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Abstract: Breast cancer (BCa) has many well-known risk factors, including age, genetics, lifestyle, and
diet; however, the influence of the gut microbiome on BCa remains an emerging area of investigation.
This study explores the connection between the gut microbiome, dietary habits, and BCa risk. We
enrolled newly diagnosed BCa patients and age-matched cancer-free controls in a case-control study.
Comprehensive patient data was collected, including dietary habits assessed through the National
Cancer Institute Diet History Questionnaire (DHQ). 16S rRNA amplicon sequencing was used to
analyze gut microbiome composition and assess alpha and beta diversity. Microbiome analysis
revealed differences in the gut microbiome composition between cases and controls, with reduced mi-
crobial diversity in BCa patients. The abundance of three specific microbial genera—Acidaminococus,
Tyzzerella, and Hungatella—was enriched in the fecal samples taken from BCa patients. These genera
were associated with distinct dietary patterns, revealing significant associations between the presence
of these genera in the microbiome and specific HEI2015 components, such as vegetables and dairy for
Hungatella, and whole fruits for Acidaminococus. Demographic characteristics were well-balanced
between groups, with a significantly higher body mass index and lower physical activity observed in
cases, underscoring the role of weight management in BCa risk. Associations between significant
microbial genera identified from BCa cases and dietary intakes were identified, which highlights the
potential of the gut microbiome as a source of biomarkers for BCa risk assessment. This study calls
attention to the complex interplay between the gut microbiome, lifestyle factors including diet, and
BCa risk.

Keywords: gut microbiome; breast cancer; Acidaminococus; Hungatella; Tyzzerella

1. Introduction

Breast cancer (BCa) is the leading type of cancer among women worldwide, account-
ing for approximately 25% of all incident cancers in women [1]. In 2020, there were
2,261,419 new cases of invasive BCa and 684,996 deaths [2]. While the risk factors for
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BCa are multifactorial (e.g., age, race, genetics, lifestyle, diet, and microenvironment), the
underlying causes are not yet fully understood [3].

Several epidemiological and nutritional studies have identified potential risk factors
for BCa, such as a high-fat diet [4], red and processed meat consumption [5], lack of physical
activity [6], alcohol consumption [7], and tobacco use [8]. However, the mechanisms by
which these factors contribute to BCa development remains elusive. Furthermore, genetic
risks only account for a small percentage (~10%) of cases [9]. Therefore, exploring potential
risk factors beyond genetics is crucial to advancing our understanding of BCa formation.

Emerging evidence suggests that the gut microbiome may be involved in BCa tumori-
genesis and progression [10]. The gut microbiome is a diverse community of microor-
ganisms, including bacteria, viruses, and fungi, that reside in the gut and are involved in
regulating various physiological processes [11]. Imbalances in gut microbial populations
are associated with an increased risk of BCa [12,13], and specific compounds produced by
gut bacteria may promote or inhibit BCa development [14], as well as influence the immune
response to abnormal cells [15,16]. Thus, the gut microbiome may serve as a rich source of
potential biomarkers that can inform patient prognosis and response to therapy [17–19].

Diet plays a significant role in shaping the microbiome, and in turn, the intestinal
microbiome can subsequently play an important role in modulating the risk of several
chronic diseases, including cancer [20]. Importantly, the gut microbiome can influence
the relationship between dietary intake, inflammation, and cancer risk [21]. Since the gut
microbiome is influenced by a variety of factors (e.g., diet, lifestyle, and genetics), it is
important to consider these factors when studying the gut microbiome in BCa patients.
In this pilot study, we investigated the association between the gut microbiome, diet, and
BCa, and sought to identify specific microbial taxa that may pose a higher risk for the
development of the disease.

2. Methods
2.1. Participants and Sample Collection

Between March 2020 to October 2021, we enrolled 42 cases of newly diagnosed,
treatment-naïve female BCa patients at Oregon Health & Science University (OHSU) and
44 age-matched cancer-free controls identified from an OHSU volunteer registry. Inclusion
and exclusion criteria were established to ensure the selection of appropriate participants
for our research. For breast cancer participants, inclusion criteria required individuals to
be female, aged between 20 and 89 years, proficient in English, and to possess a biopsy-
confirmed diagnosis of breast cancer prior to initiating any treatment, including surgery,
chemotherapy, or radiation therapy. Non-cancer control participants were also limited
to females aged 20 to 89 who were English speakers. Additionally, individuals aged
45 to 89 were required to have had a routine mammogram with non-suspicious results
within the past 2 years. Exclusion criteria encompassed individuals with a history of prior
cancer (excluding non-melanoma skin cancer), those unable to provide legal consent, and
those either under 20 or above 89 years of age. For control participants, the exclusion
criteria also involved specific medical conditions and recent surgical history, including
inflammatory bowel disease, diverticulitis, gastric banding, bypass surgery, or recent gastric
or intestinal surgery. All participants were required to provide signed informed consent.
The study collected comprehensive epidemiological data including demographics, lifestyle,
physical activity, diet questionnaires, and fecal samples. Fecal samples were collected
using OMNIgene®. gut kit, aliquoted into cryovials, and stored at −80 ◦C. This study was
approved by OHSU’s Institutional Review Board (IRB) (IRB#: 000020449).

2.2. Diet and Healthy Eating Index Assessment

The dietary intake of participants was assessed using the National Cancer Institute
(NCI) Diet History Questionnaire (DHQ), a validated web-based tool commonly employed
in large-scale research studies [22]. This questionnaire gathers comprehensive information
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on food and nutrient intake, enabling the exploration of relationships between dietary
habits, nutrient intake, microbiome diversity, and the risk of cancer.

The DHQ provides food items and groups necessary for the calculation of the Healthy
Eating Index-2015 (HEI-2015), which is a scoring system used to evaluate overall diet
quality based on adherence to the 2015–2020 Dietary Guidelines for Americans [23]. The
HEI-2015 assesses the intake of various food components and assigns scores to different
aspects of the diet, including the following 13 components: total fruits, whole fruits, total
vegetables, greens and beans, total protein foods, seafood and plant proteins, whole grains,
dairy, fatty acids, refined grains, sodium, added sugars, and saturated fats.

The ‘saturated fats’ and ‘added sugars’ components were converted into percent-
ages of total energy intake, while the other food components were adjusted to amounts
per 1000 kcal, except for fatty acids. The first six components were assigned a maximum
of 5 points each, while the remaining seven components had a maximum assignment of
10 points each.

A higher intake of whole grains, dairy, and fatty acids received 10 points, while a
higher intake of total fruits, whole fruits, total vegetables, greens and beans, total protein
foods, seafood, and plant proteins received 5 points. Conversely, a lower intake of these
items scored 0. A higher intake of refined grains, sodium, added sugars, and saturated fats
received a 0 score, while a lower intake of these items received 10 points. Consequently, the
HEI-2015 provided an overall score ranging from 0 to 100, with a higher score indicating
better adherence to the recommended dietary guidelines and reflecting a healthier diet
quality [23].

Evaluation of physical activities was assessed using three levels of physical activities:
light, moderate, and strenuous. Participants were asked to report the duration of each of
these three levels per week (<1 h, 1-<2 h, 2-<3 h, 3-<5 h, and 5 or more hours). We also
calculated metabolic equivalent of task (MET) scores for each level and summed the MET
scores for each participant.

Furthermore, we inquired about participants’ feelings by asking questions such as
“About how much of the time would you say you felt downhearted and blue” across
different lifetimes, that is, (1) in the past year, (2) around the ages of 15 and (3) 25 years old.
This question is modified from Short-Form Health Survey-12 (SF-12)’s related question.
SF-12 is one of the most widely used instruments for assessing self-reported health-related
quality of life [24].

2.3. Microbiome Data
2.3.1. Bacterial DNA Extraction and Next-Generation Sequencing

Aliquots of fecal samples were transferred into 96-well plates for DNA extraction using
the QIAGEN® QIAamp PowerFecal Pro® DNA extraction kit. The samples were lysed
mechanically using a QIAGEN® TissueLyser II. DNA was extracted from fecal samples
using the QIAGEN DNeasy R PowerSoil RNA DNA isolation kit (QIAGEN, Germantown,
MD USA) as per manufacturer instructions, with the exception of an additional heat
incubation of 10 min at 65 ◦C immediately prior to bead beating. The 16S rRNA gene
was amplified from the extracted DNA with PCR and primers designed to target the V4
region [25]. Subsequent amplicons were quantified using the Qubit R HS kit (Thermo
Fisher, Waltham, MA, USA), then pooled and cleaned using the UltraClean R PCR clean-up
kit (MO BIO, Carlsbad, CA, USA). Cleaned amplicons were sequenced at the Center for
Quantitative Life Sciences at Oregon State University using the Illumina MiSeq platform,
employing the 2 × 300 sequencing reaction. The average sequencing depth per sample was
130,000 reads (Illumina, Inc., San Diego, CA, USA).

2.3.2. Bioinformatics and Statistical Analysis

Raw sequences were processed using the dada2 R package [26]. The analysis of
microbiota profiles involved quality filtering, merging reads, and assigning amplicon
sequence variants (ASVs) from the raw sequences, which were then used to estimate taxon
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abundances. Taxonomy was assigned to each ASV at the genus level using the Silva 16S
database [27]. The alignment of ASV sequences was performed using guide sequences
from the Silva 16S database. The aligned sequences were used to construct a phylogenetic
tree using FastTree [28] to estimate an approximate maximum likelihood phylogeny of
the ASVs. ASVs that were either not assigned at the kingdom taxonomic level or that
were assigned as Chloroplast or Mitochondria at the order or family taxonomic levels were
excluded from the analysis. The phyloseq [29] R package was used to rarify samples and
quantify α- (richness and evenness) and β-diversity (e.g., Bray-Curtis) distances [30].

Alpha diversity measures were used to assess the diversity of species or taxa within
a single microbial community or sample. The alpha-diversity indices (Shannon, Inverse
Simpson, Observed, and Pielou’s Evenness) were analyzed using the ANOVA and Wilcoxon
rank-sum test [31–34]. A combination of these measures obtains a more complete picture
of microbial diversity in both groups.

Beta diversity analysis, as measured by the Jaccard distance and Bray-Curtis dissim-
ilarity metric, examined the compositional differences in fecal microbiota between the
two groups and each serves a specific purpose in assessing the compositional dissimilar-
ity between microbial communities [35]. In particular, the Jaccard distance measures the
presence or absence of species (or taxa) in two different microbial communities, and as a
result, can be more sensitive to rare taxa as compared to metrics that weight beta-diversity
by taxon abundance [35,36]. Comparing results between analyses using these two metrics
can reveal cases wherein rare taxa are important to a biological phenomenon [35]. The
statistical significance of beta-diversity was measured using permutational multivariate
analysis of variance (PERMANOVA).

Linear Discriminant Analysis Effect Size (LEFSe) is a statistical method commonly
used in microbiome studies to identify microbial taxa (e.g., bacteria, archaea) or func-
tional features (e.g., genes, pathways) that are differentially abundant between two or
more biological groups, such as healthy individuals versus those with a particular dis-
ease [37]. LEfSe aims to find features that statistically explain differences between groups
and quantify discrimination scores that represent each feature’s effect size. LEfSe combines
non-parametric statistical tests (Kruskal-Wallis and Wilcoxon rank-sum tests) with linear
discriminant analysis (LDA). The Kruskal-Wallis test is used to identify taxa or features
that show significant differences in abundance between groups. The Wilcoxon rank-sum
test is applied to assess whether differences are statistically significant. Taxonomic levels
with LDA values higher than 2 at a p-value < 0.05 were considered statistically significant.
The ggplot2 package in the R program (version 3.4.3) was used to visualize the LEfSe
differences between the groups.

Demographic and lifestyle characteristics were compared between groups using t-
tests for continuous variables and chi-squared tests for categorical variables. Associations
between dietary factors and identified microbiome genera were analyzed using either a
parametric two-sample t-test or a non-parametric Wilcoxon-Mann-Whitney two-sample
test (depending on the distribution of the data). Normally distributed variables were
analyzed using the Shapiro-Wilk test. The dietary-related analyses were conducted using
SAS software version 9.4 (SAS Institute, Cary, NC, USA).

3. Results
3.1. Participant Characteristics

A total of n = 42 breast cancer cases and n = 44 cancer-free controls who donated their
stool samples were included for microbiome analyses, and n = 39 breast cancer cases and
n = 44 controls who had completed the DHQ questionnaire were included for diet-related
analyses (Supplemental Figure S1). Both the case and control groups were predominantly
non-Hispanic white, with a mean age of 60.3 years (SD = 11.3, Range = 38–80) and a
mean BMI of 28 (SD = 6.2) (Table 1). No significant differences were found in other
demographic factors between the case and control groups, including: age, race, family
history of BCa, parity status, menopausal status, and menarche age. Among patients
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with BCa, 32 (76%) were post/peri-menopausal, 27 participants (64%) had no history
of cancer, and 12 participants (28.6%) were nulliparous. BMI was higher among cases
(BMI = 28.1 kg/m2, SD = 6.2) compared to controls (25.1 kg/m2, SD = 5.6, p = 0.02) (Table 1).

Table 1. Demographic characteristics of study participants.

Variable BCa Cases
(N = 42)

Controls
(N = 44) p-Value

Demographic Characteristics

Age at enrollment, mean (SD), yr 60.3 (11.3) 58.5 (12.6) 0.49
Race, No. (%)
White 40 (95.2) 41 (93.2) 0.68
Non-White 2 (4.8) 3 (6.8)
BMI (kg/m2) at enrollment, mean (SD)
continuous variable

28.1 (6.2) 25.1 (5.6) 0.02

Family history of BCa, No. (%) 0.95
Yes 15 (35.7) 16 (36.4)
No 27 (64.3) 28 (63.6)
Ever full-term live birth, No. (%) 0.97
Yes 30 (71.4) 28 (71.8)
No 12 (28.6) 11 (28.2)
Missing 0 5
Menopausal status, No. (%) 0.90
Premenopausal 10 (23.8) 11 (25.0)
Post/peri-menopausal 32 (76.2) 33 (75.0)
Age at menarche, No. (%) 0.83
≤11 years old 10 (23.8) 9 (20.5)
12–14 years old 26 (61.9) 30 (68.2)
≥15 years old 6 (14.3) 5 (11.4)
Marital Status, No. (%) 0.25
Married/Living as married 27 (64.3) 29 (65.9)
Divorced/Separated/Widowed 13 (31.0) 9 (20.5)
Single, never married 2 (4.8) 6 (13.6)
Employment Status, No. (%) 0.13
Employed/self-employed 20 (47.6) 28 (63.6)
Unemployed/Disabled/Retired/Homemaker 22 (52.4) 16 (36.4)

Chi-square tests are used for categorical variables and t-tests are used for continuous variables. Fisher’s exact test
is used for cells < 5 sample size. Missing categories are excluded from statistical analysis.

Among BCa cases, 7 were ductal carcinoma in situ (DCIS) and 35 were invasive
(American Joint Committee on Cancer, Collaborative Staging Version 2.04). Thirty-six
tumors were estrogen receptor (ER)-positive, 30 were progesterone receptor (PR)–positive,
and 3 were positive for human epidermal growth factor receptor 2 (HER2). We next
examined various lifestyle factors, including: dietary habits, marital status, employment
status, tobacco and alcohol consumption, sleep quality scores, hormonal therapy history,
probiotic use, and physical activity. Except for physical activity, no significant differences
were observed in these lifestyle factors between the case and control groups. Statistically
significant differences were found between cases and controls in the levels of total energy
expenditure from recreational physical activity measured in MET-minutes/week (p = 0.02).
Additionally, compared to controls, cases reported higher levels of emotional stress in the
past year (p = 0.02) and by their recollection, their level of stress at the age of 25 (p = 0.01)
(Table 2).
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Table 2. Lifestyle characteristics of study participants.

Variable BCa Cases
(N = 42)

Controls
(N = 44) p-Value

Life Style Characteristics

Total dietary energy intake (kcal/day) 1664.9 (752.8) 1521.5 (590.8) 0.33
Total energy expended from recreational physical activity

(MET-minutes/week) 2093.9 (1247.1) 2728.4 (1274.4) 0.02

Ever Smoked 100 cigarettes in life 0.95
Yes 15 (35.7) 16 (36.4)
No 27 (64.3) 28 (63.6)

Alcohol, No. (%) 0.45
Current drinkers 36 (85.7) 34 (77.3)

Past drinkers 3 (7.1) 7 (15.9)
Never drinkers 3 (7.1) 3 (6.8)

Missing
Sleep Quality Score, No. (%) 0.58

11–14 13 (31.0) 10 (22.7)
15–16 15 (35.7) 15 (34.1)
17–18 14 (33.3) 19 (43.2)

Ever used hormone therapy, No. (%) 0.29
Yes 24 (57.1) 30 (68.2)
No 18 (42.9) 14 (31.8)

Regular (at least once a week) Probiotic product use, No. (%) 0.52
Yes 21 (50.0) 19 (43.2)
No 21 (50.0) 25 (56.8)

Feeling downhearted and blue in the past year, No. (%) 0.02
All/most of the time 8 (19.1) 2 (4.6)

Some of the time 19 (45.2) 13 (29.6)
A little of the time 11 (26.2) 19 (43.2)
None of the time 4 (9.5) 10 (22.7)

Feeling downhearted and blue around age 25, No. (%) 0.01
All/most of the time 2 (5.0) 4 (9.1)

Some of the time 9 (22.5) 12 (27.3)
A little of the time 17 (42.5) 15 (34.1)
None of the time 12 (30.0) 13 (27.3)

Don’t know 2 0

Chi-square tests are used for categorical variables and t-tests are used for continuous variables. Fisher’s exact test
is used for cells < 5 sample size. Missing categories are excluded from statistical analysis. Sleep quality score is a
composite score calculated from 6 questions regarding sleep regularity, satisfaction, alertness, timing, efficiency,
and duration with 3 Likert scale responses: “Rarely/Never (1), Sometimes (2), Usually always (3)”. The score
range is 6–18. Probiotic products include tablets, yogurt, drinks, and other products.

3.2. Microbiome Composition

We observed differences in both the alpha- and beta-diversity of the gut microbiome as
a function of BCa. First, the alpha diversity of the BMI-adjusted BCa group was significantly
lower than the controls using the Shannon index (p = 0.012), Observed (p = 0.025), Inverse
Simpson (p = 0.005), and Pielou (p = 0.028) alpha diversity measures (Table 3). Second,
while significant differences were not observed between groups when using the Bray-Curtis
dissimilarity measure (p = 0.23), the beta-diversity did significantly differ between the two
groups when using the Jaccard distance (p = 0.04) (Table 4). We also did not observe
beta-diversity differences by breast cancer subtype or staging.
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Table 3. Alpha-diversity analysis between BCa cases and healthy control group participants.

Alpha Diversity Cases Controls
p-Value

(Unadjusted)
ANOVA

p-Value (Adjusted
BMI) ANOVA

Wilcoxon Rank Sum Test
with Continuity

Correction p-Value

Phylum Level

Observed 198.57 (52.14) 228.73 (68.94) 0.025 0.025 0.045
Shannon 3.91 (0.40) 4.13 (0.42) 0.013 0.012 0.013

Inverse Simpson 25.97 (11.18) 34.22 (15.47) 0.006 0.005 0.007
Pielou 0.74 (0.06) 0.77 (0.04) 0.030 0.028 0.009

Alpha-diversity analysis between BC and healthy control group participants. All alpha-diversity indices were
analyzed using the ANOVA and Wilcoxon rank-sum test. The richness of the fecal microbiota of case patients,
adjusted BMI, compared with control patients, had statistically lower alpha diversity with Shannon index
(p = 0.012), Observed (p = 0.025), Inverse Simpson (p = 0.005), Pielou (p = 0.028).

Table 4. Beta Diversity- Pairwise Permanova Analysis between BCa cases and healthy control group
participants.

Case-Control Sample Size Permutations pseudo_F p-Value q-Value

Jaccard-significance 86 999 1.261412 0.04 0.04
Bray-Curtis-significance 86 999 1.121184 0.23 0.23

The statistical significance of beta-diversity was measured using permutational multivariate analysis of variance
(PERMANOVA). The statistical significance of fecal microbiota compositions observed in the Jaccard analysis is
(p = 0.04) for beta diversity between the two groups. The statistical significance of fecal microbiota compositions
observed in the Bray-Curtis analysis is (0.23) for beta diversity between the two groups.

The most abundant bacteria at the phylum and genus levels were similar between the
groups (Figure 1) and the bacteria identified were consistent with bacteria commonly found
in the gut microbiome [38,39]. Importantly, beta diversity analysis identified differences in
the overall microbial community composition between patients with BCa and cancer-free
controls (Table 4). Additionally, LefSe analysis showed 3 genera that were enriched in fecal
samples from BCa patients (Acidaminococcus, Tyzzerella, and Hungatella) and another
10 genera that were separately enriched in controls (Christensenellaceae, UCG-005, Oscil-
lospirales, NK4A14 group, Dialister, Gastranaerophilales, Romboutsia, Coriobacteriales,
Anaerofilum, Flavobacterials) (Figure 2). The distribution of the BCa-enriched genera
across groups revealed that Acidaminococus was present in 24% of cases (10/42) and 9%
of controls (4/44), with abundance ranging between 0.01–1. 85%. Likewise, Hungatella
was detected in 38% of cases (16/42) and 9% of controls (4/44), with abundance ranging
between 0.01–0.98%. Tyzzerella was found in 38% of cases and 20% of controls, with
abundance ranging between 0.017–2.45% (Figure 3).

Since there were no significant differences between cases and controls in their HEI-2015
total and component scores, we further investigated whether the presence of BCa-enriched
genera was associated with dietary habits based on HEI-2015 total and component scores
(Table 5). We found that Acidaminococus-positive participants had a lower HEI-2015 whole
fruit component intake score (p = 0.005), whereas Hungatella-positive participants had
a lower intake of dairy HEI-2015 component score (p = 0.029) and higher intake of total
vegetables HEI-2015 component score (p = 0.024). Tyzzerella presence was not associated
with HEI-2015 dietary intake scores (Table 5).
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Since there were no significant differences between cases and controls in their HEI-
2015 total and component scores, we further investigated whether the presence of BCa-
enriched genera was associated with dietary habits based on HEI-2015 total and compo-
nent scores (Table 5). We found that Acidaminococus-positive participants had a lower 
HEI-2015 whole fruit component intake score (p = 0.005), whereas Hungatella-positive 
participants had a lower intake of dairy HEI-2015 component score (p = 0.029) and higher 
intake of total vegetables HEI-2015 component score (p = 0.024). Tyzzerella presence was 
not associated with HEI-2015 dietary intake scores (Table 5). 

Figure 3. Relative abundances (%) of identified biomarker candidates’ taxonomic abundances by
case-control status. Twenty-four percent of the cases (10/42) and 9% of the controls (4/44) have
Acidaminococus in their microbiome. The relative abundances (%) of the participants who have
Acidaminococus species in their gut microbiome ranges between 1.850% and 0.010%. Thirty-eight
percent of the cases (16/42) and 9% of the controls (4/44) have Hungatella in their microbiome.
Relative abundances (%) of the participants who have Hungatella species in their gut microbiome
ranges between 0.980% and 0.010%. Thirty-eight percent of the cases (16/42) and 20% of the controls
(9/44) have Tyzzerella. Relative abundances (%) of the participants who have Tyzzerella species in
their gut microbiome ranges between 2.450% and 0.017%.
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Table 5. Distribution of HEI index by selected bacteria presence/absence status.

Healthy Eating
Index 2015

Min-Max
Score

Case-Control Status Acidaminococus Hungatella Tyzzerella

Cases
(n = 39)

Controls
(n = 44) p Value Positive

(n = 14)
Negative
(n = 69) p Value Positive

(n = 18)
Negative
(n = 65) p Value Positive

(n = 24)
Negative
(n = 59) p Value

Adequacy
Total vegetable score 0–5 5.00 (0.60) 4.90 (1.13) 0.25 5.00 (1.40) 5.00 (0.59) 0.989 5.00 (0.00) 4.88 (1.20) 0.024 5.00 (0.63) 5.00 (1.19) 0.282

Greens and beans
score 0–5 5.00 (0.00) 5.00 (0.00) 0.83 5.00 (3.05) 5.00 (0) 0.055 5.00 (0.00) 5.00 (0.00) 0.73 5.00 (0.00) 5.00 (0.00) 0.941

Total fruits score 0–5 5.00 (2.61) 5.00 (0.59) 0.23 5.00 (4.10) 5.00 (1.35) 0.06 5.00 (1.35) 5.00 (2.01) 0.749 5.00 (1.05) 5.00 (2.01) 0.417
Whole fruits score 0–5 5.00 (1.40) 5.00 (0.00) 0.10 4.50 (3.31) 5.00 (0.00) 0.005 5.00 (0.00) 5.00 (0.00) 0.573 5.00 (0.55) 5.00 (0.00) 0.795
Whole grains score 0–10 2.68 (2.32) 3.45 (2.96) 0.25 2.76 (3.89) 3.15 (2.41) 0.507 2.60 (2.33) 3.15 (2.43) 0.973 2.31 (3.12) 3.15 (2.48) 0.563

Dairy score 0–10 5.88 (4.52) 6.97 (4.70) 0.27 5.73 (5.49) 6.60 (4.25) 0.22 4.99 (4.22) 6.60 (4.31) 0.029 5.39 (4.99) 7.01 (3.72) 0.084
Total protein food

score 0–5 5.00 (0.72) 5.00 (0.00) 0.29 5.00 (1.02) 5.00 (0.00) 0.511 5.00 (1.02) 5.00 (0.00) 0.207 5.00 (0.33) 5.00 (0.00) 0.702

Seafood and plant
proteins score 0–5 5.00 (0.21) 5.00 (0.00) 0.35 5.00 (0.15) 5.00 (0.00) 0.679 5.00 (0.93) 5.00 (0.00) 0.1 5.00 (0.55) 5.00 (0.00) 0.58

Fatty acids score 0–10 5.5 (4.90) 5.22 (7.21) 0.65 4.52 (5.80) 5.26 (4.41) 0.591 6.20 (6.68) 5.06 (4.65) 0.694 5.24 (5.64) 5.24 (4.51) 0.259
Moderation

Sodium score 0–10 5.25 (2.44) 5.25 (2.12) 0.99 4.50 (2.18) 5.40 (2.26) 0.18 5.76 (2.69) 5.11 (2.13) 0.28 5.49 (2.06) 5.15 (2.34) 0.55
Refined grains 0–10 9.96 (1.56) 10.00 (1.25) 0.28 10.00 (2.49) 10.00 (1.26) 0.178 9.56 (1.60) 10.00 (1.18) 0.326 10.00 (0.54) 9.96 (1.56) 0.126
Saturated fat 0–10 6.27 (3.34) 6.32 (5.44) 0.87 6.44 (4.61) 6.23 (4.84) 0.883 6.88 (4.91) 5.85 (4.26) 0.232 10.00 (4.07) 5.55 (4.48) 0.116
Added sugar 0–10 9.19 (2.41) 9.52 (2.36) 0.68 8.95 (2.93) 9.54 (2.29) 0.243 9.14 (2.93) 9.50 (2.37) 0.502 9.49 (2.02) 9.30 (2.44) 0.946

Total HEI-2015
Score 0–100 70.27 (13.08) 75.77 (15.37) 0.17 68.80 (32.20) 72.73 (14.39) 0.45 70.55 (10.16) 72.73 (15.19) 0.48 75.11 (13.50) 71.28 (15.19) 0.14

Sodium score is normally distributed and is expressed as mean (standard deviation), all the other variables are not normally distributed and are expressed as median (IQR). Three breast
cancer patients did not complete dietary intake data, therefore, they were not included in the diet-related analyses. p-values for total HEI-2015 score were age and BMI-adjusted.
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4. Discussion

In this case-control study, we comprehensively analyzed the gut microbiome in BCa
patients and cancer-free controls and observed differences in the composition of the gut
microbiome between the two groups. Notably, we identified three genera associated with
an increased risk of BCa: Acidaminococus, Hungatella, and Tyzzerella. These three taxa
were also associated with dietary intake patterns.

Our findings highlight a link between BCa risk and lifestyle factors, including emo-
tional stress, diet, and physical activity, which aligns with prior research [40–42]. No-
tably, we observed that BCa patients had less diversity in their gut microbiomes. This
reduction in species richness and evenness is indicative of dysbiosis [43], which can arise
from various factors, including dietary habits, antibiotic use, lifestyle choices, and un-
derlying health conditions [43]. This finding also suggests that gut microbiome alpha-
diversity may be an effective resource for BCa screening. Our study is consistent with
others demonstrating lower gut microbiome alpha-diversity among postmenopausal breast
cancer patients, with differences in microbiome composition, independent of estrogen
levels [44–47]. Gut microbiota dysbiosis may be associated with breast cancer risk through
both estrogen-dependent and non-estrogen-dependent mechanisms that involve the pro-
duction of microbial-derived metabolites, immune regulation and effects on DNA [48].
Additionally, microbial metabolites might act as effector molecules, influencing physiolog-
ical processes and drug metabolism as well as modulating immune responses [49]. Our
analysis revealed that BCa cases reported higher levels of emotional stress in the past year
and at the age of 25. While the intricate relationship between emotional stress and BCa
warrants further investigation, existing studies suggest a connection between microbial
diversity, depression, and chronic inflammation. Notably, dysbiosis and reduced microbial
diversity can contribute to gut and systemic inflammation, potentially impacting mood and
behavior, via production of short-chain fatty acids and neurotransmitter precursors [50,51].

Previous findings from the UK Biobank prospective cohort study indicate that physical
activity plays a role in BCa risk, with lower physical activity levels being associated with
increased BCa risk [40]. In support of these findings, we observed a significant difference
in the levels of total energy expenditure from recreational physical activity between cases
and controls (p = 0.02). Indeed, regular physical activity, particularly aerobic exercise,
is linked to a more diverse and balanced gut microbiome composition [40]. The anti-
inflammatory effects of exercise may extend to the gut, helping to maintain a healthy
microbial balance [40]. Additionally, physical activity can improve insulin sensitivity
and glucose metabolism, creating a favorable environment for beneficial gut bacteria [52].
Individuals engaged in regular physical activity are more often likely to adopt a diverse
and balanced diet, which positively influences gut microbial diversity and composition.
Conversely, lower physical activity levels are associated with an increased risk of obesity,
which itself can alter the gut microbiome and reduce microbial diversity [52]. Building on
these concepts, our study identified a significant difference in BMI between BCa cases and
controls (p = 0.02), emphasizing the importance of lifestyle and weight management in
BCa risk.

An examination of the compositional differences in fecal microbiota between BCa
cases and controls revealed statistically significant differences that identified enrichment of
Acidaminococus, Tyzzerella, and Hungatella within BCa patients’ gut microbiomes. These
genera were also associated with dietary habits. Acidaminococus, which is known for its
amino acid fermentation capabilities, contributes to the breakdown of proteins and amino
acids in the gut, impacting nutrient absorption and gut health [52]. Typically considered
commensal and harmless, Acidaminococcus is a diverse genus with multiple species, and
little is known about its contributions to disease pathogenesis. For example, emerging
data points to Acidaminococcus as the predominant strain in pancreatic cyst fluid [53].
Likewise, the discovery of a novel Cpf1 (Cas12a) CRISPR enzyme from Acidaminococ-
cus and Lachnospiraceae was shown to have efficient genome-editing activity in human
cells [54]. Whether bacterium such as Acidaminococcus can use these enzyme systems on
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neighboring human cells within the alimentary tract against human cells, and possibly
initiate (or further contribute) to neoplastic transformation requires further research.

Hungatella is associated with increased trimethylamine N-oxide (TMAO) levels and
choline metabolism [55] and is implicated in promoting cell proliferation and angiogen-
esis in colorectal cancer development [55]. An inverse association between Hungatella
and grain consumption suggests a potential dietary influence on its abundance [56]. The
Hungatella genera have the highest number of enzymes capable of degrading the gly-
cosaminoglycans (GAGs) that form the protective layer in the colon mucosa. GAGs are an
important component of the gut environment, and the breakdown of this layer disrupts
the homeostasis in the colon or mucosal structures, as well as the overall balance of the
microbiota, which can lead to dysbiosis [57]. Importantly, Hungatella hathewayi has been
found to induce DNA methyl transferase activity in colonic epithelial cells which is associ-
ated with significant increases in global DNA methylation, including tumor suppressor
genes (e.g., CHFR, GATA5, and PAX6), and contributes colorectal tumorigenesis [58]. Our
observed differences in the genus of Hungatella between our study groups requires further
investigation regarding the role of Hungatella in BCa tumorigenesis.

Tyzzerella, a less-studied genus, has been sporadically linked to inflammatory pro-
cesses and cardiovascular disease risk [59]. The relative abundance of Tyzzerella is associ-
ated with high short-chain fatty acid diets [60]. Interestingly, there is mounting evidence
showing that short-chain fatty acids are capable of modulating the efficacy of various
anti-cancer treatments (e.g., chemotherapy, immunotherapy, radiotherapy) [61–63]. The
role of Tyzzerella in the gut and its contribution to BCa risk requires further research.

Demographic variables such as age, race, and family history of BCa, parity status,
menopausal status, and menarche age were similar between the two groups, minimizing
potential confounding effects on our findings. Even so, our study had several limitations.
Firstly, the small sample size of this pilot study requires validation in a larger cohort study.
Second, the hospital-based case-control study design cannot delineate a causal relationship
between the gut microbiome and BCa, and our study population needs to be expanded to
more diverse population-based studies. We also have limited power to conduct granular
analyses based on breast cancer molecular subtypes. Future studies should provide a more
in-depth examination of the relationship between the gut microbiome biomarkers identified
in this study and associated BCa risk. This includes assessment of the fecal metabolome to
provide a functional quantitation of their microbial activity and influences on the host and
environmental factors. Additionally, research should aim to identify dietary strategies for
promoting a healthy gut microbiome that reduces BCa risk.

5. Conclusions

Our study identified three genera—Acidaminococus, Tyzzerella, and Hungatella—as
potential biomarker candidates associated with the gut microbiomes of BCa patients. Fur-
thermore, our investigation into dietary intakes revealed significant associations between
the presence of these genera in the microbiome and specific HEI2015 components, such
as vegetables and dairy for Hungatella, and whole fruits for Acidaminococus. These find-
ings suggest a potential link between dietary intakes and the gut microbiome composition,
which could have implications for BCa risk and management. Further research is warranted
to elucidate the precise mechanisms underlying these associations and their implications
for BCa prevention and treatment. Importantly, these findings provide the foundations for
empowering individuals to make informed lifestyle choices that may proactively reduce
their BCa risk.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu15214628/s1, Figure S1: Sample Size Flow Chart.
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