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Abstract: Endoplasmic reticulum (ER) stress plays a pivotal role in adipogenesis, which encompasses
the differentiation of adipocytes and lipid accumulation. Sustained ER stress has the potential to
disrupt the signaling of the unfolded protein response (UPR), thereby influencing adipogenesis.
This comprehensive review illuminates the molecular mechanisms that underpin the interplay
between ER stress and adipogenesis. We delve into the dysregulation of UPR pathways, namely,
IRE1-XBP1, PERK and ATF6 in relation to adipocyte differentiation, lipid metabolism, and tissue
inflammation. Moreover, we scrutinize how ER stress impacts key adipogenic transcription factors
such as proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding proteins (C/EBPs)
along with their interaction with other signaling pathways. The cellular ramifications include
alterations in lipid metabolism, dysregulation of adipokines, and aged adipose tissue inflammation.
We also discuss the potential roles the molecular chaperones cyclophilin A and cyclophilin B play in
adipogenesis. By shedding light on the intricate relationship between ER stress and adipogenesis,
this review paves the way for devising innovative therapeutic interventions.

Keywords: endoplasmic reticulum stress; adipogenesis; unfolded protein response; obesity; metabolic
disorders

1. Introduction

The prevalence of obesity and associated metabolic disorders is on the rise as a result of
sedentary lifestyles and high caloric intake [1]. Obesity results from genetic, environmental,
and lifestyle factors, and excessive endoplasmic reticulum (ER) stress is believed to play
a role [2–4]. The ER is involved in folding and assembling proteins while facilitating the
movement of newly synthesized proteins to their required destinations, lipid synthesis,
and regulation of calcium levels [5]. ER stress occurs when there is an influx of proteins
into the ER beyond its processing capacity, reaching a limit in protein folding, or depletion
of calcium within the ER [6]. Prolonged ER stress leads to cellular apoptosis. To prevent
this, the ER regulates homeostasis through the unfolded protein response (UPR) [7].

The UPR responds to ER stress by reducing protein translation [8,9], upregulat-
ing chaperones, promoting folding [9], and degrading misfolded proteins [10–12]. The
inositol-requiring enzyme1—X-box binding protein 1 (IRE1-XBP1), protein kinase RNA-
like ER kinase (PERK) and activating transcription factor 6 (ATF6) pathways impact both
ER stress and adipogenesis, influencing adipogenic transcription factors such as peroxi-
some proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding proteins
(C/EBPs) [13].

The escalation of ER stress can perpetuate obesity in a vicious cycle [4]. Elevated ER
stress has the potential to stimulate inflammatory responses associated with adipocytes
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and insulin resistance [14]. This stimulation may lead to increased energy storage and
exacerbation of obesity, consequently further amplifying ER stress [3,15,16]. These research
findings underscore the bidirectional relationship between ER stress and obesity, highlight-
ing that their interaction is not merely a unidirectional cause-and-effect scenario but rather
manifests as a mutually reinforcing connection. Understanding ER stress-adipogenesis
interplay is crucial for combating obesity, since investigating the relationship between ER
stress and adipogenesis provides valuable insights into the origins of obesity and potential
treatments. Therefore, understanding ER stress-induced adipogenesis could lead to innova-
tive strategies for combating obesity and its associated complications. Also, targeting ER
stress could alleviate adipose tissue dysfunction and metabolic issues.

This review explores the dysregulation of UPR pathway, ER stress’s impact on adipo-
genesis, and therapeutic interventions for obesity-related metabolic disorders.

2. The Process of Adipogenesis

Adipogenesis is the formation process of adipocytes which entails cell conversion into
adipose tissue followed by accumulating lipids within the cells and differentiation into
adipocytes. In human physiology and health, adipogenesis holds profound significance
since it involves the differentiation of precursor cells into mature adipocytes. These special-
ized fat cells serve as important energy storage reservoirs, releasing triglycerides during
periods of heightened energy demand [17–19]. They also act as an insulating layer, regu-
lating body temperature [20,21], and provide crucial protection to internal organs [22,23].
Additionally, fat cells act as endocrine cells, secreting hormones and adipokines such as
leptin, adiponectin, and resistin, which play vital roles in regulating metabolism, appetite,
and inflammatory processes [24–28]. Dysregulation of adipogenesis contributes to obesity,
a significant risk factor for metabolic disorders such as type 2 diabetes, cardiovascular
diseases, and fatty liver disease [29–32]. Therefore, comprehending this complex biological
process is imperative for advancing human health.

Adipogenesis involves the formation and differentiation of fat cells or adipocytes,
progressing through several critical stages. In theory, the process starts with multipotent
mesenchymal stem cells (MSCs), capable of differentiating into various cell types, including
adipocytes [33]. These cells commit to becoming adipocytes along one of the numerous
differentiation pathways available [34].

As differentiation begins, crucial genes such as C/EBPs and PPARγ are activated [35,36].
These proteins have a vital role in the initial stages of adipocyte differentiation. As shown in
Figure 1, the expression of C/EBPs and PPARγ starts the conversion of MSCs into adipocytes,
allowing these cells to obtain the ability to form fat and transform into adipose tissue [37,38].

Differentiated adipocytes initiate the synthesis of triacylglycerol (TAG), a major neutral
fat stored within fat cells [39,40]. Consequently, the fat content inside the cell increases,
culminating in the formation of fully mature adipocytes [41]. These adipocytes typically
exhibit a larger, round or spherical shape and contain substantial lipid droplets, serving as
critical components of adipose tissue [42,43].

Adipogenesis plays a critical role in energy storage and metabolic regulation, rendering
it a prominent research area, notably concerning obesity and metabolic disorders. This
process leads to the formation of adipose tissue, which contributes to energy balance and
metabolic regulation.



Nutrients 2023, 15, 5082 3 of 28
Nutrients 2023, 15, x FOR PEER REVIEW 3 of 27 
 

 
Figure 1. Adipogenesis factors involved in the stages of adipogenesis. C/EBPβ plays an important 
role in activating the expression of PPARγ and C/EBPα during the early stages of differentiation. 
PPARγ induces the expression of FABP4. Additionally, C/EBPα promotes the expression of adi-
ponectin. 

3. UPR Signaling Pathways (IRE1-XBP1, PERK, ATF6) in Obesity 
The UPR is conducted by three primary transmembrane proteins present on the ER 

membrane: IRE1, PERK, and ATF6 [44]. These sensors can detect ER stress and activate 
adaptive signaling pathways aimed at restoring ER homeostasis [45]. 

The IRE1 pathway involves the non-traditional splicing of XBP1 mRNA, which pro-
duces a spliced form called XBP1s [46]. This transcription factor encourages the expression 
of chaperones, foldases, and ER-associated degradation (ERAD) pathway constituents 
[47–49]. This leads to improved folding capacity of the ER [50]. The PERK pathway leads 
to the phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α), which 
reduces overall protein translation [51]. Despite this decrease, it eases the ER protein load 
and triggers the translation of ATF4 [52]. This promotes the expression of genes related to 
antioxidant responses and amino acid metabolism [53]. In contrast, the ATF6 pathway in-
volves ATF6 translocating to the Golgi apparatus under ER stress [47]. The cleavage of 
ATF6 results in a transcriptionally active fragment that enters the nucleus, improving the 
ER’s ability to manage protein folding demands by enhancing the expression of chaper-
ones and ERAD-related factors [54]. 

The UPR acts as a balance between adaptive mechanisms that mend ER homeostasis 
and a terminal response that triggers apoptosis in highly stressed cells [55–57]. ER home-
ostasis is maintained by ER chaperone proteins such as glucose-regulated protein 78 
(GRP78), GRP94, calreticulin (CRT), and protein disulfide isomerase (PDI) [58–62]. Partic-
ularly, GRP78 (also known as immunoglobulin heavy chain-binding protein or BiP) is a 
well-characterized member of the heat shock protein 70 kDa (HSP70) family, encoded by 
the HSPA5 gene, which is essential for proper protein folding, regulation of the UPR sig-
naling, maintaining chaperone balance, and preventing apoptosis [63–66]. Among its cru-
cial roles, GRP78 facilitates proper protein folding within the ER, maintains proteins in 
their folded state, prevents aggregation of protein folding intermediates, and directs mis-
folded proteins to the ERAD pathway [67–69]. 

Additionally, GRP78 plays a significant role in maintaining intracellular calcium 
(Ca2+) homeostasis within the ER [70]. It regulates intracellular Ca2+ levels and contributes 
to various cellular processes involving Ca2+ signaling [71]. Furthermore, under specific 
cellular stress conditions, GRP78 can form complexes with pro-caspases such as caspase-

Figure 1. Adipogenesis factors involved in the stages of adipogenesis. C/EBPβ plays an important
role in activating the expression of PPARγ and C/EBPα during the early stages of differentia-
tion. PPARγ induces the expression of FABP4. Additionally, C/EBPα promotes the expression
of adiponectin.

3. UPR Signaling Pathways (IRE1-XBP1, PERK, ATF6) in Obesity

The UPR is conducted by three primary transmembrane proteins present on the ER
membrane: IRE1, PERK, and ATF6 [44]. These sensors can detect ER stress and activate
adaptive signaling pathways aimed at restoring ER homeostasis [45].

The IRE1 pathway involves the non-traditional splicing of XBP1 mRNA, which produces
a spliced form called XBP1s [46]. This transcription factor encourages the expression of
chaperones, foldases, and ER-associated degradation (ERAD) pathway constituents [47–49].
This leads to improved folding capacity of the ER [50]. The PERK pathway leads to the
phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α), which reduces
overall protein translation [51]. Despite this decrease, it eases the ER protein load and triggers
the translation of ATF4 [52]. This promotes the expression of genes related to antioxidant
responses and amino acid metabolism [53]. In contrast, the ATF6 pathway involves ATF6
translocating to the Golgi apparatus under ER stress [47]. The cleavage of ATF6 results in
a transcriptionally active fragment that enters the nucleus, improving the ER’s ability to
manage protein folding demands by enhancing the expression of chaperones and ERAD-
related factors [54].

The UPR acts as a balance between adaptive mechanisms that mend ER homeosta-
sis and a terminal response that triggers apoptosis in highly stressed cells [55–57]. ER
homeostasis is maintained by ER chaperone proteins such as glucose-regulated protein
78 (GRP78), GRP94, calreticulin (CRT), and protein disulfide isomerase (PDI) [58–62]. Par-
ticularly, GRP78 (also known as immunoglobulin heavy chain-binding protein or BiP) is
a well-characterized member of the heat shock protein 70 kDa (HSP70) family, encoded
by the HSPA5 gene, which is essential for proper protein folding, regulation of the UPR
signaling, maintaining chaperone balance, and preventing apoptosis [63–66]. Among its
crucial roles, GRP78 facilitates proper protein folding within the ER, maintains proteins
in their folded state, prevents aggregation of protein folding intermediates, and directs
misfolded proteins to the ERAD pathway [67–69].

Additionally, GRP78 plays a significant role in maintaining intracellular calcium (Ca2+)
homeostasis within the ER [70]. It regulates intracellular Ca2+ levels and contributes
to various cellular processes involving Ca2+ signaling [71]. Furthermore, under specific
cellular stress conditions, GRP78 can form complexes with pro-caspases such as caspase-7
and caspase-12 on the ER membrane, providing protective functions for cell survival [72,73].
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Through these diverse functions, GRP78 plays a pivotal role in balancing cell survival
and apoptosis in cells experiencing ER stress [66,73]. It is also necessary during early
embryonic development and exhibits reduced expression during aging [65,74].

Obesity, which is defined as the excessive accumulation of adipose tissue, is linked to
a chronic condition of low-grade inflammation and metabolic disorders [4,75,76]. When
there is an abundance of nutrients, adipocytes face a challenge to produce and secrete
significant amounts of adipokines and cytokines, increasing the risk of ER stress [2,77,78].
To cope with the heightened demand for protein folding, the UPR is activated to restore ER
function [79]. This impacts adipocyte function significantly. The activation of the UPR in
adipocytes has a dual influence on obesity. Firstly, it strives to restore ER homeostasis by
boosting the expression of chaperone proteins and increasing the ER folding capacity [80].
Secondly, persistent ER stress can disrupt UPR signaling, resulting in cellular dysfunction
and insulin resistance [30].

3.1. The IRE1-XBP1 Pathway and Lipid Metabolism

The IRE1-XBP1 pathway, a pivotal component of the UPR, is connected with lipid
metabolism and adipogenesis [81,82]. Via IRE1, the splicing of XBP1 has a direct impact
on the expression of lipogenic genes and lipid droplet dynamics [5]. In such scenarios,
IRE1 becomes activated and splices XBP1 mRNA [83]. XBP1 mRNA splicing converts the
inactive XBP1 (XBP1u) into its active form, XBP1s, through IRE1’s ribonuclease activity [84].
XBP1s, once activated, functions as a transcription factor that regulates the expression of
different genes. Specifically, XBP1s promotes the expression of ERAD genes which facilitate
the elimination of unnecessary misfolded proteins [85]. When specifically deleting the
XBP1 gene in the adult mouse liver to investigate its function, we observed a significant
reduction of approximately 85–90% in hepatic fatty acid and cholesterol synthesis. This
led to lowered concentrations of plasma cholesterol and triglycerides [86]. Furthermore,
hepatic overexpression of XBP1 directly upregulates the promoters of lipid synthesis genes,
including acetyl-CoA carboxylase 2 (ACC2) and sterol regulatory element-binding Protein 1
(SREBP1), thereby promoting lipid synthesis [87]. In mouse hepatic cells, XBP1 exacerbates
lipid synthesis and suppresses lipid breakdown, thereby worsening lipid accumulation.
However, XBP1 knockout in mice reduces hepatic steatosis, increases lipid breakdown, and
decreases lipid accumulation. Consequently, pharmacologically inhibiting XBP1 presents a
new potential for treating non-alcoholic fatty liver disease (NAFLD) [88].

XBP1s induces the expression of various genes, such as FAS, SREBP1c, ACC, DGAT,
ChREBP, PLIN, CIDE, ATGL, HSL, and others, as shown in Table 1 [47,86,89–91]. This
regulation allows XBP1s to exert a significant impact on physiological processes related to
lipid metabolism and obesity.

Table 1. XBP1s regulate various genes involved in lipid synthesis and lipid storage by promoting
the expression of lipogenic genes. The table displays some of the key lipogenic genes promoted
by XBP1s.

Modulators Full Name Roles in Lipogenesis

FAS Fatty acid synthase
XBP1s promotes the expression of the FAS gene, contributing to

fatty acid synthesis. FAS is an enzyme responsible for generating
fatty acids and plays a crucial role in lipid metabolism.

SREBP1c Sterol regulatory element-binding protein 1c
XBP1s regulates the expression of the SREBP1c gene, facilitating

lipid synthesis. SREBP1c also activates other important genes
related to lipid metabolism.

ACC Acetyl-CoA carboxylase
XBP1s enhances the expression of the ACC gene, increasing the

conversion of acetyl-CoA into fatty acids. This process is essential
in fatty acid synthesis and is one of the key steps.
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Table 1. Cont.

Modulators Full Name Roles in Lipogenesis

DGAT Diacylglycerol O-Acyltransferase
XBP1s regulates the expression of the DGAT gene, promoting

processes related to lipid droplets. This is associated with
lipid storage

ChREBP Carbohydrate-responsive
element-binding protein

XBP1s controls the expression of the ChREBP gene, regulating the
interaction between carbohydrate metabolism and fatty

acid synthesis.

PLIN Perilipin

XBP1s controls the expression of the PLIN gene, facilitating the
perilipin protein found on the surface of lipid droplets. Perilipin

stabilizes lipid droplets and regulates lipid storage and
movement processes.

CIDE Cell death-inducing DFFA-like effector

XBP1s contributes to the dynamics of lipid droplets by regulating
the expression of certain genes within the CIDE gene family. These

genes play a role in modulating the structure and function of
lipid droplets.

ATGL Adipose triglyceride lipase
XBP1s regulates the expression of the ATGL gene, controlling the

breakdown of triglycerides in neutral fat. This process is associated
with the movement of lipids within lipid droplets.

HSL Hormone-sensitive lipase
XBP1s further regulates the breakdown of triglycerides in neutral
fat by controlling the expression of the HSL gene. This process is

related to energy metabolism.

Collectively, the IRE1-XBP1 pathway detects ER stress and responds by regulating lipid
metabolism. XBP1s functions as a transcription factor, overseeing the expression of diverse
genes, thereby aiding in lipid generation, storage, and regulation. Disrupting this pathway
due to lengthy ER stress can lead to abnormal lipid accumulation and malfunctioning
adipocytes, thus promoting obesity-related ailments.

3.2. The PERK Pathway and Insulin Sensitivity

PERK regulates protein synthesis to oversee the correct folding of proteins within the
ER and the accumulation of defective proteins [92]. To overcome imbalances caused by ER
stress, PERK promotes the phosphorylation of eIF2α, leading to the temporary inhibition of
protein synthesis [93]. Consequently, cells can withstand stress, ensuring survival through
appropriately regulated protein synthesis [94].

PERK exists in a homomeric form under stable conditions but transitions into a
tetrameric structure under stress conditions, leading to trans-autophosphorylation of the
PERK domain at the C-terminus [95,96].

Pancreatic islet β cells are specialized secretory cells responsible for insulin storage,
and they produce more insulin in insulin-resistant states [97,98]. In this context, processes
such as proinsulin folding, ERAD, and mediation of quality/quantity control, as well as
trafficking, are regulated to manage metabolic states and insulin demand [99–102].

Furthermore, the PERK-ATF4 pathway plays a crucial role in β cell biology and diabetes
research [103,104]. PERK deficiency induces ER stress and high blood glucose levels, and
PERK-mediated phosphorylation of eIFα is associated with glucose intolerance [105–107].
However, reduced PERK activity promotes glucose-stimulated insulin secretion (GSIS), and
deletion of downstream signaling factors in the PERK-ATF4 pathway helps alleviate ER stress
and prevent β cell loss [108–110].

Moreover, in the absence of PERK, the activity of enzymes involved in lipid pro-
duction such as SREBP-1c, FAS, and SCD1 is hindered, and PERK accumulates in lipid
droplets [111]. Additionally, during the differentiation process of fat cells, PERK has demon-
strated its utilization of diacylglycerol to activate lipid kinases [112]. Research confirms
that the downregulation of PERK reduces adipogenesis by decreasing ATF4 [13]. ATF4
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has demonstrated active regulation of adipocyte differentiation across various evidence.
Overexpression of ATF4 in 3T3-L1 cells enhances adipogenesis, while ATF4 siRNA inhibits
pre-adipocyte differentiation into mature adipocytes. Depletion of ATF4 reduces adipocyte
differentiation in human mesenchymal stem cells [113]. Recent studies observed elevated
phosphorylation of PERK, an ER stress marker, in obese mice on a high-fat diet (HFD).
This heightened phosphorylation, compared with normal diet-fed mice, correlates with
abnormal protein degradation and increased lipid accumulation [114]. PERK utilizes its
intrinsic lipid kinase activity to generate phosphatides, mediating Akt activation, thereby
promoting adipocyte differentiation [112,115]. Consequently, PERK can stimulate adipocyte
differentiation through Akt activation [116]. Additionally, ATF6α pathway activation also
contributes to adipogenesis [117].

Thus, pathways associated with PERK significantly influence insulin sensitivity and β

cell function, playing a crucial role in diabetes research and obesity.

3.3. The ATF6 Pathway and Inflammation

ATF6 is a transmembrane transcription factor with an N-terminal domain in the cyto-
plasm and a C-terminal domain in the ER lumen [118]. ATF6 contributes towards ERAD for
resolving incorrect protein folding [54]. In mammalian cells, ATF4 and ATF6 are reported
to interact with the 26S proteasome, inducing the ER membrane protein HERP/Mif1 and
facilitating efficient ERAD [119]. This arrangement positions the proteasome closer to
the ER, enabling smoother protein degradation [44]. The UPR is suggested to function in
two stages. In the first stage, it allows time for protein folding, and in the second stage,
it targets unfolded proteins for degradation [120]. ATF6’s rapid activation is compared
with IRE1, which is believed to occur due to ATF6’s swift activation compared with IRE1,
responsible for inducing XBP1 splicing and translation. During this period, ATF6-induced
ER chaperones can facilitate protein folding before inducing ERAD genes that promote the
degradation of unfolded XBP1 [120,121].

ATF6, initially located on the ER membrane, moves to the Golgi apparatus under
ER stress [47], where it is cleaved by site 1 protease (S1P) and site 2 protease (S2P) to
form the N-terminal fragment [122,123]. The N-fragment translocates to the nucleus and
serves as a transcription factor [124]. One study confirmed that protein kinase B (AKT)
phosphorylation mediated by ATF6 contributes to downstream nuclear factor-kappa B
(NF-κB) activation [125–127]. This interaction assists NF-κB, which regulates inflammation
and immune responses, by inducing the expression of inflammatory genes. The associ-
ation of ATF6 with NF-κB upregulates the expression of inflammation-associated genes,
including the cytokines interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) [128].
Furthermore, ATF6 can induce cell death during prolonged ER stress by activating down-
stream effectors, including CHOP, c-Jun N-terminal kinase (JNK), and proapoptotic Bcl-2
family proteins [129]. Dysfunctional signaling of ATF6 may contribute to the accumulation
of proteins that are misfolded and exacerbate inflammation, which is a characteristic of
obesity [2].

Inhibition of ATF6 in mesenchymal stromal C3H10T1/2 cells impedes lipid accumu-
lation, downregulating crucial genes for adipogenesis: PPARγ, SREBP-1c, GLUT4, and
aP2 [117]. PPARγ reduction intensifies during adipogenesis in ATF6-deficient cells versus
controls [5]. Diminished ATF6 correlates with restrained C/EBPβ, an early adipogenic fac-
tor. Although direct regulation is not confirmed, ATF6 overexpression increases acetyl-CoA
carboxylase beta (Acacb) and Fasn expression in mouse embryonic fibroblasts (MEF) and
enhances FAS in Chinese hamster ovary (CHO) cells [130]. The ER stress pathways (IRE1,
PERK, ATF6) collectively drive both lipogenesis and adipogenesis [5,131]. Inhibiting all of
them is pivotal to curb lipogenesis and delay the onset of obesity.
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4. ER Stress and Adipogenesis
4.1. Effects of ER Stress on Transcription Factor Involed in Adipogenesis (PPARγ, C/EBPs)

The impact of ER stress on transcription factors that control fat, specifically peroxisome
PPARγ and C/EBPs, has recently gained significance in research. PPARγ and C/EBPs are
crucial in regulating adipocyte differentiation and lipid metabolism [132]. Under normal
physiological conditions, these transcription factors coordinate the expression of genes
involved in adipogenesis, adipocyte maturation, and lipid storage [36]. However, during
ER stress, the phosphorylation of eIF2α in the PERK-eIF2α pathway also increases the
translation of C/EBP in an in vitro model [133]. Similarly, reduced phosphorylation of
eIF2α achieved by overexpression of GADD34 in the liver decreases the expression of
C/EBPα, C/EBPβ, and PPARγ [134].

The typical adipogenesis progression in 3T3-L1 preadipocytes involves three stages:
first, they undergo contact inhibition, then mitotic clonal expansion (McE), followed by
the final stage of adipogenic differentiation [135]. Initially, preadipocytes express adi-
pogenic transcription factors such as CCAAT-enhancer-binding proteinβ/δ (C/EBPβ/δ)
and exhibit low levels of PPARγ [136]. Interestingly, early induced C/EBPβ is inactive
in preadipocytes, while PPARγ serves as a crucial master regulator in the transcriptional
program of adipocytes [137]. C/EBPβ and C/EBPδ are early inducers of adipocyte differ-
entiation and promote the expression of CCAAT-enhancer-binding Protein α (C/EBPα)
and PPARγ, key regulators of mature adipocyte function [36].

C/EBPα is required for the accumulation of lipids and insulin sensitivity in differenti-
ated adipocytes [138]. The transition from preadipocytes to mature adipocytes is initiated
by pro-adipogenic signals including insulin, dexamethasone, 3-isobutyl-1-methylxanthine
(IBMX), or bone morphogenetic proteins (BMPs). This process entails increasing the ex-
pression of adipogenic transcription factors, such as PPARγ and C/EBPα, resulting in
morphological alterations from fibroblast-like cells to spherical ones with a solitary promi-
nent lipid droplet [36,139]. Over time, mature adipocytes demonstrate metabolic and
endocrine characteristics, supported by genes such as fatty acid-binding protein 4 (FABP4),
glucose transporter type 4 (GLUT4), leptin, and adiponectin [140,141].

PPARγ plays a key role in adipocyte differentiation, with two isoforms referred to as
PPARγ1 and PPARγ2 [142–144]. Both isoforms promote adipocyte differentiation, although
PPARγ2 demonstrates more efficiency at lower ligand concentrations [144,145]. Additionally,
C/EBPs, a group of transcription factors, are crucial for adipogenesis [132]. They stimulate the
production of C/EBPα, which is vital for insulin sensitivity in differentiated adipocytes [146].
The complex molecules involved in adipogenesis propose that mitotic clonal expansion could
produce internal ligands for PPARγ [147,148]. Additional study is necessary to completely clar-
ify the complicated connection between peroxisome proliferator-activated receptors (PPARs),
C/EBPs, and ER stress in the context of adipogenesis.

Understanding the complex relationship between ER stress and fat transcription
factors, namely, PPARγ and C/EBPs, is essential to uncovering the molecular mechanisms
that drive adipogenesis and metabolic dysregulation. By elucidating the effects of ER stress
on these transcription factors, new therapeutic approaches targeting ER stress reduction
and proper function restoration may be developed, providing potential interventions for
obesity and related metabolic disorders.

4.2. Relationship between CHOP and a Transcription Factor Involved in Adipogenesis

ER stress induces the expression of interleukin-8 (IL-8), an inflammatory cytokine,
and the nuclear translocation of CHOP [149]. This upregulation of IL-8 due to ER stress
subsequently leads to an increase NF-κB expression [150,151]. NF-κB is a factor that is
negatively regulated by the adipogenic differentiation factor PPARγ [149,152]. The activity
of PPARγ serves as a crucial regulator in maintaining balance by inhibiting NF-κB and
decreasing inflammatory responses [153,154].

ER stress-induced CHOP expression is induced through the UPR, typically through the
PERK pathway [151]. CHOP is a transcriptional regulator within the nucleus and regulates
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numerous genes involved in cellular processes such as inflammation, differentiation, autism,
and apoptosis [155–158]. CHOP is a stress response element that responds to cellular insults
such as ER stress and nutrient deprivation and is dependent on eIF2α phosphorylation [159].
It also plays a role in various inflammatory responses [160]. Moreover, endotoxemia
enhances CHOP activity, which leads to caspase processing of interleukin-1β (IL-1β) [161].

CHOP impedes the differentiation of the mesenchymal lineage [162]. It is a crucial
regulator of adipogenesis, and this function is supported by various experiments. CHOP
is recognized to be a principal inhibitory factor for the adipogenic differentiation factor
C/EBPβ, and it can hinder the downstream targets of C/EBPβ, such as PPARγ [154,162].
CHOP has a negative impact on the initial stages of adipogenic differentiation by inhibiting
the activation of C/EBPβ, which then affects the activation of C/EBPα and PPARγ [163].
The inhibition of CHOP also fortifies the binding of C/EBPα to PPARγ and increases PPARγ
promoter activity in response to intracellular ER stress [149]. For effective fat storage, the
final differentiation of adipocytes is necessary [164]. CHOP was first discovered to inhibit
the differentiation of adipocytes in response to metabolic stress, hypoxia, and phosphory-
lation induced by p38 MAPK [159,165]. Subsequent activation of PERK-eIF2α during ER
stress results in suppressed biphasic differentiation through CHOP expression [53]. Under
conditions of polyamine depletion, CHOP interacts with C/EBPβ to inhibit the execution
of the tin dioxide clonal expansion process and transcriptional activation of adipogenesis.
This results in an inhibitory effect [163]. Overexpression of CHOP leads to poorly differenti-
ated adipocytes and an increase in undifferentiated adipose tissue in a mouse model [166].
Inhibition of CHOP mRNA is required for full adipocyte differentiation of MEFs [159].

4.3. Crosstalk between ER Stress and Other Signaling Pathways in Adipogenesis

Adipogenesis involves adipocyte differentiation and maturation regulated by a net-
work of signaling pathways [167]. Recent evidence indicates that ER stress, defined as
the buildup of misfolded proteins in the ER, collaborates with other signaling pathways
to regulate adipogenesis [168–171]. This section seeks to explore the complex molecular
interactions and crosstalk between ER stress and other signaling pathways implicated
in adipogenesis.

4.3.1. ER Stress and UPR in Adipogenesis

In an obese environment, fat accumulation within cells can lead to protein folding
issues during processes such as fatty acid synthesis in adipocytes [43]. These problems
result in a larger number of incomplete protein folds in the ER and the activation of the
UPR [4]. ER stress, a component of the UPR, can restrict protein synthesis through signal-
ing pathways, which inhibits adipocyte differentiation and consequently limits adipocyte
formation [111]. During ER stress, cells use eIF2α as a protein guide [166]. eIF2α plays a
crucial part in the initial stages of protein synthesis and undergoes regulation in a unique
way under ER stress conditions [172]. Phosphorylation of eIF2α occurs via guidepost pro-
teins due to ER stress [173]. This blocks protein synthesis by hindering the communication
with eIF2B, which facilitates the transfer of methionine from nucleic acid tRNA to the
ribosome during the initial phases of protein synthesis [174].

When these mechanisms operate in unison to trigger ER stress, this represses protein
synthesis, ultimately hindering the differentiation of adipocytes [175–177].

4.3.2. ER Stress and Wingless/Integrated (Wnt) Signaling in Adipogenesis

Wnt signaling is a crucial pathway in adipogenesis, governing the determination
of preadipocyte fate and adipocyte maturation [178,179]. Recent research highlights the
possibility of crosstalk between ER stress and Wnt signaling, implying the ability of ER
stress to regulate the key Wnt signaling components [180,181]. Wnt signaling occurs
when Wnt proteins bind to frizzled receptors [182–184]. This activates signaling pathways
that are both dependent and independent of β-catenin [185]. Importantly, Wnt signaling
represses adipocyte differentiation through suppression of adipogenic transcription factors,
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such as PPARγ and C/EBPα [181]. Wnt10b exhibits constitutive expression, mainly in
preadipocytes and stromal vascular cells—not adipocytes—and significantly impedes
adipogenesis [179,181,186]. In vivo, transgenic expression of Wnt10b in adipocytes leads to
a 50% decrease in total body fat and lack of brown adipose tissue formation, emphasizing
the intricate nature of Wnt signaling in adipogenesis [186]. The interplay between Wnt
signaling and adipogenesis implies that preadipocytes integrate signals from numerous
Wnt pathways, which ultimately influences the expression of vital adipogenic regulators
such as PPARγ and C/EBPα, affecting adipocyte differentiation and development.

4.3.3. ER Stress and mTOR Signaling in Adipogenesis

Mammalian target of rapamycin (mTOR) is a significant protein that regulates both
cell growth and metabolism, playing a crucial role in adipocyte differentiation and lipid
metabolism [187,188]. Recent research has indicated that ER stress modulates mTOR
signaling. Moreover, the activation of ER stress can hinder the activation of mTOR complex
1 (mTORC1) [189,190].

The mechanism involved in the interaction between ER stress and mTORC1 is intrigu-
ing. Notably, ER stress is associated with AMP-activated protein kinase (AMPK) [191,192].
ER stress triggers a pathway that reduces cellular ATP levels and increases AMP levels,
resulting in the activation of AMPK [193]. AMPK senses and regulates cellular energy sta-
tus [194]. Its activation leads to the inhibition of mTORC1 by activating tuberous sclerosis
complex1-tuberous sclerosis complex 2 (TSC1-TSC2), which inhibits Rheb protein required
for mTORC1 activation [188,190].

Furthermore, AMPK phosphorylates raptor, one of mTORC1’s subunits, leading to
the inhibition of raptor’s activity and control over mTORC1 activation [195,196]. The
AKT-mTORC1 pathway regulates lipid synthesis via the sterol regulatory element-binding
protein (SREBP) transcription factor [187,197]. When ER stress is triggered, AKT’s activation
is impeded [198].

ER stress triggers ATF4 translation, which fosters cellular apoptosis by means of
inhibiting AKT through stress-related proteins, such as TRB3 and others [199]. Moreover,
ER stress obstructs mTORC2 and AKT via the GSK-3β pathway, leading to the activation
of the IRE1-JNK pathway and ultimately inducing cell apoptosis [131,200,201].

In summary, AKT and AMPK function as significant signaling nodes pertaining to the
activation and inhibition of mTORC1 [190,200]. Additionally, ER stress plays a regulatory
role in these interactions [191].

4.3.4. ER Stress and Insulin Signaling in Adipogenesis

Insulin signaling pathways are closely connected to adipogenesis and metabolic home-
ostasis [187]. Experimental models [202] confirm ER stress’s role in obesity-related insulin
resistance. Increased ER stress has been linked to impaired insulin action in obese mice [203],
and chemical or genetic modification of this stress has been shown to improve insulin
sensitivity and glucose homeostasis [202]. In cases where tissues, such as liver, skeletal
muscle, and fat, become less responsive to insulin, signal transmission is reduced for insulin
receptor substrate (IRS) [204], AKT, and glycogen synthase kinase-3β (GSK3β) [205,206].
Previous studies suggest that increased levels of interleukin-6 (IL-6) and TNF-α may be
linked to obesity and insulin resistance [207], signifying their involvement in ER stress
and reduced insulin sensitivity [208,209]. These results indicate a considerable role for
cytokines [210]. Research findings show that ER stress can interfere with insulin signaling
pathways by activating serine kinases, including JNK and inhibitor of nuclear factor kappa-B
kinase (IKK) [211–213]. Impairment of insulin signaling by ER stress can hinder adipocyte
differentiation, ultimately contributing to insulin resistance [214].

IRE1 signaling pathway-induced activation of JNK and subsequent activation of in-
flammatory signaling pathways are pivotal factors in the development of insulin resistance
and type 2 diabetes (T2DM) associated with obesity [211,215,216]. A number of studies
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have emphasized this process as a crucial component of the pathophysiology of insulin
resistance related to obesity [217].

ER stress caused by obesity stimulates JNK activation, which acts as a core mediator
resulting in modifications in insulin signaling [218,219]. The activation of JNK is primar-
ily responsible for the changes in insulin signaling pathways that contribute to insulin
resistance [211].

ER stress and inflammation in obesity result in the elevation of pro-inflammatory
cytokines, including IL-6 and TNF-α [4,220]. These raised cytokine levels impair insulin
action and promote insulin resistance [220,221].

When cells encounter pro-inflammatory cytokines or high levels of free fatty acids
(FFA), they hinder insulin signaling by phosphorylating serine residues on the insulin recep-
tor substrate-1 (IRS-1) [222]. This phosphorylation disrupts insulin signaling downstream
and impairs insulin function [220].

Moreover, JNK is activated and phosphorylates IRS-1 when cells encounter stimuli
such as ER stress, elevated cytokine levels, or high levels of fatty acids [131,219]. IRS-1 and
insulin receptor substrate-2 (IRS-2) play a vital role as substrates for the insulin receptor
tyrosine kinase in the insulin signaling pathway [223,224]. This action, in turn, reduces
the receptor’s sensitivity to insulin [223]. Consequently, overexpression of inflammatory
molecules that result in the removal of IRS-1/2 receptors impede the insulin signaling
pathway and lead to insulin resistance [219].

In summary, the activation of JNK by IRE1 disrupts the signaling of the insulin receptor,
leading to insulin resistance [225]. This process is facilitated by ER stress and inflammatory
cytokines, both playing crucial roles [221].

4.3.5. ER Stress and Nuclear Receptors in Adipogenesis

The nuclear receptors, specifically the PPARs and the liver X receptors (LXRs), assume
critical roles in adipogenesis and lipid metabolism [226]. These molecular entities are
responsible for regulating lipid metabolism and the development of adipocytes [227].
Notably, the LXRs belong to the class of nuclear receptors that exert a significant impact
on both cholesterol metabolism and fat metabolism [228]. When ER stress inhibits LXRs,
it may affect cholesterol and fat metabolism processes, resulting in increased cholesterol
levels and abnormal fat metabolism [229].

ER stress-induced LXR inhibition negatively impacts cholesterol and lipid metabolic
processes [230]. Activated LXRs trigger cholesterol metabolism genes, producing high-
density lipoprotein (HDL) particles to contain cholesterol [231]. Furthermore, LXRs play
a role in fat metabolism, regulating both oxidation and storage in adipose tissue [232].
Hence, impeding LXR regulation during ER stress can potentially cause abnormalities in fat
metabolism, leading to abnormal fat accumulation [233]. Some significant genes involved
in cholesterol metabolism are the ATP-binding cassette A1 (ABCA1) gene, which increases
when LXRs are activated, and the ATP-binding cassette G1 (ABCG1) gene, which is also
regulated by LXRs [234,235]. The ABCA1 gene is responsible for shuttling cholesterol and
phospholipids and facilitates HDL particle production; its activation helps move cholesterol
from cells to HDL [236]. Additionally, ABCG1 contributes to cholesterol transport. It
aids in the transportation of fat phosphate, which is a constituent of HDL particles [237].
Additionally, LXRs regulate the gene expression of cholesteryl ester transfer protein (CETP),
which is accountable for the transfer of cholesterol from HDL to other lipid particles [238].

Furthermore, the activation of LXR leads to an increase in lysophosphatidylcholine
acyltransferase 3 (Lpcat3) expression [239]. This indicates that LXR identifies polyun-
saturated fatty acids that encourage their absorption into phospholipids (PLs), thereby
enhancing ER stability [239,240]. The link between Lpcat3 and LXR indicates that LXR
activation escalates Lpcat3 expression, promoting the release of polyunsaturated PLs, subse-
quently contributing to higher ER membrane stability and minimizing ER stress [240]. This
process of membrane remodeling decreases the stress on the endothelial membrane caused
by saturated fatty acids [241]. Additionally, the LXR–Lpcat3 pathway mitigates hepatitis
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by regulating the activation of c-Src kinase and controlling the availability of lipid inflam-
matory mediators [242]. These findings underscore the significance of Lpcat3 regulation
for regulating lipid balance in physiology and disease through LXR signaling [243,244].

This interaction is part of the intricate networks involved in adipocyte develop-
ment [244]. The interaction between ER stress and nuclear receptors is crucial in com-
prehending and treating metabolic diseases including obesity, diabetes, and non-alcoholic
fatty liver disease (NAFLD) [245].

Understanding the interplay between ER stress and other signaling pathways during
adipogenesis yields key insights into the molecular mechanisms governing adipocyte de-
velopment and function [246]. Disrupting these interactions may contribute to metabolic
disorders and dysfunction of adipose tissue [247]. Further research is required to eluci-
date the precise molecular mechanisms relating to the interplay between ER stress and
signaling pathways, as well as their potential implications for adipogenesis and metabolic
health [248].

5. Cyclophilin Family in Adipogenesis

Cyclophilin A (CypA) and cyclophilin B (CypB) are both members of the cyclophilin
protein family. They are peptidyl-prolyl cis-trans isomerases (PPIases) that catalyze
peptidyl-prolyl bond isomerization in proteins. Despite their similar functions, they have
distinct roles and cellular localizations [249].

CypA is a highly abundant, ubiquitously cytosolic protein present in various cell types
and tissues [212]. It is primarily recognized for its function in mediating the immunosup-
pressive effects of the immunosuppressive medication cyclosporine A (CsA) [250]. CypA
plays a pivotal role in the immune response by binding with the protein calcineurin and
inhibiting its phosphatase activity, ultimately blocking T-cell activation and the production
of pro-inflammatory cytokines [251–253].

CypB is predominantly located within the lumen of the ER [254]. Its main roles involve
protein folding and ERAD [255,256]. It functions as a molecular chaperone by aiding in the
correct folding of newly produced proteins in the ER and supporting their transportation
to their intended destinations [257]. Additionally, CypB is involved in numerous cellular
processes such as collagen biosynthesis and virus replication [258,259].

Although both CypA and CypB are peptidyl-prolyl isomerases and share some func-
tional similarities, they have distinct roles in different cellular compartments [249]. CypA
is primarily involved in immune regulation, while CypB functions in protein folding and
quality control within the ER [251].

5.1. CypA

Recent research has confirmed that CypA is a critical regulator of fat production [260,261].
According to the study’s findings, CypA has emerged as a key factor in fat metabolism and its
association with obesity. Experimental results have shown that CypA promotes fat production
in test tubes and plays a role in contributing to obesity induced by a high-fat diet (HFD) in
mice. CypA was also found to be associated with offspring obesity induced by maternal
gestational diabetes in mice [260]. The 3T3L1 cells used in the study are progenitor cells that
differentiate into adipocytes upon insulin stimulation [262]. An increase in CypA expression
was observed on day 6 of the 8-day process of these cells differentiating into adipocytes. It
has been reported that insulin affects adipocyte differentiation by regulating the expression of
key transcription factors involved in adipogenesis, including CypA and PPARγ, C/EBPα and
C/EBPβ. Specifically, silencing or knocking out CypA significantly reduced the expression of
C/EBPβ in the early stages of adipocyte differentiation and reduced the expression of PPARγ,
C/EBPα and C/EBPβ in the late stages of differentiation.

However, other studies suggest that CypA-CD147 interaction mediates obesity-induced
macrophage–adipocyte crosstalk and, thus, may represent a novel target for the treatment
of insulin resistance and type 2 diabetes [263]. CypA activates the surface receptor CD147,
thereby activating NF-κB signaling, which increases the expression of pro-inflammatory
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cytokines, inducing adipocyte inflammation. Simultaneously, it hinders adipocyte differen-
tiation by suppressing the expression of PPARγ and C/EBPβ through leucine zipper tumor
suppressor 2 (LZTS2) mediated downregulation of β-catenin [263,264]. These findings
suggest that CypA may attenuate adipose tissue function and improve insulin sensitivity.
However, this study still leaves some unknowns that require further investigation.

In conclusion, these studies shed light on the effects of CypA on fat production and
metabolism, suggesting its potential importance in obesity-related diseases. However,
further research is needed to clarify the exact roles of these proteins and the underlying
mechanisms, particularly the direct interaction mechanism between CypA and ER stress-
related proteins, which remains to be elucidated.

5.2. CypB

CypB functions as a molecular chaperone predominantly located in the lumen of the
ER, facilitating protein folding through its PPIase activity [256,265]. CypB is known to be
related to cellular collagen formation and the growth of various cancer cells [266,267]. How-
ever CypB’s influence extends significantly into the intricate realm of adipogenesis, where it
interacts with regulatory factors [268]. Recent evidence highlights the transcriptional upreg-
ulation of CypB as a response to ER stress. Interestingly, increased CypB expression triggers
an enhanced interaction between CHOP and p300, an ER-resident proteasome [269]. This
interaction, in turn, initiates the ubiquitination-driven degradation of CHOP, culminating
in the attenuation of apoptotic effects during ER stress [269]. Furthermore, CypB reveals an
intriguing facet of its functionality in the inflammatory setting, as it intricately modulates
ER calcium levels and counteracts the accumulation of ROS, thereby contributing to the
amelioration of cellular inflammation [254].

Expanding its functional spectrum, CypB emerges as an important regulator of adipo-
genesis [268,270]. Existing research has established a compelling link between ER stress
and the dampening of adipogenic factors, ultimately leading to reduced fat accumula-
tion [2]. Accumulating evidence in the literature has shown that ER stress contributes to
the development and progression of obesity through multiple mechanisms [169]. This
phenomenon has been primarily attributed to the inhibitory effects of CHOP on C/EBPβ, a
critical regulator in the early stages of preadipocyte development [163]. However, recent
investigations have revealed a paradigm shift, as CypB is now recognized for its role in
downregulating CHOP expression [271]. Interestingly, the absence of CypB is associated
with reduced lipid droplet formation in knockout cells, underscoring an enhanced adi-
pogenic process under conditions of ER stress [268]. Most intriguingly, the alleviation of
C/EBPβ repression acts as a catalyst, promoting the activation of C/EBPα and PPARγ, key
transcription factors that exert maximal influence during the intermediate to late stages of
cellular differentiation [36].

In summary, this comprehensive review holistically synthesizes the evolving under-
standing of the multifaceted roles of CypB in the intricate landscape of obesity-induced
ER stress [268]. From its active participation in ER stress responses to its pivotal role in the
regulation of adipogenesis, CypB’s significance reverberates across multiple physiological
contexts. This nuanced exploration illuminates the intricate interplay between CypB and
ER stress, extends its influence to mitigate inflammation and modulate adipogenesis, and
provides a comprehensive view of its multifunctional capabilities.

6. The Cellular Consequences of Excessive ER Stress in the Adipose Tissue
6.1. Altered Lipid Metabolism and Dynamics of the Lipid Droplets

The ER plays a crucial role in lipid metabolism and homeostasis [272]. ER stress,
caused by the accumulation of misfolded or unfolded proteins in the ER lumen, is a
significant factor that affects lipid metabolism and droplet dynamics [273]. The disruption
of lipid metabolism due to ER stress can have significant consequences for cellular lipid
homeostasis and may contribute to the development of metabolic disorders [169,273–275].



Nutrients 2023, 15, 5082 13 of 28

ER stress can have an impact on lipid synthesis, including fatty acids and triglycerides.
ER stress can upset the expression and activity of important enzymes, such as FAS and
ACC, which are involved in lipogenesis [247]. This imbalance can lead to alterations in
lipid synthesis and result in imbalances in the composition and species of lipid [5].

Furthermore, ER stress affects the dynamics and functioning of lipid droplets, which
are intracellular organelles involved in lipid storage and metabolism [273]. Changes in
lipid droplet-associated proteins, such as perilipins, adipose differentiation-related protein
(ADRP), and seipin, induced by ER stress, can potentially impact lipid droplet formation,
growth, and turnover, which, in turn, can alter cellular lipid storage capacity, lipolysis, and
lipid utilization [276–278].

The interplay between ER stress and altered lipid metabolism contributes to lipotoxi-
city, a condition characterized by the accumulation of toxic lipid species, mitochondrial
dysfunction, and cellular damage [274]. ER stress-induced lipotoxicity has been implicated
in the pathogenesis of various metabolic disorders, including obesity, insulin resistance,
NAFLD, and cardiovascular disease [131].

Understanding the molecular mechanisms underlying the crosstalk between ER stress
and altered lipid metabolism is crucial for elucidating the pathogenesis of metabolic disor-
ders and identifying potential therapeutic targets [169]. Modulating ER stress and restoring
lipid homeostasis have emerged as potential strategies for mitigating the detrimental effects
of altered lipid metabolism associated with ER stress.

In summary, ER stress disrupts lipid metabolism and alters lipid droplet dynamics,
leading to imbalances in lipid synthesis, storage, and utilization [273]. These alterations
contribute to lipotoxicity and the development of metabolic disorders [275]. Further
research is needed to unravel the specific mechanisms underlying these changes and
to explore therapeutic interventions that can restore lipid homeostasis and mitigate the
adverse effects of ER stress on lipid metabolism [273].

6.2. Adipokine Dysregulation and Metabolic Inflammation

Adipocytes produce their own cytokines, also known as adipokines, causing chronic
inflammation in the adipose tissue (AT) [279,280]. AT macrophages (ATM) intensify this
metabolic dysfunction of adipocytes, increasing inflammation within the cells [281]. Leptin
and adiponectin are major adipokines regulating lipid metabolism and glucose levels
within the AT, and dysregulation of adipokines is associated with obesity [27]. A study
also reported that the number of macrophages present in the AT is related to the actual
adipocyte size [282,283].

The PERK pathway during excessive ER stress also activates cytokines such as TNF-a,
IL-6, and IL-1β, a major contributor to the inflammation that induces obesity [4,284,285].
Increases in TNF-a and IL-6 cytokines show morphological changes in adipocytes, forming
crown-like structures [79]. However, these cytokines are reported to reduce adipogenesis
by inhibiting PPARγ and C/EBPα expression [147]. IL-6 production causes AT dysfunction
that impairs differentiation of preadipocytes, and TNF-a alone is sufficient to inhibit the
induction of PPARγ and C/EBPα [286].

In addition, activation of M1 macrophages causes proinflammatory effects in AT
through secretion of IL-1B and TNF-a cytokines [287]. A study reported that adipocyte
apoptosis accumulates macrophages and other immune cells around the dead cell, forming
the crown-like shape [79,288]. The increase in crown-like structures in all fat depots
has a positive relationship with obesity, and the change in shape causes the overall size
of the adipocyte to increase, causing hypertrophic results [289,290]. M1 macrophages
also induce insulin resistance, dysregulate AT homeostasis, and further exacerbate obese
characteristics [291].

6.3. Correlation between Aged Adipose Tissue and ER Stress

Aging is associated with redistribution of adipose tissue in visceral organs [292].
It is recognized as a major source of chronic systemic inflammatory cytokines during
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aging (inflammaging) due to abundant inflammatory mediators and M1 pro-inflammatory
macrophages [293]. Comprising various cell populations, adipose tissue includes not only
adipocytes contributing to fat storage, but also non-adipocytes known as stromal vascular
fraction (SVF), derived post-collagenase digestion, forming the extracellular matrix (ECM)
and vasculature [294,295]. The majority of cells in the SVF are composed of white blood cells
and adipose tissue stromal cells (ATSCs) [296]. Adipose tissue macrophages (ATM) are the
major leukocyte population found in adipose tissue, presumed to promote inflammation in
obesity and metabolic disorders [297].

Studies strongly suggest that ATSC, a constituent of internal visceral adipose tissue (in-
cluding pre-adipocytes), is a primary cause of age-related adipose tissue inflammation [296].
Notably, elevated levels of TNFα in aged adipose tissue interfere with fat generation and
correlate with increased expression of CHOP, a downstream target of the ER stress response
pathway [298,299].

Furthermore, investigation of aged adipose tissue cells in mice revealed decreased au-
tophagy, increased endoplasmic reticulum stress, and heightened inflammation [296]. The
expression of the autophagy-related genes, autophagy related 7 (Atg7) and microtubule-
associated protein 1A/1B-light chain 3-II (LC3-II) proteins decreases as levels of p62
and polyubiquitin accumulate, which coincides with decreased autophagy in aged rat
kidneys [300,301]. Insufficient specific autophagy-related genes compromise cellular
maintenance, notably impacting the lifespan of model organisms such as C. elegans
and Drosophila, particularly under nutritional and oxidative stress [302]. Key lifespan-
regulating pathways (Foxo3, SIRT1, mTOR, NF-κB, P53) modulate autophagy [303,304].
Activating autophagy through rapamycin highlights its potential in extending lifespan,
emphasizing insights into aging mechanisms [305]. Notably, fibroblasts from long-lived
mutant mice exhibit enhanced autophagy under stress conditions [306]. Autophagy-related
genes significantly declined in aged adipose cells and worsened after stress induction [307].
New data now link heightened ER stress response and impaired autophagy alongside the
accumulation of senescent cell progenitors to molecular events upstream of age-related
adipose tissue inflammation [308,309].

Excessive weight in old age impacts physical function decline, loss of independence,
and the development of frailty [308]. Delaying the aging process of adipose tissue is
believed to prevent age-related diseases.

7. Conclusions

This review highlights the intricate relationship between ER stress and adipogenesis.
The published findings in this review suggest that there is scientific evidence supporting
the crosstalk between ER stress and adipogenesis. Their potential interplay is illustrated
in Figure 2. Targeting ER stress pathways shows promise in treating adipogenesis-related
disorders. Dysregulated adipogenesis contributes to obesity and metabolic disorders.
Lifestyle changes such as exercise and diet affect ER stress and adipogenesis. Pharmacolog-
ical options include agents that alleviate ER stress and modulate UPR pathways such as
ATF6, IRE1 and PERK. Chemical chaperones and small molecule inhibitors have potential.
Lifestyle interventions coupled with pathway modulation offer avenues for progress. How-
ever, research gaps remain in understanding mechanisms and clinical feasibility. Safety,
efficacy and personalized approaches need to be explored. The link between ER stress
and adipogenesis-related disorders provides opportunities for innovative interventions to
improve metabolic health and patient outcomes.
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Figure 2. The potential association between the ER stress signaling pathway and obesity. ER stress
induced by a variety of factors activates the unfolded protein response (UPR). PERK, IRE1α, and
ATF6α, located in the ER membrane, act as UPR messengers and maintain ER stability by coordinating
protein production and gene expression. PERK reduces protein synthesis by modifying eIF2α and
induces CHOP through ATF4 mRNA translation. IRE1α splices XBP1 mRNA to generate XBP1
and induces genes linked to ER function. XBP1 enhances ER membrane formation, protein folding,
transport, and ERAD. ATF6α is processed in the Golgi by S1P and S2P to release p50ATF6α (cleaved
ATF6), which is pivotal for genes involved in ER protein folding and processing. All of these processes
are multifactorial and highly interlinked.
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Abbreviations

IRE1 inositol-requiring enzyme1
XBP1 X-box binding protein 1
PERK protein kinase RNA-like ER kinase
PPARγ proliferator-activated receptor γ
C/EBPα CCAAT-enhancer-binding protein α

C/EBPβ CCAAT-enhancer-binding protein β

TAG triacylglycerol
CHOP C/EBP homologous protein
NF-κB nuclear factor-kappa B
AKT protein kinase B
TNF-α tumor necrosis factor-alpha
JNK c-Jun N-terminal kinase
IL-6 interleukin-6
IL-8 interleukin-8
FABP4 fatty acid-binding protein 4
GLUT4 glucose transporter type 4
IL-1β interleukin-1β
mTOR mammalian target of rapamycin
mTORC1 mTOR Complex 1
AMPK AMP-activated protein kinase
TSC1 tuberous sclerosis complex 1
TSC2 tuberous sclerosis complex 2
SREBP sterol regulatory element-binding protein
IKK inhibitor of nuclear factor kappa-B kinase
FFA free fatty acids
IRS-1 insulin receptor substrate-1
IRS-2 insulin receptor substrate-2
LXRs liver X receptors
HDL high-density lipoprotein
ABCA1 ATP-binding cassette A1
ABCG1 ATP-binding cassette G1
CETP cholesteryl ester transfer protein
Lpcat3 lysophosphatidylcholine acyltransferase 3
PLs phospholipids
CypA cyclophilin A
CypB cyclophilin B
CsA cyclosporine A
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