate λ through a Bayesian
approach, since it has demonstrated better overall performance and numerical stability
compared to generalized cross validation (model default) [37,38].

(2) Interaction between energy trends and global cognitive score

To assess for potential interaction between energy trends over the course of the day
and global cognitive z-score, we applied the usual notion of statistical interaction to smooth
functions, using the tensor product approach described by Simon Wood [34]. The fit-
ted model for the interaction between energy trends and global cognitive score had the
following form:

g(µi) = α0 + f1(Timei) + f2(ZCOi) + f3(Timei,ZCOi)

Model parametrization was otherwise performed as previously described. Models
were adjusted for age, sex, education, and BMI; the interaction terms of these variables
with time were also included in the models to adjust for potential differential trends based
on age, sex, education and BMI. Analyses were performed using R (R Core Team, 2021).

3. Results

A total of 104 participants were included in the analysis; 73 (70.2%) had NCF and 31
(29.8%) had MCI. The characteristics of the participants are presented in Table 1. Participants
had a mean age of 65 ± 9 years and 13 ± 4 years of education; 65.5% were women. Total
daily energy intake was 1829 ± 530 kcal; 42 ± 9% of energy derived from carbohydrates,
44 ± 7% from lipids, and 15 ± 3% from proteins. Participants with NCF had more years of
education compared to those with MCI, p = 0.019. BMI, age and sex distribution did not
differ between the two groups. Total daily energy intake as well as total daily intake of
carbohydrates, proteins and lipids as percentage of energy intake did not differ between
individuals with NCF and MCI. Participants with NCF consumed more grams of protein
daily (p = 0.039) than those with MCI, whereas the daily consumption of carbohydrates and
lipids in grams did not differ between the two groups. Similarly, participants with NCF
and MCI did not differ in protein intake in terms of grams per kilogram of body weight.
Moreover, total energy intake was not associated with cognitive status (p = 0.139, 95% CI:
0.998, 1.000) or cognitive function (p = 0.348, 95% CI: −85.850, 241.173).

The model that was performed to evaluate the association between daily energy intake
trends and different levels of cognition explained 43.3% of the variability for energy intake
distribution during the day. Energy intake distribution did not differ between participants
with NCF and MCI (Figure 1, Table 2). There was relatively higher uncertainty for estimates
at the beginning and the end of the day (as is evident by the widened credible intervals)
due to zero reported energy intake at these time points by the majority of study participants.
We also observed differential energy intake trends during the day based on the participants’
sex. Differential energy intake trends during the day based on participants’ BMI were
also detected.
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Table 1. Descriptive characteristics and eating patterns for the participants by cognitive status
(n = 104).

Variables ALL NCF (N = 73) MCI (N = 31) p-Value

Sex (% female) 65.4 68.5 58.1 0.307

Age (years) 65± 9 (40, 79) 64± 9 (40, 79) 67± 7 (53, 79) 0.094

Education (years) 13 ± 4 (6, 22) 14 ± 4 (6, 22) 12 ± 4 (6, 17) 0.019

BMI (kg/m2) 27 ± 4 (15, 38) 27 ± 4 (15, 38) 27 ± 4 (21, 34) 0.962

Daily energy intake (kcal) 1829 ± 530 (878, 3555) 1889 ± 526 (993, 3554) 1688 ± 520 (878, 2856) 0.077

CHO
g/day 189 ± 89 (76, 415) 194 ± 61 (76, 415) 178 ± 61 (92, 383) 0.237
% E 42 ± 9 (23, 70) 42 ± 9 (23,70) 43 ± 8 (24, 59) 0.508

Lipids
g/day 89 ± 32 (35, 186) 93 ± 32 (35, 186) 81 ± 30 (36, 162) 0.071
% E 44 ± 7 (21, 59) 44 ± 8 (21, 59) 43 ± 6 (28, 54) 0.471

Proteins
g/day 69 ± 23 (25, 143) 72 ± 23 (36, 143) 62 ± 23 (25, 132) 0.039
% E 15 ± 3 (9.5, 24) 15 ± 3 (10, 24) 15 ± 3 (9, 22) 0.275
g/kg body weight 0.94 ± 0.34 (0.35, 2.8) 0.98 ± 0.35 (0.46, 2.8) 0.85 ± 0.31 (0.35, 1.62) 0.053

Mean ± Standard deviation (minimum, maximum). Abbreviations: BMI = body mass index, NCF = normal
cognitive function, MCI = mild cognitive function.

Table 2. Association between energy intake trends and different levels of cognition. Results from
generalized additive models.

Parametric Terms

Estimate Standard Error p-Value

Intercept 4.21612 0.09798 <0.001

MCI 0.01036 0.07190 0.885

Smooth Terms

Effective Degrees of
Freedom

Reference Degrees
of Freedom p-Value

Time 9.720691 10.425 <0.001

Sex 1 5.854168 22.000 <0.001

Cognition 2 1.001234 1.002 0.242

Education 1.000490 1.001 0.066

Age 1.375659 1.672 0.807

BMI 1.000392 1.001 0.902

Tensor Interaction Terms

Time, BMI 19.378845 27.967 0.024

Time, Age 1.002003 1.004 0.203

Time, Education 11.343028 16.509 0.185

Abbreviations: MCI = mild cognitive function, BMI = body mass index. 1 Male sex was specified as the reference
sex category. 2 Normal cognitive function was specified as the reference cognition category.
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Furthermore, the model describing the association between daily energy intake trends
and global cognitive z-score explained 44.3% of the variability for energy intake distri-
bution during the day. Figure 2 presents the relation between energy intake distribution
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throughout the day and global cognitive z-score. Participants consuming low energy intake
at the beginning of the day or high energy at the end of the day had higher cognitive func-
tion compared to participants characterized by the opposite pattern. This trend remained
statistically significant (p =0.043) even after adjustment for potential confounders (sex, age,
education, BMI), as well as for differential trends based on the aforementioned potential
confounders (Table 3). This trend indicates that the energy intake patterns during the day
might be related to the cognitive function of the individuals.
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Table 3. Association between energy intake trends and global cognitive score. Results from general-
ized additive models.

Parametric Terms

Estimate Standard Error p-Value

Intercept 4.19738 0.09464 <0.001

Smooth terms

Effective Degrees of
Freedom

Reference Degrees
of Freedom p-Value

Time 9.780887 10.499 <0.001

Sex 1 5.369277 22.000 <0.001

Education 1.000849 1.002 0.040

Age 2 1.003762 1.007 0.831

Global cognitive
z-score 1.025011 1.049 0.262

BMI 1.000879 1.002 0.820

Tensor Interaction Terms

Time, Global
cognitive z-score 2.360638 2.958 0.043

Time, BMI 19.219090 27.799 0.025

Time, Age 1.002322 1.005 0.080

Time, Education 11.79925 17.091 0.152

Abbreviations: BMI = body mass index. 1 Male sex was specified as the reference sex category. 2 Normal cognitive
function was specified as the reference cognition category.

4. Discussion

The present cross-sectional study is the first study that evaluates associations between
daily distribution of energy intake and cognition in adults aged 40 years or older. We
examined the potential differential energy trends throughout the day for different levels
of cognition (individuals with NCF vs. individuals with MCI) as well as the association
between daily energy intake distribution and cognitive performance. We found that a
pattern characterized by lower energy consumption at the beginning of the day and higher
energy consumption at the end of the day is associated with better cognitive performance,
whereas daily energy intake distribution did not differ between participants with NCF
and MCI.

There are well established circadian rhythms in cognitive performance in humans,
with worse performance in the early morning and late evening and the best performance
somewhere in the middle of the daytime. Specifically, cognitive performance rises at
8:00 a.m., reaches a peak at about 4:00 p.m. and then begins to decline [39]. A circadian
shift in intake patterns with the preponderance of calories consumed at breakfast and
decreased energy consumption at dinner has been observed in seniors with AD and
behavioral difficulties (mental disorganization and confusion) after 21 consecutive days of
investigator-weighed food intake recording [40]. Furthermore, having lunch after 12:00 p.m.
compared to having lunch earlier is associated with the decreased odds of having MCI [18].
Therefore, it seems that individuals with AD and MCI tend to prefer the early daytime for
food intake. On the other hand, a tendency for meal sizes to increase over the day with peak
intakes at noontime and early evening has been found in healthy young adults [41]. These
findings are in agreement with our results indicating that consuming a significantenergy
intake at the beginning of the day or low energy at the end of the day is associated with
worse cognitive performance. Therefore, individuals with worse cognitive function may
choose to eat earlier inthe day, when cognitive performance is better.
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Regarding the potential underlying mechanisms, some hypotheses may be postulated.
Older individuals sleep and wake earlier than younger ones and earlier relative to their
nightly melatonin secretory episode [42]. Similarly, AD patients tend to go to bed earlier
than healthy individuals of the same age range, and early in respect to their DLMO (dim
light melatonin onset) clock time. This behavior may be due to their withdrawal from social
and family activities [43],and it has beenobserved both in older people and in thosewith
cognitive impairment. We found that participants with worse cognitive performance
distribute their energy intake earlier; this change in eating habits with a tendency to reduce
energy intake later in the day and increase energy intake early in the day could be the
beginning of isolation from family and a marker of cognitive decline. On the other hand,
going to bed earlier, with respect to DLMO clock time, has been reported to play a role
in causing insomnia [44]. The discrepancy between bedtime and DLMO clock time could
be a potential determinant of insomnia development [43], and thus this status could also
influenceeating habits towards a preponderance of calories being consumed earlier rather
than later in the day.

In addition, it has been found that healthy adults consume larger meals later in the day
and that their satiety ratios decrease as the day progresses, indicating that humans develop
less satiety from a given amount of food later in the day than earlier. This behavior is
considered to happen spontaneously and represents eating in anticipation of the overnight
fast [41]. In contrast to healthy adults, the acceptance of food is found to be the most likely
at breakfast, while refusal of food occurs least often at this meal in demented individu-
als [45]. Moreover, hunger and satiety signals are likely disrupted secondary to neuronal
degeneration [46,47], impacting pathways involved in food intake regulation. Therefore,
individuals with worse cognitive function are characterized by low energy intake later in
the day, perhapsbecause of the disruption of food intake regulation signals, leading to the
loss of their spontaneous eating stimuli in order to be prepared for the following overnight
fast. Taking the aforementioned into consideration, we may hypothesize that a meal pattern
characterized by high energy consumption at the beginning of the day or low energy at the
end of the day could be a marker of cognitive impairment.

Food timing has been found to play an important role in several disease-related
entities. Higher caloric intake in the morning compared with later in the day has been
linked with better health effects, such as greater weight loss [15] and improved glycemic
response [16]. Breakfast consumption has also been associated with decreased odds of
having mild cognitive impairment [17,18]. However, most studies so far have evaluated
the energy intake of specific meals/time periods or meal frequency, and they have not
examined energy intake distribution throughout the day. Furthermore, they are cross-
sectional investigations and thus it is difficult to identify the causal relationships. Our
hypothesis, as stated above, is that cognitive changes induce changes in eating patterns
towards the early parts of the day, whereas in other health outcomes it is usually assumed
that early eating predisposes to detrimental physiological or biochemical changes.

We detected an association only between energy intake distribution during the day
and cognitive function, and no difference in daily energy patterns between individuals with
NCF and MCI was observed. Cognitive function was assessed using the global cognitive
z-score, which is a continuous variable, and better statistical power can be achieved as the
study sample is not divided into specific groups.

Apart from the cross-sectional design of the study which did not allow us to determine
causality, another limitation was the moderate sample size. However, the use of four 24-
recalls along with the implemented statistical methods helped overcome potential power
limitations by leveraging the multiple observations obtained during the course of the
day. This method of dietary assessment allowed us to have analyses of time-specific food
consumption and, by applying multiple recalls, for weekdays and weekends, we reduced
the effects of random error (day-to-day variability in dietary intake) and ensured a true
representation of energy intake. Another strength that should be noted is the detailed
cognitive assessment through thorough clinical information as well as thevery extensive
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neuropsychological data that were collected. It should also be added that the ALBION
study takes place in a specialist clinic of a tertiary university hospital.

5. Conclusions

This wasthe first study investigating the distribution of energy intake and cognitive
function, indicating that higher energy consumption later in the day is associated with
better cognitive performance. More studies are needed before generalizing our findings,
and clinical trials are necessary to confirm the direction of the association. The fact that
the disease process starts many years before the development of the disease symptoms [6]
makes the early detection of cognitive impairment, through behavioral changes, a crucial
matter in order to initiate effective interventions as early as possible. By increasing our
knowledge on the role of timing of food intake in human health, new feasible strategies
and recommendations can be developed.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu15030673/s1, Figure S1: Kernel density plot for energy intake
data; Figure S2: Deviance residual plots for: A. Gaussian distribution family generalized additive
model with identity link function, B. Tweedie distribution family generalized additive model with
log link function; Figure S3: Autocorrelation of model residuals.

Author Contributions: Conceptualization and supervision, N.S. and M.Y.; methodology, D.B., A.D.
and E.N.; data analysis, D.B., A.D., S.M.C. and S.C.; investigation, D.B., A.D., S.C., E.N. and E.M.,
V.C.C.; data curation, N.S., E.N. and M.Y.; drafting, D.B.; review and editing, all authors; visualization,
S.C.; supervision, N.S. and M.Y.; project administration, N.S. and M.Y. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Updated approval by the Institutional Review Board of the
Aiginition University Hospital, National and Kapodistrian University of Athens, Greece, Protocol
code: 255, A∆A: ΨΘ6K46Ψ8N2-8HΩ, date of approval: 10 May 2021.

Informed Consent Statement: Informed consent was obtained from all participants involved in
the study.

Data Availability Statement: Not applicable.

Acknowledgments: The analyses performed in the present study would not be feasible without
Simon Wood’sresearch on GAMs and his mgcv R package (https://cran.rproject.org/web/packages/
mgcv/index.html). We would also like to thank Gavin Simpson for his extraordinary work on GAMs.
The publicly available code posted on his blog (https://fromthebottomoftheheap.net/), as well as his
R package “gratia” (https://cran.r-project.org/web/packages/gratia/index.html) were extremely
helpful in the execution of our analytic plan.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References
1. Prince, M.; Wimo, A.; Guerchet, M.; Ali, G.-C.; Wu, Y.-T.; Prina, M. World Alzheimer Report 2015: The Global Impact of Dementia: An

Analysis of Prevalence, Incidence, Cost and Trends; Alzheimer’s Disease International: London, UK, 2015.
2. Collaborators, G.B.D.D.F. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis

for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e125. [CrossRef]
3. 2021 Alzheimer’s disease facts and figures. Alzheimers Dement 2021, 17, 327–406. [CrossRef] [PubMed]
4. Petersen, R.C. Aging, mild cognitive impairment, and Alzheimer’s disease. Neurol. Clin. 2000, 18, 789–806. [CrossRef] [PubMed]
5. Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Tangalos, E.G.; Kokmen, E. Mild cognitive impairment: Clinical characteriza-

tion and outcome. Arch. Neurol. 1999, 56, 303–308. [CrossRef]
6. Dubois, B.; Hampel, H.; Feldman, H.H.; Scheltens, P.; Aisen, P.; Andrieu, S.; Bakardjian, H.; Benali, H.; Bertram, L.;

Blennow, K.; et al. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016,
12, 292–323. [CrossRef]

7. Buckley, J.S.; Salpeter, S.R. A Risk-Benefit Assessment of Dementia Medications: Systematic Review of the Evidence. Drugs Aging
2015, 32, 453–467. [CrossRef]

https://www.mdpi.com/article/10.3390/nu15030673/s1
https://www.mdpi.com/article/10.3390/nu15030673/s1
https://cran.rproject.org/web/packages/mgcv/index.html
https://cran.rproject.org/web/packages/mgcv/index.html
https://fromthebottomoftheheap.net/
https://cran.r-project.org/web/packages/gratia/index.html
http://doi.org/10.1016/S2468-2667(21)00249-8
http://doi.org/10.1002/alz.12328
http://www.ncbi.nlm.nih.gov/pubmed/33756057
http://doi.org/10.1016/S0733-8619(05)70226-7
http://www.ncbi.nlm.nih.gov/pubmed/11072261
http://doi.org/10.1001/archneur.56.3.303
http://doi.org/10.1016/j.jalz.2016.02.002
http://doi.org/10.1007/s40266-015-0266-9


Nutrients 2023, 15, 673 12 of 13

8. Dominguez, L.J.; Veronese, N.; Vernuccio, L.; Catanese, G.; Inzerillo, F.; Salemi, G.; Barbagallo, M. Nutrition, Physical Activity,
and Other Lifestyle Factors in the Prevention of Cognitive Decline and Dementia. Nutrients 2021, 13, 4080. [CrossRef]

9. Zhao, C.; Noble, J.M.; Marder, K.; Hartman, J.S.; Gu, Y.; Scarmeas, N. Dietary Patterns, Physical Activity, Sleep, and Risk for
Dementia and Cognitive Decline. Curr. Nutr. Rep. 2018, 7, 335–345. [CrossRef]

10. Scarmeas, N.; Anastasiou, C.A.; Yannakoulia, M. Nutrition and prevention of cognitive impairment. Lancet Neurol. 2018, 17,
1006–1015. [CrossRef]

11. Wieckowska-Gacek, A.; Mietelska-Porowska, A.; Wydrych, M.; Wojda, U. Western diet as a trigger of Alzheimer’s disease: From
metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res. Rev. 2021, 70, 101397.
[CrossRef]

12. Buckinx, F.; Aubertin-Leheudre, M. Nutrition to Prevent or Treat Cognitive Impairment in Older Adults: A GRADE Recommen-
dation. J. Prev. Alzheimers Dis. 2021, 8, 110–116. [CrossRef] [PubMed]

13. Doorduijn, A.S.; de van der Schueren, M.A.E.; van de Rest, O.; de Leeuw, F.A.; Hendriksen, H.M.A.; Teunissen, C.E.; Scheltens, P.;
van der Flier, W.M.; Visser, M. Energy intake and expenditure in patients with Alzheimer’s disease and mild cognitive impairment:
The NUDAD project. Alzheimers Res. 2020, 12, 116. [CrossRef] [PubMed]

14. Basolo, A.; Bechi Genzano, S.; Piaggi, P.; Krakoff, J.; Santini, F. Energy Balance and Control of Body Weight: Possible Effects of
Meal Timing and Circadian Rhythm Dysregulation. Nutrients 2021, 13. [CrossRef] [PubMed]

15. Garaulet, M.; Gomez-Abellan, P. Timing of food intake and obesity: A novel association. Physiol. Behav. 2014, 134, 44–50.
[CrossRef]

16. Henry, C.J.; Kaur, B.; Quek, R.Y.C. Chrononutrition in the management of diabetes. Nutr. Diabetes 2020, 10, 6. [CrossRef]
17. Currenti, W.; Godos, J.; Castellano, S.; Caruso, G.; Ferri, R.; Caraci, F.; Grosso, G.; Galvano, F. Association between Time Restricted

Feeding and Cognitive Status in Older Italian Adults. Nutrients 2021, 13, 191. [CrossRef]
18. Duan, H.; Sun, C.; Zhu, Y.; Liu, Q.; Du, Y.; Lin, H.; Jin, M.; Fu, J.; Ma, F.; Li, W.; et al. Association of Dietary Habits with Mild

Cognitive Impairment among Elderly in Rural Area of North China. Curr. Alzheimer Res. 2021, 18, 256–264. [CrossRef]
19. Wittig, F.; Hummel, E.; Wenzler, G.; Heuer, T. Energy and macronutrient intake over the course of the day of German adults: A

DEDIPAC-study. Appetite 2017, 114, 125–136. [CrossRef]
20. Johnson, G.H.; Anderson, G.H. Snacking definitions: Impact on interpretation of the literature and dietary recommendations.

Crit. Rev. Food Sci. Nutr. 2010, 50, 848–871. [CrossRef]
21. Kalligerou, F.; Ntanasi, E.; Voskou, P.; Velonakis, G.; Karavasilis, E.; Mamalaki, E.; Kyrozis, A.; Sigala, E.; Economou, N.T.;

Patas, K.; et al. Aiginition Longitudinal Biomarker Investigation Of Neurodegeneration (ALBION): Study design, cohort descrip-
tion, and preliminary data. Postgrad. Med. 2019, 131, 501–508. [CrossRef]

22. Scarmeas, N.; Daskalaki, A.; Kalligerou, F.; Ntanasi, E.; Mamalaki, E.; Gargalionis, A.N.; Patas, K.; Chatzipanagiotou, S.;
Yannakoulia, M.; Constantinides, V.C. Initial Data and a Clinical Diagnosis Transition for the Aiginition Longitudinal Biomarker
Investigation of Neurodegeneration (ALBION) Study. Medicine 2022, 58. [CrossRef]

23. Petersen, R.C.; Doody, R.; Kurz, A.; Mohs, R.C.; Morris, J.C.; Rabins, P.V.; Ritchie, K.; Rossor, M.; Thal, L.; Winblad, B. Current
concepts in mild cognitive impairment. Arch. Neurol. 2001, 58, 1985–1992. [CrossRef]

24. Folstein, M.F.; Folstein, S.E.; McHugh, P.R. Mini-mental state. A practical method for grading the cognitive state of patients for
the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [CrossRef]

25. Mioshi, E.; Dawson, K.; Mitchell, J.; Arnold, R.; Hodges, J.R. The Addenbrooke’s Cognitive Examination Revised (ACE-R): A
brief cognitive test battery for dementia screening. Int. J. Geriatr. Psychiatry 2006, 21, 1078–1085. [CrossRef]

26. Vlahou, C.; Kosmidis, M. The Greek Trail Making Test: Preliminary normative data for clinical and research use. Psychol. J. Hell.
Psychol. Soc. 2002, 9, 336–352.

27. Wechsler, D. Adult Intelligence Scale—Administration and Scoring Manual, 3rd ed.; Psychological Corporation: San Antonio, TX,
USA, 1997.

28. Wuhr, P. A Stroop effect for spatial orientation. J. Gen. Psychol. 2007, 134, 285–294. [CrossRef]
29. Vlahou, C.H.; Kosmidis, M.H.; Dardagani, A.; Tsotsi, S.; Giannakou, M.; Giazkoulidou, A.; Zervoudakis, E.; Pontikakis, N.

Development of the Greek Verbal Learning Test: Reliability, construct validity, and normative standards. Arch. Clin. Neuropsychol.
2013, 28, 52–64. [CrossRef]

30. Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.;
Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of
energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [CrossRef]

31. Conway, J.M.; Ingwersen, L.A.; Vinyard, B.T.; Moshfegh, A.J. Effectiveness of the US Department of Agriculture 5-step multiple-
pass method in assessing food intake in obese and nonobese women. Am. J. Clin. Nutr. 2003, 77, 1171–1178. [CrossRef]

32. Conway, J.M.; Ingwersen, L.A.; Moshfegh, A.J. Accuracy of dietary recall using the USDA five-step multiple-pass method in men:
An observational validation study. J. Am. Diet Assoc. 2004, 104, 595–603. [CrossRef]

33. Tran, K.M.; Johnson, R.K.; Soultanakis, R.P.; Matthews, D.E. In-person vs telephone-administered multiple-pass 24-hour recalls in
women: Validation with doubly labeled water. J. Am. Diet Assoc. 2000, 100, 777–783. [CrossRef] [PubMed]

34. Wood, S.N. Generalized Additive Models: An Introduction with R, 2nd ed.; Chapman and Hall/CRC: New York, NY, USA, 2017.
35. Wood, S.N. Thin plate regression splines. J. R. Stat. Soc. Ser. B Stat. Methodol. 2003, 65, 95–114. [CrossRef]

http://doi.org/10.3390/nu13114080
http://doi.org/10.1007/s13668-018-0247-9
http://doi.org/10.1016/S1474-4422(18)30338-7
http://doi.org/10.1016/j.arr.2021.101397
http://doi.org/10.14283/jpad.2020.40
http://www.ncbi.nlm.nih.gov/pubmed/33336232
http://doi.org/10.1186/s13195-020-00687-2
http://www.ncbi.nlm.nih.gov/pubmed/32979927
http://doi.org/10.3390/nu13093276
http://www.ncbi.nlm.nih.gov/pubmed/34579152
http://doi.org/10.1016/j.physbeh.2014.01.001
http://doi.org/10.1038/s41387-020-0109-6
http://doi.org/10.3390/nu13010191
http://doi.org/10.2174/1567205018666210617152205
http://doi.org/10.1016/j.appet.2017.03.018
http://doi.org/10.1080/10408390903572479
http://doi.org/10.1080/00325481.2019.1663708
http://doi.org/10.3390/medicina58091179
http://doi.org/10.1001/archneur.58.12.1985
http://doi.org/10.1016/0022-3956(75)90026-6
http://doi.org/10.1002/gps.1610
http://doi.org/10.3200/GENP.134.3.285-294
http://doi.org/10.1093/arclin/acs099
http://doi.org/10.1093/ajcn/88.2.324
http://doi.org/10.1093/ajcn/77.5.1171
http://doi.org/10.1016/j.jada.2004.01.007
http://doi.org/10.1016/S0002-8223(00)00227-3
http://www.ncbi.nlm.nih.gov/pubmed/10916515
http://doi.org/10.1111/1467-9868.00374


Nutrients 2023, 15, 673 13 of 13

36. Wood, S.N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear
models. J. R. Stat. Soc. Ser. B Stat. Methodol. 2011, 73, 3–36. [CrossRef]

37. Simpson, G.L. Modelling Palaeoecological Time Series Using Generalised Additive Models. Front. Ecol. Evol 2018, 6, 149.
[CrossRef]

38. Wood, S.N.; Pya, N.; Säfken, B. Smoothing Parameter and Model Selection for General Smooth Models. J. Am. Stat. Assoc. 2016,
111, 1548–1563. [CrossRef]

39. Valdez, P.; Reilly, T.; Waterhouse, J. Rhythms of mental performance. Mind Brain Educ. 2008, 2, 7–16. [CrossRef]
40. Young, K.W.; Greenwood, C.E. Shift in diurnal feeding patterns in nursing home residents with Alzheimer’s disease. J. Gerontol.

A Biol. Sci. Med. Sci. 2001, 56, M700–M706. [CrossRef]
41. De Castro, J.M. Circadian rhythms of the spontaneous meal pattern, macronutrient intake, and mood of humans. Physiol. Behav.

1987, 40, 437–446. [CrossRef]
42. Duffy, J.F.; Zeitzer, J.M.; Rimmer, D.W.; Klerman, E.B.; Dijk, D.J.; Czeisler, C.A. Peak of circadian melatonin rhythm occurs later

within the sleep of older subjects. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E297–E303. [CrossRef]
43. Manni, R.; Cremascoli, R.; Perretti, C.; De Icco, R.; Picascia, M.; Ghezzi, C.; Cerri, S.; Sinforiani, E.; Terzaghi, M. Evening melatonin

timing secretion in real life conditions in patients with Alzheimer disease of mild to moderate severity. Sleep Med. 2019, 63,
122–126. [CrossRef]

44. Flynn-Evans, E.E.; Shekleton, J.A.; Miller, B.; Epstein, L.J.; Kirsch, D.; Brogna, L.A.; Burke, L.M.; Bremer, E.; Murray, J.M.;
Gehrman, P.; et al. Circadian Phase and Phase Angle Disorders in Primary Insomnia. Sleep 2017, 40, zsx163. [CrossRef]

45. Stahelin, H.B.; Hofer, H.O.; Vogel, M.; Held, C.; Seiler, W.O. Energy and protein consumption in patients with senile dementia.
Gerontology 1983, 29, 145–148. [CrossRef]

46. Morley, J.E.; Silver, A.J. Anorexia in the elderly. Neurobiol. Aging 1988, 9, 9–16. [CrossRef]
47. Nordberg, A. Neuroreceptor changes in Alzheimer disease. Cereb. Brain Metab. Rev. 1992, 4, 303–328.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1111/j.1467-9868.2010.00749.x
http://doi.org/10.3389/fevo.2018.00149
http://doi.org/10.1080/01621459.2016.1180986
http://doi.org/10.1111/j.1751-228X.2008.00023.x
http://doi.org/10.1093/gerona/56.11.M700
http://doi.org/10.1016/0031-9384(87)90028-X
http://doi.org/10.1152/ajpendo.00268.2001
http://doi.org/10.1016/j.sleep.2019.04.018
http://doi.org/10.1093/sleep/zsx163
http://doi.org/10.1159/000213107
http://doi.org/10.1016/S0197-4580(88)80004-6

	Introduction 
	Materials and Methods 
	Study Design and Population 
	Cognitive Function Assessment 
	Dietary Intake Assessment 
	Statistical Analysis 

	Results 
	Discussion 
	Conclusions 
	References

