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Abstract: A “high-fat, high-energy diet” is commonly recommended for children with cystic fibrosis
(CF), leading to negative consequences on dietary patterns that could contribute to altered colonic
microbiota. The aim of this study was to assess dietary intake and to identify possible associations
with the composition of faecal microbiota in a cohort of children with CF. A cross-sectional obser-
vational study was conducted, including a 3-day food record simultaneously with the collection
of faecal samples. The results showed a high fat intake (43.9% of total energy intake) and a mean
dietary fibre intake of 10.6 g/day. The faecal microbiota was characterised at the phylum level as
54.5% Firmicutes and revealed an altered proportion between Proteobacteria (32%) and Bacteroidota
(2.2%). Significant associations were found, including a negative association between protein, meat,
and fish intake and Bifidobacterium, a positive association between lipids and Escherichia/Shigella
and Streptococcus, a negative association between carbohydrates and Veillonella and Klebsiella, and
a positive association between total dietary fibre and Bacteroides and Roseburia. The results reveal
that a “high-fat, high-energy” diet does not satisfy dietary fibre intake from healthy food sources in
children with CF. Further interventional studies are encouraged to explore the potential of shifting to
a high-fibre or standard healthy diet to improve colonic microbiota.

Keywords: diet; cystic fibrosis; microbiota; dietary fibre; fat

1. Introduction

In patients with cystic fibrosis (CF), multiple gastrointestinal tract disorders and pan-
creatic insufficiency lead to maldigestion and malabsorption of nutrients as a consequence
of the genetic defect in the CFTR protein [1]. The disease causes the accumulation of mucus,
leading to obstruction of the pancreatic duct and preventing the secretion of digestive
enzymes. So, the need arises for supplementation with pancreatic enzymes that allow the
luminal digestion of nutrients, especially dietary fat [2]. To counteract energy losses and
the disease pathogenesis itself, the classic “high-fat, high-energy” diet has been recom-
mended [3]. However, concerns have been raised lately regarding this type of diet. In most
cases, children with CF have unhealthy dietary habits as energy requirements are met with
foods with high contents of saturated fat and simple carbohydrates [4]. Additionally, the
scarce intake of fruit, vegetables, nuts, and legumes linked to this diet hinders reaching
the target of dietary fibre intake for the general child population [5]. However, highly
effective CFTR modulators are the main reason for reconsidering the continuation of the
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“high-fat, high-energy diet” as a mainstream element in treatment. Modulators are a new
class of drugs that directly target molecular defects in the CFTR protein to increase CFTR
activity and, in recent years, have been shown to lead to overall improved disease outcomes
and prognosis [6]. In spite of the advantages, depending on the type of mutation and the
type of modulation therapy used, the treatment can result in the accelerated develop-
ment of overweight and obese in this population if the high intake of fat and energy is
maintained [7].

Another well-defined disease complication is cystic fibrosis-related gut dysbiosis
(CFRGD). Dysbiosis is characterised by a reduction in the diversity of microorganisms
in the intestinal microbiota, an imbalance between beneficial and pathogenic bacteria [8],
and the deficient production of metabolites that help regulate the organism, including
short-chain fatty acids (SCFAs) [9]. Previous studies on faecal microbiota in CF concur
in reporting a decreased Bacteroidota phylum along with increased Proteobacteria [10],
including the overrepresentation of certain genera in the Enterobacteriaceae family [11–13].
Other studies highlighted the decrease or the absence of some potentially beneficial bacteria,
including Akkermansia, Faecalibacterium, and Roseburia [8,14–16]. Currently, the scientific
literature only reflects a few attempts to improve gut dysbiosis in CF, including the use
of CFTR modulators (Ivacaftor), which are sown to increase the relative abundance of
Akkermansia [17]. Other studies addressed the potential of probiotic supplementation, but
few of them focused on the changes in colonic microbiota [18].

Overall, CFRGD could be, in part, related to the specific dietary habits of children with
CF, as in other contexts of high-fat diets, and could be modulated through adequate dietary
patterns [19]. However, there is no evidence of the impact of following an alternative diet
to the conventional “high-energy, high-fat” dietary prescription in the context of CF.

Some components of the diet, such as dietary fibre, have not been duly considered
in previous studies on the dietary habits of children with CF, when the fact is that dietary
fibre has been shown to exert beneficial effects on colonic microbiota in the general pop-
ulation [20]. Thus, proposing healthier diets with a focus on dietary fibre could be an
effective approach to revert CFRGD. However, it is first needed to generate evidence on
the real impact of the “high-fat, high-energy” diet on colonic microbiota in terms of how
specific dietary components and their food origin impact specific microbial groups and their
metabolic activity. Establishing this background would help guide future interventional
research studies on the diet of children with CF.

Therefore, this study aimed to explore possible correlations between diet, gut micro-
biota profile, and metabolites, such as the production of SCFA, and to identify dietary fibre
types as potential modulators of CFRGD.

2. Materials and Methods
2.1. Subjects and Study Design

A prospective, cross-sectional, observational study was carried out on 43 paediatric
patients with CF in follow-ups at the Paediatric CF Unit of the Hospital Universitari i
Politècnic La Fe (Valencia, Spain) and Hospital Universitario Ramón y Cajal (Madrid,
Spain) enrolled in the MyCyFAPP Project (H2020, 643806). The study protocol and patient
information sheets together with the informed consent were approved by the respective
ethics committees (Ref. 2021-111-1) in May 2021. The informed consent form was signed
by one of the parents of each participant and also by the participants who were over the
age of 12. For this sub-study, the participants were required to have a 3-day food record
and a stool sample. The faecal samples were stored in freezers at −20 ◦C until analysis.
The clinical data were collected by accessing the medical records of the patients, including
age, sex, weight, height, mutation, pancreatic insufficiency, CFTR modulator therapy, and
antibiotic use. To store the data, the eCRF platform specifically created for clinical research
studies, MyFoodREC (https://remote.iislafe.san.gva.es/myfoodrec (accessed on 1 March
2023), was used.

https://remote.iislafe.san.gva.es/myfoodrec
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2.2. Nutritional Data Collection and Processing

The 3-day food records included the time of intake, the name of the meal, and the
amount of food and were filled in by the parents of the participants in the study. The data
were entered into the MyFoodREC platform, which has the necessary tools to calculate the
composition of the diet in energy and nutrients. The food intake was also expressed in terms
of food groups. A total of 16 food groups were established according to the classification
used in a previous study with slight modifications [21]: milk and dairy, sugar-added dairy,
fruit, vegetables, legumes, nuts, whole-grain cereals, refined cereals, snacks and sweets,
meat, cold meats, fish, eggs, oils, butter/margarine, and pastries (Table 1). Also, a specific
database was developed to evaluate the consumption of different types of dietary fibre
(hemicellulose, pectin, cellulose, and lignin) and its origin according to the food group; for
heterogeneous foods, the calculation was made considering each ingredient. The data used
for the calculation were taken from [22] (Table S1).

Table 1. Food group classification and examples.

Name of the Group Examples

Milk and dairy Yoghurt, milk, cheese, etc.
Sugar-added dairy Sweetened yoghurt, milkshakes, milk-based desserts, etc.

Fruit All fresh fruit, dried fruit
Vegetables All fresh vegetables
Legumes All legumes

Nuts All nuts
Whole-grain cereals Bread, rice, pasta, etc.

Refined cereals Bread, rice, pasta, boiled potato, etc.
Snacks and sweets Chocolate, candies, chips, cocoa powder, sweeteners, others, for example, ultraprocessed foods

Meat Fresh beef, chicken, pork, rabbit, etc.
Cold meats Sausages, hamburgers, nuggets, ham, etc.

Fish Seafood, white fish, blue fish, canned fish, etc.
Eggs All eggs
Oils Olive oil

Butter/margarine Butter and margarine
Pastries Regular cookies, chocolate cookies, breakfast cereals, doughnuts, cupcakes, etc.

2.3. Analysis of the Microbiota and Its Metabolic Activity
2.3.1. Microbiota Composition by 16S rRNA Amplicon Gene Sequencing

Total DNA was extracted from all the samples using the Stool DNA Isolation Kit from
Norgen Biotek Corp® (Thorold, ON, Canada), following the manufacturer’s protocol and
recommendations. The final yield of the extracted DNA was determined by fluorometry
(Qubit fluorometer, Invitrogen Co., Carlsbad, CA, USA). V3-V4 hypervariable regions of
the bacterial 16S rRNA gene were amplified using aliquots of the isolated DNA from each
sample. Amplicons were checked with a Bioanalyzer DNA 1000 chip, and libraries were
sequenced using a 2 × 300 bp paired-end run (MiSeq Reagent kit v3) on a MiSeq-Illumina
platform (FISABIO sequencing service, Valencia, Spain).

The sequences obtained by sequencing on the Illumina MiSeq platform (2 × 300 bp)
were filtered for subsequent analysis. Filtering and quality assessment were performed in
FISABIO sequencing service using the fastp program [23], based on quality (removal of low-
quality nucleotides at the 3′ end by 10 nucleotide windows with an average quality score
under 30) and length (removal of sequences with less than 50 pb). R1 and R2 from Illumina
sequences were joined using FLASH program [24], applying default parameters. In order
to analyse the bacterial community by amplicon sequence variants (ASVs), the joined data
were processed in dada2 package (version 1.26.0) [25] on R-software (R version 4.3.0) [26].
Exact ASVs were inferred by DADA2 algorithm, and chimaeras were removed with default
parameters. Taxonomy was assigned to ASVs up to the genus level with the SILVA database
species train set file (version 138.1) [27]. Phyloseq R package (version 1.44.0) [28] was used
to reorganise and manipulate the microbiota data. Microbiota richness and diversity were
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estimated by calculating Shannon and Chao1 indexes for each sample using the microbiome
R package (version 1.22.0).

2.3.2. Short-Chain Fatty Acids (SCFA)

SCFAs from faecal samples were analysed by gas chromatography (GC-FID) according
to the protocol published by [29], with some modifications. The faeces were diluted with
sterile water in a 1:5 proportion and vortexed for 1 min. Then, 2 mL was mixed with
5 mL of sulphuric acid (9.2 M), and a small amount of sodium chloride was added to
remove any traces of water in the sample. Then, 0.4 mL of internal standard solution
(52.9 mM 2-Methylhexanoic acid) and 2 mL of diethyl ether were added and vortexed
for 1 min. Samples were centrifuged for 3 min at 3000× g-force, and the supernatant
was added to the chromatography vials and injected into the Agilent GC7890B-5977B
GC-FID with a multipurpose sampler with a SUPELCOWAX™ 10 Capillary GC Column
(30 m × 0.25 mm × 0.25 µm). The oven temperature program was 90 ◦C for 1 min, ramped
to 190 ◦C at a rate of 5 ◦C/min, and finally held to 250 ◦C for 30 min. Helium was used as
carrier gas at a flow rate of 1 mL/min with an inlet temperature of 250 ◦C, and the injection
volume was 2 µL. For the quantification of the volatile short-chain fatty acids, acetic acid
(AA), propionic acid (PA), butyric acid (BA), valeric acid (VA), isovaleric acid (IVA), and
isobutyric acid (IBA), analytical standards were used. Calibration lines were prepared
ranging from 0 to 30 mM, and results were expressed (mmol/g).

2.4. Statistical Analyses

Different datasets were summarised by mean and standard deviation; first quartile,
median, and third quartile for numerical variables; and absolute frequencies for categorical
variables.

To compare the faecal microbiota results of the subjects on CF modulator therapy with
the rest of the subjects, PERMANOVA analyses were performed based on the relative abun-
dance of bacterial genera, setting 999 permutation distances calculated as Bray distances.
The definitive p-value was estimated by calculating the mean of the resulting p-value from
100 tests. In addition, t-tests were made to assess significant differences between single
variables, such as specific genera and alpha-diversity indices, and p-value adjustment by
false discovery rate (FDR) was applied when necessary.

Correlations between continuous variables from different datasets were elucidated by
multiple elastic net penalised regression. This consists of fitting a linear regression model
within a restriction, i.e., a limitation of the value of parameters of explanatory variables. It
causes the constriction of the coefficients towards zero, potentially annulling some variables
in the model and selecting others [30]. Penalty factor lambda was selected as the most
repeated value in 500 replicates of a 10-fold cross-validation. In every replicate, the selected
lambda was one standard error from the minimum one (one standard error principle).
Thus, selected variables were those with a penalised coefficient different from zero. Elastic
net penalised regression was performed with glmnet R package (version 4.1.7) [31].

3. Results
3.1. Clinical Characteristics of the Subjects

The study cohort consisted of 43 children with CF with a mean age of 10.8 (4.9) years
old, with a 24/19 proportion of male and female subjects (Table 2). Most of the participants
(21/43) had Class II CFTR mutations in both alleles, of which 19/43 presented F508del
in homozygosis. The anthropometric nutritional status indicators were defined by mean
z-scores for weight, height, and body mass index (BMI) as follows: −0.2 (0.9), −0.4 (1.6),
and −0.1 (1.1), respectively. The pulmonary function was characterised by a mean FEV1 of
89.8% (20.0). All the subjects were pancreatic insufficient, with a mean daily PERT dose of
10145.6 (18827.6) lipase units (LU/kg). Treatment with CFTR modulator therapy (Ivacaftor)
had started in five of the subjects, who presented the F508del mutation in homozygosis.
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Table 2. Clinical and demographic data of the study cohort (n = 43).

Age (years) (mean (SD)) 10.8 (4.9)
Sex (m/f) 24/19

Height (z-score) (mean (SD)) −0.4 (1.6)
Weight (z-score) (mean (SD)) −0.2 (0.9)

BMI (z-score) (mean (SD)) −0.1 (1.1)
FEV1 (%) (mean (SD)) 89.8 (20.0)

Pancreatic insufficiency (n) 43
PERT dose (LU/day*kg) (mean (SD)) 10,145.6 (18,827.6)

CFTR modulator therapy (n) 5

3.2. Dietary Assessment

The median of food intake described in terms of food groups, macronutrients, and
type of dietary fibre is presented in Table 3.

Table 3. Daily intake expressed as energy, food groups, macronutrients, and dietary fibre intake (Q1,
median, Q3).

Q1 Median Q3

Energy (%) Daily intake 106.6 126.7 178.5

Food groups (g/day)

Milk and dairy 119.3 212.5 439.5
Sugar-added dairy 0.0 60.0 182.0

Fruit 0.5 67.5 131.7
Vegetables 28.3 52.5 120.3
Legumes 0.0 10.0 49.3

Nuts 0.0 0.0 0.0
Whole-grain cereals 0.0 0.0 0.0

Refined cereals 115.9 174.4 237.1
Snacks and sweets 20.3 60.0 139.2

Meat 44.0 83.3 135.0
Cold meats 20.5 40.0 74.4

Fish 0.0 26.7 50.0
Eggs 0.0 0.0 13.9
Oil 1.4 4.7 17.5

Butter/Margarine 0.0 0.0 0.0
Pastries 15.2 48.8 63.8

Macronutrients (% from
daily energy intake)

Carbohydrates 32.6 35.8 43.0
Simple carbohydrates 9.6 14.1 18.4

Complex carbohydrates 15.5 19.6 22.8
Lipids 40.7 43.9 50.9

SFA 12.2 13.9 16.9
MUFA 15.7 17.8 23.8
PUFA 4.9 7.1 8.8

Protein 10.8 14.5 16.6

Dietary fibre (g/day)

Total dietary fibre 5.3 9.1 13.8
Total insoluble fibre 4.2 7.4 11.2
Insoluble cellulose 1.4 2.2 3.4

Insoluble hemicellulose 1.3 1.8 3.5
Insoluble pectin 0.3 0.6 0.9
Insoluble lignin 0.6 0.9 1.5

Total soluble fibre 1.2 1.8 2.7
Soluble hemicellulose 0.7 1.1 1.7

Soluble pectin 0.2 0.4 0.5
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Moving on to food groups, milk and dairy represented the highest group in the daily
intake (212.5 g/day), followed by refined cereals (174.4), meat (83.3). fruit (67.5), sugar-
added dairy (60.0), and snacks and sweets (60.0). Inversely, whole-grain cereals, nuts and
eggs were the lowest consumed group.

The diet in this cohort was characterised by a macronutrient proportion of
37.5–43.9–14.0% of the total daily energy intake from carbohydrates, lipids, and protein,
respectively. Simple carbohydrates represented 14.6%, while saturated fatty acids were
15.1%. Focusing on dietary fibre, a median amount of 10.6 g/day was registered; from
it, 3.8 g/day corresponded to hemicellulose, 1.2 g/day to pectin, 2.7 g/day to cellulose,
and 1.2 g/day to lignin. Considering the specific fibre intake guidelines for this age, the
percentage of compliance with this recommendation was variable.

In addition to the descriptive overview, the contribution of the food groups to the
intake of the different fibre types is presented in Figure 1. As observed, refined cereals were
the group contributing the most to fibre intake, representing 3.2 g/day, followed by the
group of pastries, with 1.9 g/day. Fruit, vegetables, and legumes accounted for 2.2, 1.8,
and 1.3 g/day, respectively. Due to their low consumption, the groups showing the lowest
contribution to fibre intake were nuts (0.6 g/day) and whole-grain cereals (0.9 g/day). In
most of the food groups, pectin represented the lowest proportion, followed by lignin,
while hemicellulose and cellulose were the majoritarian fibre types in the diet. Moving on
to fibre intake by age, it was found to be as follows: 1–3 years, 4.7 g fibre/day; 4–6 years,
7.7 g fibre/day; 7–10 years, 9.9 g fibre/day; 11–14 years, 13.2 g fibre/day; 15–17 years,
22.3 g fibre/day; and ≥18 years, 8.3 g fibre/day. Only the group of 15–17-year-olds met
the recommended intake (Table S2). Overall, compliance with the recommendations for
macronutrients, energy, and fibre is represented in Figure 2.

Nutrients 2023, 15, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 1. Contribution of food groups to the total fibre intake, including the fractions of the specific 
types of fibre. 

 
Figure 2. Compliance with the recommended intake of carbohydrates (A), protein (B), lipids (C), 
and energy (D), according to the ESPEN, ESPGHAN, and ECFS clinical guidelines for nutrition in 
CF [32], and fibre (E) referred to the FAO guidelines [33] (red lines), expressed with boxplots repre-
senting the median value (horizontal black lines) for each variable. 

3.3. Faecal Microbiota 
The faecal microbiota was characterised by the majoritarian presence of the phylum 

Firmicutes, which represented 54.5% of the relative abundance. The sample was further 
characterised by a mean abundance of 32.0% of Proteobacteria, 9.6% of Actinobacteriota, 
2.2% of Bacteroidota, and 0.5% of Verrucomicrobiota (Figure 3a). At the genus level (Fig-
ure 3b), Escherichia-Shigella was the most abundant (27.4%). Other genera in relatively high 
proportions were Streptococcus (7%), Blautia (6.1%), Bifidobacterium (6.1%), Veillonella 
(4.9%), Eubacterium hallii (4.0%), Clostridium sensu stricto (3.5%), and Subdoligranulum 
(2.5%). At the other end of the spectrum, Roseburia (0.3%), Lactobacillus (0.7%), and 

Fr
ui

t

Ve
ge

ta
bl

es

Le
gu

m
es

N
ut

s

W
ho

le
-g

ra
in

 c
er

ea
ls

R
ef

in
ed

 c
er

ea
ls

Sn
ac

ks
 a

nd
 s

w
ee

ts

Pa
st

rie
s

Am
ou

nt
 (g

/d
ay

)

Figure 1. Contribution of food groups to the total fibre intake, including the fractions of the specific
types of fibre.
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Figure 2. Compliance with the recommended intake of carbohydrates (A), protein (B), lipids (C), and
energy (D), according to the ESPEN, ESPGHAN, and ECFS clinical guidelines for nutrition in CF [32],
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median value (horizontal black lines) for each variable.

3.3. Faecal Microbiota

The faecal microbiota was characterised by the majoritarian presence of the phylum
Firmicutes, which represented 54.5% of the relative abundance. The sample was further
characterised by a mean abundance of 32.0% of Proteobacteria, 9.6% of Actinobacteriota,
2.2% of Bacteroidota, and 0.5% of Verrucomicrobiota (Figure 3a). At the genus level
(Figure 3b), Escherichia-Shigella was the most abundant (27.4%). Other genera in relatively
high proportions were Streptococcus (7%), Blautia (6.1%), Bifidobacterium (6.1%), Veillonella
(4.9%), Eubacterium hallii (4.0%), Clostridium sensu stricto (3.5%), and Subdoligranulum (2.5%).
At the other end of the spectrum, Roseburia (0.3%), Lactobacillus (0.7%), and Faecalibacterium
(1.2%) were found. When expressing the microbiota results as alpha diversity, the Shannon
index and Chao-1 were found to be 5.3 (0.4) and 299.1 (95.8), respectively (Figure 3c).

When considering the individuals on CF modulator therapy separately (n = 5), no
significant differences (p = 0.383) with the rest of the study group were detected in terms
of diversity (Shannon index). However, some bacterial genera presented with significant
differences (adjusted p-values) in relative abundance in this subset of patients. In particular,
Bifidobacterium was lower in patients on CF modulators (mean 0.72% vs. 6.31%, p < 0.0001),
along with Streptococcus (mean 1.75% vs. 7.53%), Clostridium sensu stricto 1 (0.43% vs.
3.75%), Eubacterium hallii group (0.27% vs. 4.06%), and Anaerostipes (0.26% vs. 1.56%)
(p < 0.001) (Figure S1). In terms of phyla, the general profile at this taxonomic level did not
show significant differences between children with CFTR modulator therapy and those
without, except for Actinobacteriota, which was significantly lower in the modulator group
(2.47% vs. 9.40%, p = 0.002).
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3.4. Short-Chain Fatty Acids (SCFA)

The metabolic activity of faecal microbiota was expressed as the concentration of SCFA.
According to Table 4, total SCFA was at a concentration of 25.1 mM, of which the linear
species represented 89.8% and the branched-chain fatty acids were found at 10.2%. The
SCFA that was found in the highest proportion was BA (10.4 mM), followed by AA (5.1),
PA (3.5), and VA (0.2). Regarding the branched-chain series, IBA was found at 0.5 mM and
IVA at 0.9 mM.

Table 4. Quantification of short-chain fatty acids (SCFA) in faecal samples.

Metabolites Concentration (mM)

Q1 Median Q3

Total SCFA 19.6 25.1 34.2
Acetic acid (AA) 4.1 5.1 9.9
Butyric acid (BA) 6.5 10.4 12.5

Propionic acid (PA) 2.4 3.5 4.9
Valeric acid (VA) 0.1 0.2 0.7
Total linear SCFA 16.5 19.9 33.1

Isobutyric acid (IBA) 0.3 0.5 1.5
Isovaleric acid (IVA) 0.6 0.9 2.7
Total branched SCFA 0.9 1.5 4.4

3.5. Correlations between Dietary Components and Faecal Microbiota

Significant associations between food groups and faecal microbiota were found
(Figure 4). Fruit, nuts, and vegetables presented a positive association with Bacteroides,
Rumminococcus (gravus group), and Dialister, respectively. Legumes had a positive associa-
tion with Subdoligranulum and a negative association with Escherichia/Shigella. Whole-grain
cereals also presented a positive association with Subdoligranulum and Eubacterium and a
negative association with Romboutsia. Snacks and sweets showed a positive association
with Anaerostipes, Alistipes, and Bacteroides. Meat, cold meats, and fish showed positive
associations with Clostridium, Escherichia/Shigella, and Bacteroides, respectively, and both
meat and fish present negative associations with Bifidobacterium. Eggs were the only food
group that showed a positive association with the genus Faecalibacterium. In the case of
the milk and dairy group, it was positively associated with Alistipes and Bacteroides, while
sugar-added dairy was associated only with Klebsiella. Milk and dairy and sugar-added
dairy products presented negative associations with Klebsiella and Blautia. Oil presented a
positive association with Veillonela and Megasphaera and a negative association with Eubac-
terium and Streptococcus. Finally, butter and margarine only presented a positive association
with Lactobacillus and Ruminococcus (torques group).

The correlation analysis between macronutrients and microbiota showed that higher
protein consumption was negatively associated with the abundance of Bifidobacterium,
Alistipes, and Romboutsia. Inversely, this macronutrient showed a positive association with
Ruminococcus (torques group), Subdoligranulum, and Dorea. The intake of lipids was found
to have a negative association with Escherichia/Shigella and a positive association with
Streptococcus. Carbohydrates showed most of the positive correlations, concretely with
Bacteroides, Lactobacillus, Megasphaera, Anaerostipes, and Roseburia. In contrast, carbohydrates
were negatively associated with Veillonella, Eubacterium, Subdoligranolum, Faecalibacterium,
Fusicatenibacter, and Klebsiella. Fibre showed a positive association with Bacteroides, Rose-
buria, Clostridium, Alistipes, and Dialister, while Ruminococcus (torques group), Blautia, and
Klebsiella were negatively associated with dietary fibre.
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4. Discussion

This study has addressed for the first time the impact of diet on colonic microbiota in
children with CF and its food-group origin. The results have enabled the identification of
those dietary components and food groups associated with faecal-beneficial and pathogenic
bacterial genera.

First, the analysis of the diet has confirmed that our cohort adhered to the “high-fat and
high-energy” diet, as evidenced by the energy intake within 110–200% as compared to the
healthy population and the total lipid intake being higher than the currently recommended
35–40% for nutrition in CF [32]. Additionally, the results confirm the findings of previous
studies [21], that energy and fat intake were achieved at the expense of an unhealthy
lipid profile (>10% of SFA) [33,34], a high intake of simple carbohydrates, and a high
representation of food groups like snacks and sweets or refined cereals [35].

In terms of dietary fibre, the recommended intake by age was not met in most of
the cases. This result is supported by the fact that relevant fibre sources, such as nuts or
whole-grain cereals, contributed only in minoritarian proportions, and fruit and vegetables
were not the major sources either. Indeed, fibre intake was achieved mainly from the intake
of refined cereals, a group characterised by the low content of dietary fibre. This result is
evidence that low-fibre foods are overconsumed. Altogether, the study findings suggest
that the “high-fat, high-energy” diet is unsuitable for promoting healthy sources of dietary
fibre, which could contribute to dysbiosis in colonic microbiota [36,37].
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Focusing on colonic microbiota, the results were in accordance with previous studies
conducted in children with CF, including a low alpha diversity index compared to healthy
children [38], unbalanced proportions between Bacteroidota and Proteobacteria, and the
presence of bacterial genera. On the other hand, the production of SCFA in our cohort was
low (i.e., 25 mM), compared to previous studies with healthy children [39,40].

Regarding the effect of CFTR modulators on gut microbiota, one study reported
that, after treatment with Ivacaftor, there were no significant changes in the composition
but diversity increased. Another study showed that Ivacaftor was able to induce an
increase in the relative abundance of Akkermansia, while there were no significant changes
in diversity, suggesting that alterations in the composition of the microbiota could not
only be affected by factors related to CTFR but also by others, such as diet [17,41]. In
our study, it was evident that there were significant differences between the composition
of Bifidobacterium, Streptococcus, Clostridium sensu stricto 1, Eubacterium hallii group, and
Anaerostipes in children who received treatment with modulators versus those who did not
receive treatment. However, the sample size (n = 5) of children with CFTR modulators is
considered a limitation, so this result should be interpreted with caution.

Significant associations were found when assessing how diet could contribute to
colonic microbiota composition and metabolic activity. These associations should be
interpreted with caution, as not only diet but also other known factors contribute to
gut dysbiosis, such as the use of antibiotics, the lung–gut axis, and the altered intestinal
conditions occurring in CF [42,43]. Furthermore, it must be considered that our study
design is observational, which limits the possibility of attributing the effect of a specific
dietary component to the composition of colonic microbiota.

In this sense, the negative association between protein intake and Bifidobacterium
and Romboutsia coincides with previous studies [44–47], which could be related to the
inability to utilise the unabsorbed protein as substrates against other genera that could
more efficiently shift from carbohydrate to protein degradation [48]. Additionally, both
meat and fish intake, some of the main protein sources, were negatively associated with
Bifidobacterium. Other studies evidenced that lipids were significantly associated with
reduced Faecalibacterium and Akkermansia [49,50], which could not be found in our study,
possibly because both genera were in negligible proportions. Within carbohydrates, some
structures, such as resistant starch, are known to be the most fermentable by colonic
microbiota [51]. Its presence promotes an increase in beneficial microbial groups and a
decrease in pathogenic bacteria [52], as shown in our cohort (e.g., positive associations
with Bacteroides or Lactobacillus and negative associations with Veillonella or Klebsiella).
Regarding total dietary fibre, the positive association between Bacteroides and Roseburia,
both known for their ability to ferment indigestible carbohydrates, is coherent with the
current evidence [53].

In particular, maldigestion and malabsorption of nutrients, including lipids and pro-
teins, could be mainly behind the altered interaction of microbiota with dietary components.
Malabsorption differs from the regular digestion process, in which macronutrients are di-
gested and absorbed in the upper gastrointestinal tract, so only minoritarian proportions
reach the colon. In contrast, dietary fibre reaches the colon with an unaltered structure, be-
ing available as substrates for colonic microbiota [54]. In CF, the unabsorbed macronutrients
reach the colon in much larger proportions [55].

Despite there being no specific studies on the effect of malabsorption on colonic micro-
biota, an analogous situation would be the context of “high fat diets”, in which fat intake
exceeds the rate of digestion and absorption in the small intestine and enters the colon [56],
as in the case of malabsorption in CF. Indeed, a previous study showed that switching to
a high-fat diet leads to increased Proteobacteria and decreased Bacteroidota [57], coincid-
ing with the findings of our study. The mechanisms by which “high-fat diets” promote
changes in colonic microbiota are not well-defined yet [58]. Possible explanations include
that the growth of Proteobacteria could be related to the ability of this phylum to use as
substrate the glycerol polar head of triglycerides [59]. Thus, considering this rationale,
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in the context of CF, not only are lipids overconsumed due to the “high-fat, high-energy
diet” recommendations but also, these lipids (and proteins) are less efficiently digested
and absorbed [60], which could lead to additional alterations in colonic microbiota. The
positive association between lipid intake and Escherichia/Shigella (Proteobacteria) supports
this explanation. From another point of view, excess fat in the small intestine could have
interacted with dietary fibre [61].

As for the limitations, the study was conducted with the methodology of 16S sequenc-
ing to assess faecal microbiota. The alternative would have been shotgun metagenomics,
which presents some advantages against 16S, such as inferring functional information due
to specific gene detection and quantification or identifying bacterial taxa with a greater
resolution, even at the species level. Nevertheless, we chose 16S sequencing because it is
well suited for the analysis of a large number of samples, i.e., multiple patients, although it
offers limited taxonomical and functional resolution [62].

Altogether, the study findings are relevant due to the particular diet and the specific
digestion and absorption alterations in children with CF. Based on the results, the impor-
tance of switching from refined cereals or snacks and sweets as a source of dietary fibre
to other food groups, such as legumes, whole-grain cereals, nuts, fruit, and vegetables,
is highlighted. In this sense, the message of this study encourages the set-up of further
clinical trials with an interventional design to assess the role of moving from the “high-fat
high-energy” diet to the “standard healthy diet” or the “high-fibre diet” on modifying
colonic microbiota and SCFA production in children with CF.

In conclusion, the unbalanced diet of children with CF, including excessive fat and
simple carbohydrate intake and inadequate sources of dietary fibre, would contribute to
the unbalanced faecal microbiota profile. The identified association between protein and
reduced Bifidobacterium, lipids and increased Escherichia/Shigella, and carbohydrates and
reduced Veillonella and Klebsiella deserves confirmation in future interventional studies.
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