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Abstract: Metabolic regulation of glucose can be altered by fasting periods. We examined glucose
metabolism and metabolomics profiles after 12 h and 36 h fasting in non-obese and obese partici-
pants and people with type 2 diabetes using oral glucose tolerance (OGTT) and intravenous glucose
tolerance testing (IVGTT). Insulin sensitivity was estimated by established indices and mass spec-
trometric metabolomics was performed on fasting serum samples. Participants had a mean age of
43 ± 16 years (62% women). Fasting levels of glucose, insulin and C-peptide were significantly lower
in all cohorts after 36 h compared to 12 h fasting (p < 0.05). In non-obese participants, glucose levels
were significantly higher after 36 h compared to 12 h fasting at 120 min of OGTT (109 ± 31 mg/dL
vs. 79 ± 18 mg/dL; p = 0.001) but insulin levels were lower after 36 h of fasting at 30 min of OGTT
(41.2 ± 34.1 mU/L after 36 h vs. 56.1 ± 29.7 mU/L; p < 0.05). In contrast, no significant differences
were observed in obese participants or people with diabetes. Insulin sensitivity improved in all
cohorts after 36 h fasting. In line, metabolomics revealed subtle baseline differences and an attenuated
metabolic response to fasting in obese participants and people with diabetes. Our data demonstrate
an improved insulin sensitivity after 36 h of fasting with higher glucose variations and reduced early
insulin response in non-obese people only.
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1. Introduction

At divergence with the current lifestyle in the Westernized world, historically humans
lived in an environment characterized by periods of fasting and feasting. For the fasting
phase, humans have acquired tools to manage metabolic challenges to maintain cellular
functions at minimized resting metabolic rate expenditure. Such physiological adaptations
include lipolysis, fatty acid oxidation, ketogenesis, autophagy, minimal glucogenesis and
decreased glucose oxidation [1]. These adaptions to changing energy demand and supply
and the associated changes in fuel selection are known as ‘metabolic flexibility’ [2].

Within the plethora of calory restriction (CR) options, intermittent fasting (IF) has
emerged as a well-tolerated and effective intervention [3]. Besides leading to a reduction
in caloric intake, IF stimulates autophagic flux, enhances mitochondrial biogenesis and
suppresses the mTOR pathway during the fasting period [4].

Moreover, animal studies suggested neuroprotective effects [5] and an improvement
of learning and memory after prolonged fasting in mice [6].

Of note, previous studies have demonstrated that starvation, prolonged fasting or
a low-carbohydrate diet result in impaired glucose tolerance in healthy participants [7–9].
During extended food restriction, glucose levels decrease, resulting in a release of the
counterregulatory pancreatic hormone glucagon [10] and a reduction of both pancreatic
insulin content [11] and circulating insulin levels in healthy individuals. Consequently,
refeeding results in increased postprandial glucose excursions in otherwise normo-glycemic
subjects [9].

When solely focusing on the increased postprandial glucose excursions, this obser-
vation might be regarded as potentially detrimental. However, it could also be a feature
of metabolic flexibility in healthy subjects. Interestingly, previous mechanistic studies
mainly investigated the impact of prolonged fasting on glucose tolerance in healthy
individuals [7–9]. However, studies in obese people or those with established type 2
diabetes mellitus, where weight reduction and hence dietary interventions represent
a cornerstone of metabolic management, are scarce.

The aim of our study was to elucidate glucometabolic adaptions following 12 and
36 h in healthy non-obese, obese participants and patients with type 2 diabetes. Here, we
provide strong evidence in favor of the notion that metabolic flexibility is a privilege of the
non-obese that is lost with obesity and type 2 diabetes.

2. Materials and Methods
2.1. Study Population

The study population included a total of 60 participants, 20 participants of whom were
healthy and non-obese, 20 obese (BMI > 30 kg/m2) and 20 who had been diagnosed with
type 2 diabetes. Participants were identified via Primary Care, Diabetes Outpatient Clinics,
the Graz Diabetes Registry for Biomarker Research (GIRO) and adverts. Participants in
the healthy non-obese cohort were included if they were 18 years and older, had a body
mass index (BMI) between 20.0 and 27.0 kg/m2 and a fasting plasma glucose level lower
than 110 mg/dL (without medication). Participants of the obese cohort had to have
a BMI > 30.0 kg/m2 and a fasting plasma glucose level < 110 mg/dL (without medication).
Individuals were excluded from both these cohorts if they had a history of type 1 or
type 2 diabetes or established cardiovascular disease, were taking weight loss medications,
were heavily drinking (more than 15 alcoholic drinks/week), or were taking any glucose
lowering, lipid lowering or antihypertensive medication. Additionally, pregnant, or breast-
feeding women and individuals on corticosteroids or antidepressants within 6 months
prior to study initiation were excluded.

Patients in the third cohort were required to have established type 2 diabetes on either
diet or a monotherapy or combination therapy of oral glucose lowering drugs [12]. The trial
was approved by the Ethics Committee of the Medical University of Graz (30–238 ex 17/18)
and was conducted at the Interdisciplinary Metabolic Medicine Trials Unit, Division of
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Endocrinology and Diabetology at the Medical University of Graz, Austria. All participants
provided written informed consent before enrolling in the study.

2.2. Study Design

We conducted a prospective, mechanistic study. All study participants attended the
clinical research center on 2 days separated from each other by at least 4 days. The study
visits were carried out after 12 h fasting or 36 h fasting, respectively. During the fasting
phase prior to the study visits, the participants were only allowed to consume calorie-
free beverages such as water, flavored carbonated water, unsweetened black or green
tea and coffee. Participants were requested to stop eating at 8:00 pm on the day before
the 12 h fasting study visit or at 8:00 p.m. two days prior to the 36 h fasting study visit,
respectively. Both study visits commenced at 7:30 a.m. with a physical examination by the
study physician and measuring waist-to-hip ratio (WHR) and blood pressure. Patients with
type 2 diabetes were asked to omit the intake of the glucose lowering medication before
the oral glucose tolerance test (OGTT) and intravenous glucose tolerance test (IVGTT) on
the visit day. Subsequently, the fasting blood sample was taken and the OGTT was started.

In each cohort, 10 people (the first 10 to agree to the sub-study) participated in two
additional visits, again separated from each other by at least 4 days, where IVGTTs were
performed, once after 12 h of fasting and once after 36 h of fasting. Study visits of the
sub-study also started at 7:30 a.m. with physical examination and intravenous cannulation.
The IVGTT was started at 8 a.m. and lasted 100 min.

2.3. Oral Glucose Tolerance Test (OGTT)

A standard gauge cannula was placed into a subcutaneous vein for blood sampling.
To prevent blood clotting in the cannula, it was occasionally flushed with sterile normal
saline. A pre-meal blood sample was taken (-5 min) and then all subjects were asked to
drink the 75 g glucose solution (Glucoral® 75 citron, Germania Pharmazeutika, Vienna)
within a period of 2–4 min (time 0 min). The blood sampled at each time point was collected
in a fluoride oxalate tube (1 mL) for plasma glucose measurement and into a serum tube
for analyses of insulin and C-peptide.

2.3.1. Homeostasis Model Assessment-Insulin Resistance

Homeostasis model assessment-insulin resistance (HOMA-IR) was first developed in
1985 by Matthews et al. and is a method used to quantify insulin resistance and beta-cell
function from basal (fasting) glucose (G0) and fasting insulin (I0) concentrations [13]. The
equation proposed by Matthews et al. is:

HOMAIR = (I0 × G0)/22.5.

2.3.2. Quantitative Insulin Sensitivity Check Index

The quantitative insulin sensitivity check index (QUICKI) is an empirically derived
mathematical transformation of fasting blood glucose and plasma insulin concentrations
that provides a consistent and precise insulin sensitivity index with a better positive
predictive power. The QUICKI can be determined from fasting plasma glucose G0 (mg/dL)
and fasting insulin I0 (µIU/mL) concentrations [14].

QUICKI = 1/(logI0 + logG0)

2.3.3. Matsuda Index

The Matsuda Index (ISI) was induced as an index to evaluate whole-body physiological
insulin sensitivity from the data obtained by OGTT [15]. This index is calculated from
plasma glucose (mg/dL) and insulin (mIU/L) concentrations in the fasting state (I0,G0)
and during OGTT (Imean, Gmean) [15].

ISI = 1000/
√

((G0 × I0) × (Gmean × Imean))
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2.3.4. Indices of Insulin Secretion

Beta cell function was estimated in the fasting state with [13]

HOMA-β = (20 × I0)/(G0 − 3.5),

and during the OGTT with the Stumvoll index [16]:

1st phase = 1283 + 1.829 × I30 − 138.7 × G30 + 3.772 × I0 plus 2nd phase = 286 + 0.416 × I30 − 25.94 × G30 +
0.926 × I0,

and the ratio of the incremental insulin (Ins30) to glucose response (Glc30) over the first
30 min during the OGTT ∆Ins30/∆Glc30 [17].

2.4. Intravenous Glucose Tolerance Test (IVGTT)

After 12 h or 36 h of fasting, respectively, 0.3 g/kg bodyweight of 20% glucose solution
were given at time 0 min. Blood was drawn from the contralateral antecubital vein at −10,
0, 2, 4, 6, 8, 10, 20, 30, 40, 50, 60, 80 and 100 min for the assessment of plasma glucose and
insulin concentrations.

2.5. Biochemical Measurements

Insulin and C-peptide were measured by chemiluminescence on an Advia Cen-
taur system (Siemens Healthcare Diagnostics, Eschborn, Germany). Plasma glucose
and routine parameters were determined using a cobas analyzer (Roche Diagnostics,
Mannheim, Germany).

2.6. Serum Sample Preparation for Metabolomics

To extract metabolites, collected serum samples tubes were treated following a previ-
ously described protocol [18]. Briefly, 50 µL were vortexed for 5 min with 500 µL of ice-cold
extraction mixture (MeOH/water, 9/1, −20 ◦C, with a cocktail of internal standards) and
then centrifuged (10 min at 15,000× g, 4 ◦C). Several fractions were split to be analysed
by different Liquid and Gas chromatographies coupled with mass spectrometers (LC/MS
and GC/MS).

Widely targeted analysis by GC-MS/MS was performed on a 7890 A gas chromatog-
raphy (Agilent Technologies, Vienna, Austria) coupled to a QQQ (triple quadrupole)
7000 C (Agilent Technologies, Vienna, Austria). Polyamines, bile acids and short chain
fatty acids analyses were performed by LC-MS/MS with a 1290 UHPLC (Ultra-High Per-
formance Liquid Chromatography) (Agilent Technologies, Vienna, Austria) coupled to
a QQQ 6470 (Agilent Technologies, Vienna, Austria). Widely pseudo-targeted analysis by
UHPLC-HRAMS (Ultra-High Performance Liquid Chromatography—High Resolution
and Accuracy Mass Spectrometer) was performed on a Dionex U3000/Orbitrap q-Exactive
(Thermo Fisher Scientific, Waltham, MA, USA) coupling. These methods were previously
described by Durand et al. 2021 [19].

2.7. Sample Size Calculation

Data on the effects of starvation on glucose metabolism in different populations are
very limited. Therefore, for sample size calculation we used preliminary data from our
InterFAST-Trial [20] which included only healthy, non-obese participants. Hence, for the
current study, a mean difference in 2 h-glucose of 20 ± 25 mg/dL between 12 h and 36 h
fasting was assumed for healthy participants. Based on a paired t-test (two-sided, alpha
5%, power 90%), 19 subjects were required for each cohort investigated to demonstrate the
assumed difference. Finally, we decided to include 20 subjects with complete follow-up in
each cohort.
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2.8. Statistical Analysis

Each cohort was analysed separately. Results are presented as means (±standard
deviations). Normality was assessed by means of the Kolmogorov-Smirnov test. Differences
in baseline characteristics between the intervention cohorts were summarized using one-
way ANOVA with a Tukey post hoc test. Intra-group differences between 12 h and 36 h of
fasting were analysed either by the paired t-test or Wilcoxon signed-rank test as appropriate.
Missing values were not replaced. Areas under the curve (AUC) were calculated for C-
peptide, glucose and insulin based on the trapezoidal rule. A two-tailed p < 0.05 was used
for statistical significance. Data were analysed in SPSS Statistics software (Version 23; IBM
Corp., Armonk, New York, NY, USA). Figures were created in R software for Data Analysis
and Graphics (4.0).

2.9. Metabolomics Data Analysis

All targeted treated data were merged and cleaned with a dedicated R (version 4.0)
package (@Github/Kroemerlab/GRMeta). The metabolomics data were analyzed and
visualized with Metaboanalyst 5.0 [21] or Graphpad Prism 9 for Mac OS X, GraphPad
Software, San Diego, California USA. Missing metabolomics data were either replaced by
1/5 of the minimum positive value of each metabolite or by the mean of each metabolite,
for 12 h (3.7%) and ratio-based (36 h/12 h values) (6.6%) analyses, respectively. One data set
outside the group’s 95% confidence interval was excluded (participant 27, non-obese cohort)
from the metabolomics analysis (Figure S3A,B). Sparsed Partial Least Squares Discriminant
Analysis (sPLS-DA) was performed using 25 metabolites per component. Significant
differences in the 12 h metabolomes were detected by one-way ANOVAs followed by
false discovery rate (FDR) correction. Metabolite classifications were generated using
Metaboanalyst’s chemical structures sub-class option. Spearman’s correlation matrices
were calculated with the corrplot and Hmisc packages in R, using Rstudio. Prism 9.0
was used for simple linear regression analyses between selected metabolites and OGTT-
based 12 h glucose-AUC values. After testing for normality with Shapiro-Wilk tests, group
comparisons of selected, normalized metabolites were performed with either one-way
ANOVAs or Kruskal-Wallis tests, accounting for multiple comparisons with post-hoc Tukey
or Dunn’s tests, respectively (Figures S4 and S5).

2.10. Primary and Secondary Outcomes

The primary outcome measure was the difference in 2-h glucose levels after 12 h
versus 36 h of fasting assessed during an OGTT in the three predefined patient cohorts.
Secondary outcomes included changes in glycemic patterns and insulin sensitivity indices.

3. Results
3.1. Baseline Characteristics

In total 60 participants (mean age of 43 ± 16 years, 62% women), 20 per cohort, were
included of which all completed the trial. Baseline characteristics of the three study cohorts
(non-obese, obese and type 2 diabetes) are shown in Table 1.

Table 1. Baseline characteristics of non-obese and obese participants and patients with type 2 diabetes.

Non-Obese Cohort (n = 20) Obese Cohort (n = 20) Type 2 Diabetes Cohort (n = 20)

Age (years) 32 ± 10 37 ± 10 60 ± 9
Bodyweight (kg) 67.5 ± 9.6 102.7 ± 14.1 64.9 ± 23.9

Height (cm) 173 ± 10 174 ± 8 176 ± 8
BMI (kg/m2) 1 22.6 ± 1.7 34.6 ± 4.8 31.0 ± 7.1

Blood pressure systolic (mmHg) 117 ± 11 122 ± 10 123 ± 12
Blood pressure diastolic (mmHg) 76 ± 13 79 ± 11 74 ± 8

Waist to hip ratio 0.8 ± 0.1 0.9 ± 0.1 1.0 ± 0.1
Fasting glucose (mg/dL) 80.3 ± 7.3 93.5 ± 14.9 149.9 ± 36.9
Fasting insulin (mU/L) 5.3 ± 2.5 14.3 ± 14.9 11.1 ± 4.3

HbA1c (mmol/mol) 32 ± 2 35 ± 3 53 ± 8

1 BMI: body mass index.
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3.2. Glycaemic Parameters
3.2.1. Non-Obese Healthy Subjects

While fasting glucose levels were lower after 36 h fasting (73 ± 11 mg/dL vs.
80 ± 7 mg/dL; p = 0.003), the mean 2-h glucose levels during the OGTT were significantly
higher after 36 h fasting compared to 12 h (109 ± 31 mg/dL vs. 79 ± 18 mg/dL; p = 0.001)
as was the AUC of glucose (21,627 ± 4002 mg/dL vs. 17,070 ± 3128 mg/dL; p < 0.001),
while insulin levels at 30 min were lower after prolonged fasting (41.2 ± 34.1 mU/L vs.
56.1 ± 29.7 mU/L; p = 0.039) (Figure 1A,B). Lower fasting C-peptide levels were observed
after 36 h fasting as compared to 12 h fasting [2.5 (1.8–4.1) vs. 4.3 (4.0–7.1) mU/L; p = 0.001].
In the IVGTTs, similar glucose patterns with higher excursion at 30 min, 40 min and 50 min
following 36 h fasting were observed (Figure S1), with reduced insulin levels (Figure S2).
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Figure 1. Effects of 12 h and 36 h fasting on glucose metabolism during OGTT (n = 20 in each
cohort); * p < 0.05. (A) Effect on plasma glucose in non-obese cohort (B) Effect on serum insulin in
non-obese cohort (C) Effect on plasma glucose in obese cohort (D) Effect on serum insulin in obese
cohort (E) Effect on plasma glucose in type 2 diabetes cohort (F) Effect on serum insulin in type 2
diabetes cohort.

All three indices of insulin sensitivity, QUICKI, HOMA-IR and Matsuda, improved
after the prolonged fasting period, 1st phase and 2nd phase insulin secretion, and the
incremental insulin to glucose ratio were lower after 36 h fasting (Table 2).

3.2.2. Obese Subjects

Two subjects had an HbA1c within the range of prediabetes (5.7–6.4 mmol/mol) and
all the others had HbA1c readings below the prediabetes threshold. Significantly lower
fasting glucose levels (88 ± 13 mg/dL vs. 94 ± 10 mg/dL; p = 0.002), fasting insulin
levels [7.2 (5.0–14.5) mU/L vs. 11.4 (6.7–15.9) mU/L; p = 0.020] and C-peptide levels
[1.65 (0.95–2.24) ng/mL vs. 2.00 (1.55–2.46) ng/mL; p = 0.036] were observed after 36 h as
compared to 12 h fasting (Figure 1C,D). However, 2 h-glucose levels after OGTT did not
significantly differ. While glucose values were similar after 36 h and 12 h of fasting in the
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OGTT, glucose levels were significantly higher after 36 h fasting in the IVGTT (20–100 min)
(Figure S1), with reduced insulin levels (Figure S2). Both QUICKI and HOMA-IR improved
after 36 h fasting (Table 2).

3.2.3. Subjects with Type 2 Diabetes (T2D)

Four patients were on diabetes diet only, while 16 had a metformin monotherapy (Hb)
or were on a combination with other oral glucose lowering drugs (4 on DPP4-inhibitors
and 7 on SGLT2-inhibitors). Significantly lower fasting glucose (136 ± 26 mg/dL vs.
150 ± 37 mg/dL; p = 0.017), fasting insulin (9.2 ± 5.8 vs. 11.2 ± 4.4 mU/L; p = 0.007) and
c-peptide (1.94 ± 1.02 vs. 2.31 ± 0.75; p = 0.002) levels were found after 36 h of fasting,
while 2-h post-challenge glucose was not significantly different between the two fasting
periods. All three indices of insulin sensitivity significantly improved after the prolonged
fasting period. Fasting proinsulin levels were significantly lower after prolonged fasting
(20.7 (10.6–33.0) pmol/L vs. 23.6 (15.3–37.1) pmol/L; p = 0.019). Glucose and insulin curves
did not significantly differ after 12 h or 36 h fasting, neither in the OGTT nor in the IVGTT
(Table 2, Figures 1E,F, S1 and S2).

Table 2. Effects of 12 h and 36 h fasting on parameters of glucose metabolism.

Non-Obese Cohort (n = 20) Obese Cohort (n = 20) Type 2 Diabetes Cohort (n = 20)

after 12 h Fasting after 36 h Fasting p-Value after 12 h Fasting after 36 h Fasting p-Value after 12 h Fasting after 36 h Fasting p-Value

Fasting glucose
(mg/dL) 80 ± 7 73 ± 11 0.003 94 ± 10 88 ± 13 0.002 150 ± 37 136 ± 26 0.017

Plasma glucose
120 min (mg/dL) 79 ± 18 109 ± 31 0.001 108 ± 36 117 ± 29 0.067 262 ± 83 282 ± 59 0.121

Fasting insulin
(mU/L) 4.3 (4.0–7.1) 2.5 (1.8–4.1) 0.002 11.4 (6.7–15.9) 7.2 (5.0–14.5) 0.020 11.2 ± 4.4 9.2 ± 5.8 0.007

Fasting C-peptide
(ng/mL) 0.94 (0.83–1.13) 0.61 (0.43–0.82) 0.001 2.00 (1.55–2.46) 1.65 (0.95–2.24) 0.036 2.31 ± 0.75 1.94 ± 1.02 0.002

Glucose (mg/dL)
AUC (in minutes) 17,070 ± 3128 21,627 ± 4002 0.000 22,638 ± 3872 23,315 ± 3622 0.197 46,771 ± 11532 46,238 ± 7822 0.734

Insulin (mU/L)
AUC (in minutes) 5592 ± 2679 7557 ± 5448 0.137 12,621 ± 8364 13,794 ± 9254 0.629 7695 ± 4427 8337 ± 4394 0.392

QUICKI 0.39 (0.37–0.40) 0.45 (0.41–0.49) 0.000 0.33 (0.31–0.35) 0.36 (0.32–0.39) 0.021 0.31 (0.30–0.33) 0.32 (0.31–0.37) 0.001
HOMAIR 0.86 (0.75–1.41) 0.43 (0.27–0.67) 0.001 2.52 (1.72–4.27) 1.37 (0.90–3.07) 0.001 4.26 ± 2.06 3.17 ± 2.17 0.012

ISI 1.28 ± 0.95 1.88 ± 1.34 0.004 0.40 (0.32–0.53) 0.54 (0.27–0.72) 0.078 0.26 (0.22–0.48) 0.30 (0.20–0.68) 0.014
Proinsulin
(pmol/L) 3.9 (3.4–5.0) 3.6 (2.7–4.6) 0.111 9.9 (7.0–25.9) 11.1 (6.6–16.6) 0.151 23.6 (15.3–37.1) 20.7 (10.6–33.0) 0.019

1st phase insulin
secretion 1138 ± 496 742 ± 471 0.001 1400 ± 956 1408 ± 759 0.972 −68 ± 635 −17 ± 585 0.536

2nd phase insulin
secretion 295 ± 108 211 ± 104 0.001 370 ± 224 370 ± 176 0.994 68 ± 130 73 ± 125 0.740

HOMA-β 105.4 (75.9–161.7) 63.6 (18.4–175.9) 0.202 140.3 (89.1–240.0) 149.1 (82.3–252.9) 0.963 53.2 ± 31.8 47.1 ± 32.4 0.102
∆Ins30/∆Glc30 1.14 (0.95–1.50) 0.49 (0.13–0.86) 0.001 0.83 (0.50–1.91) 0.92 (0.47–2.11) 0.762 0.23 ± 0.23 0.21 ± 0.22 0.157

AUC: area under the curve; QUICKI: quantitative insulin sensitivity index; HOMAIR: homeostatic model
assessment for insulin resistance; HOMA-β: homeostatic model assessment for beta cell function; ISI: Matsuda
insulin sensitivity index.

3.2.4. Comparison between Groups

When we performed a non-prespecified comparison of the delta of 2 h glucose between
12 and 36 h of fasting, adjusted for fasting glucose, a significant difference between the
participant groups (non-obese, obese, type 2 diabetes) was found (p = 0.001 using ANOVA).
Likewise, we found a significant difference between the groups when comparing AUC for
glucose during the oGTT (p = 0.005, using ANOVA).

3.3. Metabolomics Results
3.3.1. Twelve Hours Fasting Period

We identified 195 metabolites by widely targeted mass spectrometry in the serum
metabolomes (Figure 2A, Table S1). Sparsed Partial Least Squares Discriminant Analysis
(sPLS-DA) revealed relatively small global differences in the 12 h-metabolomes (Figure S3C).
The top discriminating metabolites included sebacic acid (decanedioic acid), histidine, glu-
cose, inositol and gamma-glutamyl-tyrosine (Figure S3C). Besides glucose, sixteen metabo-
lites were considered significantly different between the cohorts (ANOVA FDR-corrected
p < 0.1) (Figure S4), which showed evident clusters in a heatmap of the 50 top ANOVA-
ranked metabolites (Figure 2B). These metabolites could be grouped into classes known to
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be affected by obesity and diabetes, including amino acids, fatty acyl carnitines and fatty
acids, among others (Figure 2C).
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((A) was created with BioRender.com) (B) Heatmap of the 50 top ANOVA-ranked metabolites. FDR-
corrected p-values # < 0.1, * < 0.05, ** < 0.01, *** < 0.001. (C) Classification of significantly different
metabolites. (D) Differences in the levels of Galactose; Glucose; Mannose, normalized to the mean of
the non-obese cohort. (E) Simple linear regression analyses of selected metabolites and the glucose
AUC during OGTT. (F) Spearman correlation matrix between significantly different metabolites and
glycaemic parameters. The color and size of the dots correspond to the correlation coefficient. p-value
cut-off 0.05.

Besides glucose (Figure 2D), other metabolites that were significantly elevated in
people with type 2 diabetes included 2-hydroxybutyrate, carnitine C3:0, carnitine C8:1,
cystine, dodecanedioic acid, histidine, inositol, sebacic acid, threonic acid and tyrosine,
while glycylglycine was significantly decreased (Figure S4), suggesting disturbances in lipid
and amino acid metabolism. The obese cohort shared some of these alterations, including
elevated carnitines C3:0 and C8:1 and reduced glycylglycine (Figure S4). Alterations
exclusively identified in the obese cohort included reduced arachidic acid, homoserine and
indole-3-aldehyde, as well as increased gamma-glutamyl-tyrosine (Figure S4).

Across all cohorts, four metabolites were strongly correlated with the OGTT-based
glucose-AUC after the 12 h overnight fast (Figure 2E,F). Cohort-specific analyses then re-
vealed significant positive correlations of these metabolites with the glucose-AUC in at least
one of the cohorts (p-values for Non-obese/Obese/Type 2 Diabetes for 2-hydroxybutyric
acid: 0.030/0.011/0.298; histidine: 0.029/0.179/<0.001; sebacic acid: 0.041/0.219/<0.001;
tyrosine: 0.026/0.491/<0.001).

BioRender.com
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3.3.2. Thirty-Six Hours Fasting Period

To identify fasting-responsive metabolites we looked for metabolites that significantly
changed within each cohort (0.8 < FC > 1.2, FDR-corrected p-value <0.1) and identified
37, 19 and 10 metabolites in the non-obese, obese and type 2 diabetes cohort, respectively
(Figures 3A and S5), all belonging to classes known to be affected by fasting in mammals,
including ketone bodies, fatty acids, polyunsaturated fatty acids, carnitines and amino acids
(Figure 3B). Seven of these metabolites were shared across all three cohorts according to the
selected thresholds (Figure 3C,D). The metabolic response to fasting appeared attenuated
in obese and diabetic people (Figure 3E), including reduced increases of the ketone bodies
and 2-hydroxybutyrate (n.s. and p < 0.05, respectively) (Figure 3F).
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4. Discussion

Our study demonstrates that the insulin secretory response and consequently the
glucose variations following oral or intravenous glucose tolerance tests after a 36 h fasting
period differ among non-obese, obese and people with established type 2 diabetes. While
we observed a reduced early insulin response in non-obese, healthy subjects after 36 h of
fasting as compared to 12 h, this finding persisted in obese people only in the IVGTT and
disappeared completely in those with type 2 diabetes. However, fasting insulin levels were
lower and insulin sensitivity improved after 36 h in all three cohorts.

Our data confirm previous studies, which demonstrated a reduced first-phase in-
sulin secretion with increased post-challenge glycemic excursions [7,8,22,23]. Recently,
JØrgensen et al. showed a significant difference in organ-specific insulin action after 36 h
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of fasting in healthy young men. While peripheral insulin sensitivity declined, hepatic
insulin sensitivity was significantly increased following prolonged fasting. In this context,
reduced insulin secretion may be interpreted as a physiologic response to the improved
insulin action allowing the beta-cell to rest [22]. Hence, the beta-cell physiologically re-
duces insulin secretion in the fasting state to avoid hypoglycemic events [24]. Goginashvili
and colleagues demonstrated that starved beta-cells reduce insulin release by suppressing
autophagy, hence differing from most mammalian cell types that respond to starvation by
increasing autophagic flux [25]. However, with increasing insulin resistance and finally
overt diabetes, resulting in impaired beta-cell function [24], metabolic adaptions observed
in healthy subjects decline, as demonstrated by our data. Moreover, previous studies
have shown that the incretin effect, which leads to an insulin secretion from the beta-cell
following oral carbohydrate administration, is also impaired in people with obesity and
ultimately in those with type 2 diabetes [26]. While the oral glucose tolerance test leads
to a blood glucose induced and incretin induced stimulation of the insulin secretion from
the pancreas, the IVGTT stimulates insulin secretion by the rapid increase in blood glucose
only [27]. Although the incretin effect is known to be reduced in people with obesity [26],
no data on the effects of prolonged fasting on incretin release are available. However, we
did not perform an iso-glycemic intravenous glucose infusion, matching the OGTT glucose
curve, to definitively investigate the incretin effect in our study.

It is assumed, that hunger is a major limiting factor for the success of restrictive
diets [28]. Sundfør and colleagues showed in a one year intervention trial that hunger
levels were higher in those following intermittent fasting compared to continuous energy
restriction (CER) [28], while several other trials showed no difference in hunger or satiety
between those following IF compared to CER [29,30].

In our trial, information about hunger and satiety was not recorded using a standardized
questionnaire given that we only investigated one single episode of 36 h fasting.

A decline in resting metabolic rate (RMR) is described for most caloric restriction
interventions [31,32]; however, interestingly we did not observe a significant change in
RMR in people following an intermittent fasting regimen, neither in healthy, normal-weight
people [20] nor patients with type 2 diabetes [33]. Dietary interventions without reducing
RMR are crucial, in particular with regard to weight regain following the intervention.

While metabolomics profiling was previously shown to be capable of detecting early
type 2 diabetes and of helping to elucidate the underlying pathophysiology [34], we used
metabolomic analysis to understand the spectrum of metabolic changes associated with
prolonged fasting. The 12 h metabolome showed typical alterations associated with obesity
and type 2 diabetes, including increases in acyl-carnitines, as has been shown previously
in obese adults and children [35,36]. Likewise, LaBarre et al. recently demonstrated in
overweight and obese adolescents a blunted decline of acyl-carnitines and fatty acid ox-
idative intermediates as a response to OGTT [37]. The association analysis of the AUC for
glucose during the OGTT in our study suggests 2-hydroxybutyric acid, histidine, sebacic
acid and tyrosine as possible biomarkers for disturbed glucose metabolism under stan-
dard overnight-fasted conditions. Interestingly, 2-hydroxybutyric acid and sebacic acid
have been suggested as markers for insulin resistance [38–40], which is corroborated by
their elevated levels in our diabetic cohort (Figure S5). Conversely, both sebacic acid and
histidine are investigated as dietary supplements to improve glycemic control in diabetic
patients, which however conflicts with our findings as sebacic acid levels directly correlate
with glucose levels [41,42]. Moreover, contradictory results concerning tyrosine and histi-
dine levels in diabetes and metabolic syndrome have been reported [43–46]. However, it
remains unknown which of the identified group differences or changes in metabolite levels
during fasting directly contribute to the pathologies of obesity or type 2 diabetes. Glucose-
lowering medications in type 2 diabetes patients further complicate the interpretation of
the metabolomics data, as their use was shown to alter human metabolite profiles [47].

We were further interested in the metabolic changes observed after prolonged fasting.
Similar to the OGTT and IVGTT investigations, the overall pattern of the metabolic fasting
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response appeared attenuated in obese and people with diabetes, suggesting a systemically
reduced metabolic flexibility in these patients following prolonged fasting (Figure 3).

5. Conclusions

Our study is afflicted by several limitations. Firstly, the mean age differed significantly
between the three cohorts, with those having type 2 diabetes being the oldest. This age
difference may impact the insulin and glucose responses to OGTT and IVGTT, hence con-
stituting a possible confounding factor, also for the findings in the metabolomics patterns.
Second, the glucose-lowering treatment used for the management of type 2 diabetes might
have influenced the OGTT and IVGTT response. However, we aimed to minimize this
source of bias by pausing the glucose-lowering medications on the day of investigation.
Third, the objective of the study was to compare the impact of 12 and 36 h fasting within
the respective groups of non-obese, obese and people with type 2 diabetes. Although we
did perform a comparison of the delta of 2 h glucose and the AUC of glucose between the
12 and 36 h fasting period across the groups and identified significant differences, those
results need to be interpreted with caution, as they were not prespecified and the study
sample was not sufficiently powered for those analyses.

The major strength of our study is the direct comparison of 36 h versus 12 h fasting
periods, the glucometabolic adaptions and flexibility of the metabolism in the insulin
sensitivity spectrum reaching from healthy, normal weight to obese subjects and, finally,
people with established type 2 diabetes. Our OGTT data are supported by IVGTT tests
and suggest that the incretin effect might be altered following prolonged fasting in obese
subjects, which will need to be investigated further.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu15030511/s1, Figure S1: Effects of 12 h and 36 h fasting on
glucose levels during IVGTT (n = 10 in each cohort); * p < 0.05. Figure S2: Effects of 12 h and 36 h
fasting on insulin levels during IVGTT (n = 10 in each cohort); * p < 0.05. Figure S3: Identification of
outliers in the 12 h metabolomes. (A) Sparsed Partial Least Squares Discriminant Analysis (sPLS-DA)
of the 12 h metabolomes. (B) Heatmap of the 50 top ANOVA-ranked metabolites. Red arrows
indicate the excluded data set. Figure S4: Significantly different metabolites in the 12 h metabolomes,
normalized to the mean of the control group. Related to Figure 2. Figure S5: Fasting-responsive
metabolites, as identified in Figure 3A, depicted as ratios. Related to Figure 3. Table S1: Metabolite
information and cleaned levels of 12 h and 36 h metabolomes. NA = not available.
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