
Citation: Mason, L.; Connolly, J.;

Devenney, L.E.; Lacey, K.;

O’Donovan, J.; Doherty, R. Sleep,

Nutrition, and Injury Risk in

Adolescent Athletes: A Narrative

Review. Nutrients 2023, 15, 5101.

https://doi.org/10.3390/nu15245101

Academic Editor: Josep A. Tur

Received: 14 November 2023

Revised: 1 December 2023

Accepted: 7 December 2023

Published: 13 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nutrients

Review

Sleep, Nutrition, and Injury Risk in Adolescent Athletes:
A Narrative Review
Lorcán Mason 1,* , James Connolly 2 , Lydia E. Devenney 3, Karl Lacey 1, Jim O’Donovan 4,5

and Rónán Doherty 1,5

1 Sports Lab North West, Atlantic Technological University Donegal, Port Road, F92 FC93 Letterkenny, Ireland;
ronan.doherty@atu.ie (R.D.)

2 Department of Computing, Atlantic Technological University Donegal, Port Road,
F92 FC93 Letterkenny, Ireland

3 Faculty of Arts & Social Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
4 DCU Glasnevin Campus, Dublin City University, Collins Avenue Extension, Dublin 9,

D09 Y8VX Dublin, Ireland
5 Sport Ireland Institute, National Sport Campus, Abbotstown, Dublin 15, D15 Y52H Dublin, Ireland
* Correspondence: l00178251@atu.ie

Abstract: This narrative review explores the impact of sleep and nutrition on injury risk in adolescent
athletes. Sleep is viewed as essential to the recuperation process and is distinguished as an active
participant in recovery through its involvement in growth, repair, regeneration, and immunity. Fur-
thermore, the literature has shown that the sleep of athletes impacts elements of athletic performance
including both physical and cognitive performance, recovery, injury risk, and mental well-being.
For sleep to have a restorative effect on the body, it must meet an individual’s sleep needs whilst
also lasting for an adequate duration and being of adequate quality, which is age-dependent. The
literature has suggested that athletes have increased sleep needs compared to those of the general
population and thus the standard recommendations may not be sufficient for athletic populations.
Therefore, a more individualised approach accounting for overall sleep health may be more appropri-
ate for addressing sleep needs in individuals including athletes. The literature has demonstrated that
adolescent athletes achieve, on average, ~6.3 h of sleep, demonstrating a discrepancy between sleep
recommendations (8–10 h) and actual sleep achieved. Sleep–wake cycles undergo development dur-
ing adolescence whereby adaptation occurs in sleep regulation during this phase. These adaptations
increase sleep pressure tolerance and are driven by the maturation of physiological, psychological,
and cognitive functioning along with delays in circadian rhythmicity, thus creating an environment
for inadequate sleep during adolescence. As such, the adolescent period is a phase of rapid growth
and maturation that presents multiple challenges to both sleep and nutrition; consequently, this
places a significant burden on an adolescent athletes’ ability to recover, thus increasing the likelihood
of injury. Therefore, this article aims to provide a comprehensive review of the available literature on
the importance of sleep and nutrition interactions in injury risk in adolescent athletes. Furthermore, it
provides foundations for informing further investigations exploring the relation of sleep and nutrition
interactions to recovery during adolescence.
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1. Introduction

Sleep can be defined as a reversible behavioural state of impaired consciousness
through a reduction in sensory and motor activity [1–5]. Sleep is regarded as an ac-
tive regulatory process [6] and facilitates the proper functioning of the brain and cogni-
tive performance while also regulating physiological functions including substrate and
energy metabolism [7–9], cardiovascular function [10,11], appetite [12], endocrine func-
tion [13,14], and immune function [15]. Several facilitating theories for sleep have been
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hypothesised [5,16], including the regeneration of immune and endocrine function, the ner-
vous system, and metabolic cost of living, and aids in cognitive development and synaptic
plasticity [17]. As such, sleep is viewed as essential to the recuperation process [3,18] and
is distinguished as an active participant in recovery through its involvement in growth,
repair, regeneration, and immunity [5]. Furthermore, the literature has shown that the sleep
of athletes impacts elements of athletic performance including both physical and cognitive
performance, recovery, injury risk, and mental well-being [4,19–23].

The architecture of sleep is organised into multiple 90-min series of one rapid-eye-
movement (REM) and three non-REM sleep phases (N1, N2, and N3) [24–26]. Non-REM
and REM sleep are distinct in nature and are characterised by brainwave activity, eye move-
ment, cardiac rhythm, muscle tone, breath rate, and arousal thresholds [27,28]. REM sleep
facilitates neurological regeneration, learning, memory, and emotional regulation [27,29,30].
Non-REM sleep is a three-phased process whereby the propensity to wake (the arousal
threshold) is lowest during the first phase and progressively increases through to the
highest point in the final phase (N3) [27,28] and can be characterised by the wave activity
of the brain [27,31]. Non-REM sleep functions to support the regeneration of the nervous
system, conserve energy, release anabolic hormones that augment protein synthesis to
facilitate muscle recovery [32,33], and mobilise free fatty acids for ATP production [34]. For
a detailed breakdown of the brainwave characteristics of the sleep cycle, readers should
refer to the AASM manual for the scoring of sleep and associated events [25], and the
principles and practices of sleep medicine [27].

2. Importance of Sleep Health

Sleep health is defined as an individualised and context-specific multidimensional
pattern of sleep and wakefulness that supports physical and mental well-being [35] and is
an integral component of not only living a healthy lifestyle [36,37] but also of adaptation
and recovery [3,27,32,38,39]. The relationship between sleep and recovery in athletes can
be viewed in terms of three key factors that affect restoration processes: 1. sleep duration
(total sleep requirements including napping); 2. sleep quality (total sleep absent of sleep
disorders, environmental disturbances, or sleep fragmentation); 3. sleep phase (circadian
timing of sleep during the light–dark cycle) [39,40]. During adolescence, the psychosocial
and societal pressures experienced may result in adverse sleep health and reduced recovery
capacity [41,42]. This is due to sleep deficiencies, which have a negative impact on health
and are linked to increases in all-cause mortality and disease risk [43]. Sleep deprivation
(an insufficient sleep duration compared to the basal level) and disturbances (the inability
to initiate and/or maintain the sleep–cycle) are also risk factors for adverse health, recovery,
and injury risk in athletic populations [39,40,44–48].

For sleep to have a restorative effect on the body, it must meet an individual’s sleep
needs whilst also lasting for an adequate duration and being of adequate quality, which is
age-dependent [46]. Sleep needs can be defined as the optimum quantity of sleep required
to maintain alertness and function throughout daily living [5]. Sleep duration can be influ-
enced by exogenous and endogenous environmental characteristics, which adds complexity
to defining an “optimal” sleep pattern due to high inter-individual differences [49–51].
Peripheral tissues contain molecular clocks within each cell that dictate the expression of
clock-controlled genes in a period (the required time for a cortical neuron oscillation) or
phase (waking time in relation to the light cycle) [49,52]. Processes controlled by circadian
rhythms also influence sleep duration; thus, the time at which sleep occurs in the light cycle
also has an integral role in sleep duration [50,53,54]. The difference between sleep needs
and actual sleep duration is known as sleep debt [5].

3. Sleep Adaptations during Adolescence

The chronotype that defines the expression of individual circadian rhythmicity [55]
may similarly shift during adolescence [56–60] due to the greater robustness to increased
sleep pressure [61] and environmental factors that increase evening alertness [42]. An
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individual’s chronotype is mainly dictated by their genetic makeup; however, environ-
mental and societal factors also affect the chronotype [55,62]. Cross-sectional research has
evidenced that during adolescence, the distribution of the chronotype shifts toward the
evening chronotype, reverting back to the earlier chronotypes post-maturation [56–60].
As sleep needs change over the lifespan, The National Sleep Foundation has published
guidelines for age-dependent sleep durations, which includes recommendations for the fol-
lowing: adolescents (8–10 h), adults (7–9 h), and older adults (7–8 h) [46]. The literature has
suggested that athletes have increased sleep needs, and thus the general recommendations
may not be sufficient for athletic populations [23,63]. Therefore, a more individualised
approach accounting for overall sleep health may be more appropriate for addressing
sleep needs in individuals including athletes [23,35,63]. To feel rested, the literature has
demonstrated that elite athletes need ~8.3 h of sleep [64,65]. Moreover, adolescent athletes
achieve, on average, ~6.3 h [47,66,67] of sleep, demonstrating a discrepancy between sleep
recommendations and actual sleep achieved [42,68,69]. Sleep–wake cycles also undergo
development during adolescence whereby adaptation occurs in sleep regulation during
this phase [68]. These adaptations to sleep regulation increase sleep pressure tolerance (re-
duced adenosine accumulation) [70–72] and are driven by the maturation of physiological,
psychological, and cognitive functioning along with delays in circadian rhythmicity [73],
thus creating an environment for inadequate sleep influenced by external factors associated
with adolescence (Figure 1) [41,42,73,74]. This results in ever-decreasing time spent asleep
during the ages of 15–18 years, with research reporting a decrease of ~1.5–3 h during this
period [70,75,76]. Despite this, an adolescents sleep needs (pressure dissipation) under free
living conditions does not appear to alter from the recommended ~9.25 h [42], irrespec-
tive of maturation status [77–79], thus attributing the decline to environmental factors as
opposed to biological factors [73,80].
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4. Growth, Maturation, and Energy Demands in Adolescent Athletes

Adolescence is the transitional life stage where the process of maturation occurs [81].
Maturation signifies the progressive period toward the adult or mature state [82], and
is characterised by status (maturity state at the time of observation), timing (biological
age at which specific maturational events occur), and tempo (the rate of maturational
progression) [82–86]. During the maturation period, approximately 20% of the final adult



Nutrients 2023, 15, 5101 4 of 16

height is reached and 50% of the predicted adult body weight is achieved with an increase
of up to 40% in bone mass [81,87]. The adolescence period is a significant life stage that
begins in conjunction with the onset of puberty. Puberty is unique to the individual with
a vast range of inter-individual differences in maturation status impacting both physical
and psycho-social development [82,84,86]. As evidenced, maturation status influences the
development of and improvement in locomotive competencies in both a linear (accrual
of strength capabilities) and non-linear (accrual of co-ordinative capabilities) fashion [88],
influencing training adaptations in adolescent athletes [88–91]. Puberty onset is the catalyst
of the growth period where the body undergoes meaningful physical and psycho-social
adaptations such as alterations to body composition, including the accrual of bone, muscle,
and fat mass, metabolic and endocrine system development, the development and mat-
uration of the organ system, the establishment of nutrient storage and partitioning, and
the establishment of self-esteem and psychological well-being, all of which affect general
health and well-being [81,92–94]. Maturation results from the outcome of a multitude of
complex processes that are governed by genetics, the endocrine system, environmental
constraints, and nutrient intake [86,89,95,96].

5. Differences between Adolescent and Adult Athletes

During adolescence, there are vast inter-individual differences in nutritional needs
dependent on factors including maturation status, body composition, physical activity,
chronological age, and gender [92,95–98]. The implementation of correct and individualised
nutrition for adolescent athletes not only supports overall health, adaptation, recovery, and
athletic performance, but is also necessary for meeting growth and development demands
(Table 1) [92,95–98]. Compared to their adult counterparts, adolescents possess several dif-
ferences in substrate storage and metabolism, in conjunction with numerous physiological
and metabolic alterations associated with maturation that contribute to an individual’s
nutrient requirements [96]. Furthermore, nutrient and energy requirements in adolescence
are also largely dictated by the interplay between three main factors: (1) current anthro-
pometry, (2) maturation state, rate, and timing, and (3) physical activity and sporting
demands [92,96,97]. These energy requirements of an individual are fulfilled by the intake
of energy-yielding macro-nutrients, carbohydrates, protein, and fat [96,99–101]. The spe-
cific energy intake of adolescent athletes should be largely dictated by total daily energy
expenditure (TDEE) [96,102–104].
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Table 1. Anatomical, physiological, and metabolic differences between adolescent and adult athletes adapted from [96].

Summary of Main Physiological and Metabolic Issues Surrounding Growth and Maturation
Potential Consequences of These Differences in
Physiology and Metabolism on
Nutritional Recommendations

Greater Energy Cost of Movement

Children and adolescents have a higher (relative) energy cost of movement compared with that of adults. This may be due to increased stride frequency, a greater surface area:volume
ratio, a more distal distribution of mass in the legs, or greater levels of contraction of the antagonist leg muscles while moving [105,106].

Increased (relative) energy requirements for physical
activity need to be accounted for.

Reduced Glycogen Storage Capacity

Children and adolescents have a lower endogenous glycogen storage capacity compared with that of adults [107]. Reduced emphasis for young athletes to have a
carbohydrate load before training/competition.

Reduced Glycolytic Capabilities

Children and adolescents have reduced glycolytic capabilities, with full anaerobic capabilities developing towards the end of puberty [108]. As a result, children and adolescents have
lower levels of lactate production than those of adults during high-intensity exercise of the same relative intensity [107,109].

Reduced requirement for the use of buffering agents
with young athletes, particularly those in pre- and
peri-puberty stages.

Higher Rates of Aerobic Metabolism

Higher rates of aerobic metabolism exist in children during exercise. Fat oxidation rates during submaximal exercise (of the same relative intensity) are greater in children and adolescents
compared with that in adults. Less mature children have a greater reliance on fat as a fuel compared with more mature adolescents. It has been suggested that these higher fat oxidation
rates in children compared with those in adults are the result of lower endogenous carbohydrate stores and reduced glycolytic capabilities [110].

Young athletes may not require the same relative
amount of carbohydrate as adult athletes do; however,
there is a lack of evidence to support this. Further
research is warranted.

Greater Reliance on Exogenous Carbohydrate

Children and adolescents have greater reliance on exogenous carbohydrate as a fuel source. During exercise, exogenous carbohydrate is a greater contributor to total energy supply in
children and adolescents compared with adults [110]. Exogenous carbohydrate oxidation rates are higher in less mature boys compared with more mature boys of the same chronological
age; however, this is not the case in females [111,112].

Exogenous carbohydrate should be consumed during
moderate-/high intensity exercise lasting longer than
−60 min.

Thermoregulatory Differences

Children and adolescents have a larger surface area:body mass ratio [113], so, consequently, they gain and lose more heat from the environment through conduction, convection, and
radiation. Adolescents who undertake regular exercise do adapt, however, improving their ability to thermoregulate through enhanced peripheral vasodilatation [114].

Regular consumption of cold flavoured fluids
during exercise

Reduced Sweating Capacity

Children and adolescents have a lower sweating capacity compared with that of adults and therefore a reduced ability to lose sweat through sweat evaporation. As children mature, so too
do their thermoregulation mechanisms (particularly their ability to sweat); however, these are not fully developed until late puberty [115].

Regular consumption of cold flavoured fluids during
exercise. There is no evidence to suggest that fluid
requirements in young athletes are less than those of
their adult counterparts, despite reduced sweat rates.

Growth and Increase in Body Size

Macronutrient requirements are often prescribed relative to body mass (i.e., grams per kilo, g/kg) to account for individual differences in size among young athletes. Although fat mass
does not seem to significantly change throughout growth and maturation in young athletes, increases in body mass are primarily derived from an increase in fat-free mass [116]. An
increase in stature is the result of skeletal growth and the laying down of bone mineral content (i.e., skeletal tissue). Around 95% of adult bone mineral content is achieved by the end of
adolescence, with ~26% of this being accrued at a peak bone mineral content velocity (~12.5 and ~14 years old in girls and boys respectively) [117]. Changes in fat-free mass and stature
are significantly influenced by the energy and macronutrient intake of a young athlete during childhood and adolescence [118].

Increased (relative) energy requirements need to be
accounted for during peak weight and height
velocity periods.
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Growth and maturation are energy-intensive processes where energy intake influ-
ences both the synthesis of new tissue and the deposition of nutrients into the new tis-
sue [92,96,119]. The basal metabolic rate denotes the energy expended to synthesize
new tissue during growth; however, energy deposition is difficult to accurately mea-
sure [92,96,119,120]. During both peak height velocity (PHV) and peak weight velocity
(PWV; weight denotes body mass) periods, energy requirements are in flux and are variable
among adolescents of the same chronological age, in particular their basal metabolic rates,
which rapidly increases in a stepwise fashion to match their maturation status, timing, and
tempo [95,96,121,122]. The thermic effect of activity often makes the largest contribution to
energy requirements in adolescent athletes [92,96,121]. The thermic effect of activity is influ-
enced by anthropometry and the duration, intensity, and mode of physical activity, which
also contribute to total activity energy expenditure [92,96], resulting in large interindividual
variability in energy requirements [92,95,96], creating difficulties in prescribing energy
requirement recommendations for adolescent athletes [92,95–97]. Persistent low energy
availability (LEA) contributes to negative outcomes in growth and development including
impaired cellular, organ, and tissue development, reduced bone mineral density, an in-
creased risk of stress fractures, delay and/or regression in sexual maturation, and immune
deficiencies [96,123,124]. Thus, it is recommended that if any signs or symptoms of LEA
persist in adolescent athletes, energy intake should be increased to prevent detrimental
effects on maturation, recovery, and injury risk [96,103,124].

6. Nutrition Knowledge of Adolescents

As established within the literature, adequate nutrition is paramount for performance,
recovery, and adaptation to training, along with optimising the maturation process during
adolescence [96,103,125]; thus, sufficient nutritional knowledge is required to optimise dietary
behaviours to support these processes and inform eating habits [126–131]. In the absence
of sufficient nutritional knowledge, nutritional intake may be compromised due to poor
food selection and decreased dietary quality [132]. This may negatively impact the training–
recovery cycle in athletes and adolescent growth and development [126,127,129–131,133–136].
It has been reported that athletic populations fail to meet the recommended nutritional
requirements to support training demands [130,132]; however, with regards to the level of
nutrition knowledge, a weak positive relationship (r = >0.26) exists between the level of
one’s nutrition knowledge and their energy balance and dietary quality [127,132,135,136].
Due to the multiple assessment tools utilised in nutrition knowledge research including the
Abridged-Nutrition for Sport Knowledge Questionnaire (A-NSKQ), General and Sports
Nutrition Knowledge Questionnaire (GeSNK), Nutrition Knowledge Questionnaire for
Athletes (NKQA), Nutrition for Sport Knowledge Questionnaire (NSKQ), Nutrition Knowl-
edge for Young and Adult Athletes (NUKYA), and Platform to Evaluate Athlete Knowledge
of Sports Nutrition Questionnaire (PEAKS-NQ) [130], research is difficult to infer. De-
spite this, research suggests that that the mean correct scores for general (GNK) and sport
(SNK) nutrition knowledge in adult athletes are between 40.2 ± 12.4% and 70 ± 9% [132].
Moreover, research in adolescent athletes suggests that mean nutrition knowledge ranges
between 43.8 ± 11.4% and 48.85 ± 12.7% [129,137,138], which is lower than that of their
elder counterparts (overall NK% = 55.1 ± 10.7%) [132], therefore highlighting the impor-
tance of increasing the level of nutritional knowledge in adolescent athletes to support
maturation, recovery, and injury risk.

7. Recovery, Adaptation, and Fatigue during the Training Process

The aim of the training process is to progressively develop the required qualities of
the sport in order to improve performance [139]. This is achieved via the balance between
the application of an appropriate training dose and the time afforded to facilitate ade-
quate recovery for sustained adaptations [140,141]. In essence, for adaptations to occur,
an overloading training dose must be applied to the individual and homeostasis must
be disturbed, resulting in reduced performance and fatigue [142]. Fatigue as a concept is
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extremely difficult to define due to its multifaceted origins [139], with numerous definitions
proposed in the literature [143,144]. Despite this ambiguity, there is mutual agreement that
a central component of fatigue is the failure to produce or maintain the required force or
power output for a given task that was previously attainable resulting from both central
and peripheral factors [143], including the activation of the motor command, propagation
of the action potential through the descending motor pathway, myofilament excitation–
contraction coupling, and the status of the intracellular milieu [145], which can persist for
days at a time if not addressed [146]. However, despite this agreement, there is a failure
to acknowledge the mental component of fatigue, which must be considered [143,146]
due to the suggestion that when fatigue is reported as a symptom by an individual, it
can only be evaluated via self-reporting and categorised as a trait characteristic or state
variable [146]. Therefore, fatigue can be defined as a state in which an individual experi-
ences an impairment of physical performance, mental fatigue, or excessive psychological
distress [147]. Thus, if appropriate recovery is afforded following an appropriate training
dose, adaptations occur that are protective against further fatigue arising from a similar
training dose [148–150]. However, to fully explain the training–recovery cycle, practi-
tioners must also account for the multitude of additional internal psycho-physiological
responses and adaptations that also occur during training that dilute the accuracy of the
training–recovery cycle (Figure 2) [151–153], resulting in a complex relationship between
the training dose, performance outcomes, injury, and illness [154,155]. Therefore, a multi-
dimensional approach to evaluate the individual response to the implied stressor is an
essential part of the training–recovery cycle [151–153]. Ultimately, it is the athletes internal
environment that determines the level of stress that governs the individual response to
the implied training stressor [152]. In view of that, when monitoring the training–recovery
cycle, it is recommended that measures of internal load are used as the primary means
of determining the training adaptations [152]. This is since the internal load borne by an
individual athlete corresponding to a specific stimulus will vary depending on the specific
contextual factors of their internal environment, such as achieving sufficient sleep and
energy balance, along with the nature of the sport [152,156–159], thus highlighting the
importance of both sleep and nutrition in facilitating recovery to minimise an individual’s
risk of injury [32,45,102,160–164].
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8. Injury Risk in Adolescent Athletes

Sustaining an injury during training or competition is an inherent risk for an athlete.
These injuries are a financial burden for sporting organisations in elite sport [165,166]
and more importantly interfere with an individual’s ability to train or achieve optimal
performance during competition [139,167,168]. Specifically for adolescent athletes, in-
juries present a risk to athletic advancement, health, and the enjoyment of participation
in sport [83,169,170]. Elite youth sport places an added burden on adolescents due to
the associated high training volume, increased training intensity, and demanding com-
petition schedules [171–173]. As such, increased exposure to elite sports is likely to in-
crease musculoskeletal injury risk [83,170,173], which may be exacerbated during peak
growth spurts [173–175]. Thus, injury prevalence in adolescent athletes has increased
in recent years [176] with an injury occurrence rate of ~1.4–6.4 per 1000 h during train-
ing and ~22.4 per 1000 h during competition [171,177–179]. Thus, identifying modifi-
able risk factors which can support recovery and mitigate injury risk are of utmost im-
portance [45,154,155,162,163,167,168,180–182]. Both sleep and nutrition are viewed as
modifiable facilitators for recovery in athletes [22,38,45,65,162–164,168,183], thus empha-
sising their relevance to injury mitigation interventions. As evidence, the adolescent
period is a phase of rapid growth and maturation that presents multiple challenges to
both sleep and nutrition [42,68,90,95,103,125]; consequently, this places a significant bur-
den on an adolescent athlete’s ability to recover, thus increasing the likelihood of in-
jury [45,67,162,163,178,184–187].

9. Relationship between Sleep, Nutrition, and Injury Risk in Adolescent Athletes

Despite the establishment of sleeps associations with injury risk in athletic popula-
tions [23,39,65,164,168], limited research has been conducted regarding adolescent ath-
letes [45,67,162,163,186,188]. Research using subjective questionnaires have purported
that adolescent athletes who experience < 8 h of sleep per night are 1.7 times (95% CI;
1.0–3.0; p = 0.04) more likely to sustain an injury [45]. Furthermore, research has found
that decreasing hours of sleep during periods of high-volume intense training resulted
in a 2.25-fold (95% CI; 1.46–3.45; p < 0.001) increase in the likelihood of sustaining an
injury [163]. Moreover, solely accounting for a decreased sleep volume resulted in a
1.46-fold (95% CI; 1.10–1.94; p < 0.01) increased risk, while adolescent athletes who specifi-
cally reported that obtaining < 8 h of sleep resulted in a 1.31-fold (95% CI; 0.97–1.78; p =
0.080) increased injury risk [163]. More recently, research conducted in adolescent track
and field athletes (12–21 years) aimed to investigate sleep as a predictor of injury using
actigraphy [186]. Wake after sleep onset (WASO), which represents sleep disruption, was
found to be a predictor of previous injury (OR = 1.144), while time spent awake (TA) was
found to predict injury occurrence (OR = 0.974) in this cohort [186]. Furthermore, the
researchers found that athletes who increased TA by at least 1 min reduced their likelihood
of sustaining future injury ([F(2.36) = 6.512; p = 0.004]) [186]. Notwithstanding the im-
portance of appropriate nutrition during adolescence [95,103,122,187,189] and nutrition’s
influential interaction with sleep and recovery [38,164,183], limited research is available
investigating the relationship between sleep, nutrition, and injury risk in adolescent ath-
letes. Despite this, the interaction between sleep and nutrition cannot be understated with
specific nutritional interventions, including a high-carbohydrate, high-glycaemic-index
evening meal, melatonin supplementation, tart cherry juice, kiwifruit, and foods rich in
tryptophan, all supporting proper sleep [38,164,183], which may have a positive impact on
recovery and subsequently injury risk. However, in research investigating this interaction
in adolescent athletes, associations have been found between diet quality, sleep, and injury
risk [162]. Using subjective questionnaires in a population of 340 elite adolescent Swedish
athletes, researchers found that athletes who reached the recommended nutrition intake
decreased their injury risk by 64% (OR, 0.36; 95% CI, 0.14–0.91) [162]. Furthermore, it was
reported that athletes who slept for more than 8 h per weeknight decreased their injury
risk by 61% (OR, 0.39; 95% CI, 0.16–0.99) [162]. Moreover, during a competitive season,
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the duration, intensity, and frequency of training are strategically periodised as part of
the training cycle [95,152,161,187]. This cyclical cycle results in periods of high and low
training demand [161,190–193], which can impact elements of recovery including sleep
and nutrition to facilitate adaptations to the training stimulus [139,151–153]. As demon-
strated, adolescent athletes who achieve >8 h of sleep per night have a reduced injury
risk [45,163,186]; thus, the literature suggests that during periods of high training demands,
such as pre-season, adolescent athletes should achieve the recommended minimum of
8–10 h per night to facilitate proper recovery [23,163,194]. Furthermore, it is recommended
that nutrition is prescribed in a periodised fashion to match these periods of high train-
ing demands and/or increased maturation to provide sufficient energy intake to support
recovery [96,122,161,189].

10. Limitations

To date, limited research in the literature is available investigating the impact of both
sleep and nutrition on injury risk in adolescent athletes. As such, the consensus of the
available literature is mainly informed by studies involving adult athletes and/or general
adolescent populations. Moreover, there is a scarcity of available literature on objective
sleep measures such as actigraphy or polysomnography in adolescent athletes to inform
current knowledge, and therefore the current conclusions are inferred from subjective
questionnaires and sleep diaries. Furthermore, much of the available literature involves
limited sample sizes, case studies, or cross-sectional investigations, which limits the ability
to draw conclusions, and therefore future research investigating objective sleep measures
longitudinally is warranted.

11. Conclusions

As has been established, both sleep and nutrition play an important role in recovery
and injury risk in athletic populations [23,38,126,162–164,183]. As maturation is an energy-
intensive process [92,96,119] coupled with the high-energy and training demands of ado-
lescent athletes [92,95–97] and increased injury risk during periods of peak growth and/or
training intensity [90,192,195–197], the recovery process cannot be understated. Moreover,
with the apparent sleep adaptations including increased sleep pressure tolerance and circa-
dian phase delay that occur during adolescence, together with the current research showing
that compromised sleep (OR, 0.39; 95% CI, 0.16–0.99) and an inadequate diet (OR, 0.36;
95% CI, 0.14–0.91) may increase the likelihood of injury occurrence [45,67,162,163,186,188],
further investigations are required to investigate the relationship between sleep, nutri-
tion, and injury risk before sound conclusions can be made. Despite this, the literature
does demonstrate a clear negative impact of poor sleep on injury risk in adolescent ath-
letes [45,67,162,163,186,188]; similarly, research does appear to support the positive role of
adequate nutrition on both sleep and injury risk [162]. Further research is warranted that in-
vestigates the impact of both objective sleep measures and specific nutritional interventions
on injury risk in adolescent athletes.
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