
Citation: Diniz, M.S.; Magalhães,

C.C.; Tocantins, C.; Grilo, L.F.;

Teixeira, J.; Pereira, S.P. Nurturing

through Nutrition: Exploring the

Role of Antioxidants in Maternal Diet

during Pregnancy to Mitigate

Developmental Programming of

Chronic Diseases. Nutrients 2023, 15,

4623. https://doi.org/10.3390/

nu15214623

Academic Editor: Claude Billeaud

Received: 16 September 2023

Revised: 27 October 2023

Accepted: 27 October 2023

Published: 31 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nutrients

Review

Nurturing through Nutrition: Exploring the Role of
Antioxidants in Maternal Diet during Pregnancy to Mitigate
Developmental Programming of Chronic Diseases
Mariana S. Diniz 1,2,3 , Carina C. Magalhães 1,2, Carolina Tocantins 1,2,3 , Luís F. Grilo 1,2,3 , José Teixeira 1,2,*
and Susana P. Pereira 1,2,4,*

1 CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
mdiniz@cnc.uc.pt (M.S.D.); cmagalhaes@cnc.uc.pt (C.C.M.); ctsantos@cnc.uc.pt (C.T.); luis.grilo@uc.pt (L.F.G.)

2 CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra,
3004-517 Coimbra, Portugal

3 Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary
Research, University of Coimbra, 3004-504 Coimbra, Portugal

4 Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and
Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR),
Faculty of Sports, University of Porto, 4200-450 Porto, Portugal

* Correspondence: jteixeira@cnc.uc.pt (J.T.); pereirasusan@gmail.com (S.P.P.);
Tel.: +351-231-249-170 (J.T. & S.P.P.)

Abstract: Chronic diseases represent one of the major causes of death worldwide. It has been sug-
gested that pregnancy-related conditions, such as gestational diabetes mellitus (GDM), maternal
obesity (MO), and intra-uterine growth restriction (IUGR) induce an adverse intrauterine environ-
ment, increasing the offspring’s predisposition to chronic diseases later in life. Research has suggested
that mitochondrial function and oxidative stress may play a role in the developmental programming
of chronic diseases. Having this in mind, in this review, we include evidence that mitochondrial
dysfunction and oxidative stress are mechanisms by which GDM, MO, and IUGR program the
offspring to chronic diseases. In this specific context, we explore the promising advantages of mater-
nal antioxidant supplementation using compounds such as resveratrol, curcumin, N-acetylcysteine
(NAC), and Mitoquinone (MitoQ) in addressing the metabolic dysfunction and oxidative stress
associated with GDM, MO, and IUGR in fetoplacental and offspring metabolic health. This approach
holds potential to mitigate developmental programming-related risk of chronic diseases, serving as a
probable intervention for disease prevention.

Keywords: maternal antioxidant supplementation; disease prevention; chronic diseases; developmental
programming; metabolic dysfunction; oxidative stress

1. Introduction

Non-communicable chronic diseases (CD) are considered to be one of the major threats
to global health and include cardiovascular disease, diabetes, obesity, cancer, chronic respi-
ratory diseases, and chronic liver disease [1]. It is estimated that, in 2016, non-communicable
CD contributed to two-thirds of mortality worldwide [2]. There are several CD risks factors
an individual can manage, including high blood pressure, tobacco smoking, high body
mass index, physical inactivity, and constant consumption of poor diets [1]. In addition,
unmanageable risk factors can also contribute to CD development, such as age, sex, and
genetic background [3]. On top of that, recent research has suggested that the intrauterine
environment, which is modulated by maternal behaviors and disease, including gesta-
tional diabetes mellitus (GDM) [4,5], maternal obesity (MO) [5–8], and IUGR [9], severely
influences the offspring’s CD development risk.
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Gestational diabetes mellitus (GDM) is defined as hyperglycemic and glucose intol-
erance states that are detected, for the first time, either in the second or third trimester of
pregnancy [10]. It is well established that GDM is the most prevalent pregnancy complica-
tion, affecting 13.9% of pregnancies [4,11]. Identified risk factors for GDM development
encompass maternal age and obesity, with obese pregnant women presenting a 2.4-fold
higher risk of developing GDM [12]. Furthermore, MO itself represents a highly prevalent
pregnancy complication [5]. It is estimated that approximately 50% of pregnancies occur
in overweight or obese women [6]. Both GDM and MO contribute to an increased risk of
inducing a fetoplacental environment resembling prolonged hypoxia, along with other fac-
tors, such as maternal smoking, vascular dysfunction, and maternal nutrient reduction [13].
These conditions can potentiate suboptimal fetal development and growth, a condition
referred to as intra-uterine growth restriction (IUGR). Indeed, neonatal complications as-
sociated with GDM, MO, and IUGR include increased perinatal mortality and morbidity,
deviations in birthweight, and preterm birth [14–16]. These pregnancy-associated disorders
induce structural, functional, and metabolic adaptations across several organs as early
as the fetal stage. In this context, it has been pointed out that oxidative stress and mi-
tochondrial dysfunction may be pivotal mechanisms of developmental programming in
pregnancy-related disorders [7]. Therefore, these mechanisms can be strategic targets to
modulate the programming of non-communicable CD in offspring during pregnancy.

Despite inconclusive and controversial data, studies have explored the use of antioxi-
dant supplementation for CD treatment. Recent research has highlighted the promising
beneficial effects of maternal supplementation with natural and/ or synthetic antioxidants
to mitigate the developmental programming of chronic diseases. Herein, we delve into
the compelling body of evidence on possible mechanisms of offspring’s chronic disease
programming by maternal health and discuss possible beneficial effects of supplementation
with antioxidant compounds such as vitamins, resveratrol, curcumin, N-acetylcysteine
(NAC), and Mitoquinone (MitoQ), which have garnered attention due to their beneficial
potential explored in a context of developmental programming by maternal habits and in
their ability to safeguard the long-term wellbeing of offspring.

2. Developmental Programming of Chronic Diseases by
Pregnancy-Associated Disorders
2.1. (Patho)physiologic Role of Reactive Oxygen Species in Fetal Development

Proper fetal development hinges on an interplay of several critical factors, among
which a consistent and uninterrupted provision of nutrients and oxygen plays a pivotal
role [17]. Oxygen levels exhibit a fine orchestration throughout gestation according to the
specific requirements of the developing fetus [18]. In the early stages, oxygen is maintained
at lower levels, particularly up until the 12th week following conception [19]. This inten-
tionally lowered oxygen levels stimulate angiogenesis, promoting the formation of new
blood vessels, which is a vital process for sustaining early development [19]. Around the
16th week of gestation, a significant shift occurs, with intrauterine oxygen levels increasing
significantly and then remaining stable until birth [19]. Even in this carefully regulated
environment, a small fraction of the oxygen required for oxidative metabolism undergoes
incomplete reduction, giving rise to reactive oxygen species (ROS) [19]. ROS production
predominantly occurs via the escape of electrons from the mitochondrial electron transport
chain (ETC), with complex-I and -III being notable contributors, resulting in the formation
of the superoxide (•O2

−) radical. Notwithstanding, other sources of ROS production can
be considered, such as dihydroorotate dehydrogenase (DHODH), among others. It is
important to state that ROS have a biphasic effect [20]. On the one hand, at moderate
levels, ROS are key players in pregnancy physiology, acting as signaling molecules in
developmental processes including placental growth [21], embryo development, and im-
plantation [22], and are involved in the replication, differentiation, and maturation of cells
and organs. However, on the flip side, excessive ROS levels, when not counterbalanced
by the antioxidant capacity, can usher in oxidative stress [5]. This state of oxidative stress
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can inflict severe damage, compromising the structural integrity of cells and organelles’
membranes and hindering proper protein function. Furthermore, it poses a significant risk
to fetal development and the intricate process of proper organogenesis.

In sum, the orchestration of oxygen levels and the balance of ROS levels within the
maternal–fetal interface are pivotal to ensuring the proper progression of fetal development.

2.2. The Impact of Pregnancy-Associated Disorders on Offspring’s Organs Oxidative Stress and
Mitochondrial Function

Pregnancy is a state of high energetic demand that is sustained mainly by fetoplacental
metabolic activity [23]. Mitochondria are metabolism’s key players and one of the main
cellular energy sources [24], being highly responsive organelles to energy demands. Conse-
quently, placental mitochondrial function can be modulated [24] in response to an adverse
intra-uterine environment. In pregnancy-related disorders, placental metabolic dysfunction
has been extensively documented, which may translate into long-lasting consequences for
the offspring in the prenatal and postnatal periods. This section aims to discuss how GDM,
MO, and IUGR are related with fetoplacental dysfunction and offspring organ dysfunction
via mitochondrial malfunction and oxidative stress.

The characteristic hyperglycemic state during GDM may adversely impact the pla-
cental mitochondrial structure and function [25] (Figure 1). Indeed, placentas from GDM-
portraying women presented swollen and disrupted mitochondria, some of which were
completely damaged [26]. Since mitochondria are highly dynamic organelles, changing the
number, morphology, network, and size according to cellular energy needs, mitochondrial
shape and function are tightly linked [27]. For instance, GDM-derived human cytotro-
phoblasts present a decreased mitochondrial maximum respiratory capacity and decreased
ATP production rates [28,29], highlighting GDM-induced mitochondrial bioenergetic dys-
function (Figure 1). Maternal diabetes, either pregestational type 2 diabetes or GDM, impair
placental mitochondrial biogenesis (formation of new mitochondria), with decreased mito-
chondrial transcription factor A (TFAM) [30] and peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC1-α) expression levels [28,29]. In addition to impaired pla-
cental mitochondrial biogenesis, GDM leads to altered mitochondrial dynamics, with stud-
ies in humans reporting either an increase in placental mitochondrial fusion events [28,31]
or a decrease [32]. Fusion events have been suggested as essential for mitochondrial DNA
(mtDNA) copy number maintenance [33] (Figure 1). Although inconsistent, mtDNA copy
number alterations are reported in GDM-related studies, either in maternal serum [34,35] or
placental tissue [28,30]. A potential direct relationship between the mtDNA copy number
and oxidative stress has been suggested [36]. This hypothesis was raised because the pla-
cental mtDNA copy number was positively correlated with placental DNA oxidation [36]
both in GDM and control pregnancies. Further studies are required to understand the
mechanisms linking DNA oxidation and the mtDNA copy number to solidify this hypoth-
esis. Despite this, placental oxidative stress has been widely reported in GDM placentas.
Although ROS are generated from several sources, mitochondria are considered as one of
the major ones [5]. GDM human pregnancies present placental increased biomarkers of
oxidative stress, such as malondialdehyde (MDA) [37,38], reduced antioxidant defenses (de-
creased catalase (CAT) activity [38], and glutathione peroxidase (GPx) 1 [39]) (Figure 1). In
addition to the placenta, GDM human umbilical cord mesenchymal stem cells (hUC-MSC)
present increased ROS production, detected via 2′,7′-Dichlorofluorescin diacetate (DCFDA),
and impaired mitochondrial bioenergetics, including a diminished basal respiration state
and FCCP-induced maximum respiratory capacity [40]. Given that mesenchymal stem
cells (MSC) are multipotent, they can differentiate into a wide range of cell types during
fetal development, including adipocytes, cardiomyocytes, myocytes, and neurons [41].
Dysfunctional MSC may imprint dysfunctional cells and organs in the offspring that may
later lead to an increased CD risk. GDM impairment in the offspring’s organs remains
underexplored in the literature, demanding increased and larger studies. Nonetheless,
the available data, both in humans and in murine animal models, suggests that GDM can
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lead to mitochondrial-related alterations in offspring’s preadipocytes [42], pancreas [43],
liver [44], and heart [45–47]. In addition to this, in rat embryos, maternal hyperglycemia
has been associated with increased lipid peroxidation, indicated by increased MDA levels.
In addition, animal rodent studies have shown the presence of oxidative stress in GDM
offspring’s tissues, such as in the cerebral cortex marked by increased ROS (detected via
H2-DCF-DA), increased lipid peroxidation, and decreased CAT activity in comparison with
the respective control in both adult male and female rat offspring of streptozotocin-treated
mothers [48]. The existing data on this topic is limited, underscoring the need for more
comprehensive and in-depth research.
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Figure 1. Placental metabolic dysfunction during pregnancies characterized by the presence of
Gestational Diabetes Mellitus (GDM) and Maternal Obesity (MO) includes mitochondrial structural
and functional alterations and oxidative stress, contributing to offspring chronic disease program-
ming. The characteristic hyperglycemic and pro-oxidative intrauterine environment of pregnancies
complicated by GDM and MO induces placental metabolic dysfunction via alterations in mitochon-
drial dynamics, with unbalanced fission and fusion events; mitochondrial biogenesis, via decreased
peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and mitochondrial
transcription factor A (TFAM) levels; and impaired mitochondrial bioenergetics, which was also
observed in multipotent human umbilical cord mesenchymal stem cells (hUC-MSC) of GDM pregnan-
cies. Increased reactive oxygen species (ROS) are also common to both placenta and hUC-MSC tissues
in both pregnancy disorders. Placental oxidative stress is further marked by reduced antioxidant
defenses and increased DNA oxidation, protein carbonylation, and malondialdehyde levels in GDM
placentas. MO during a GDM pregnancy may further contribute to mitochondrial dysfunction, as
increased levels of metabolites involved in the tricarboxylic acid (TCA) cycle and ketogenesis (citrate
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and acetoacetate, respectively) were detected. This compromised intrauterine environment can
progress into a hypoxic state, increasing the risk of Intrauterine Growth Restriction (IUGR) develop-
ment. GDM, MO, and IUGR have been associated with an increased risk of offspring chronic disease.
Mitochondrial alterations and oxidative stress, which are intimately involved in chronic diseases,
were observed in human and animal studies in different tissues of GDM and MO offspring, such as
the brain and hypothalamus, pancreas, preadipocytes, skeletal muscle, heart, and liver, highlighting
the role of metabolic pregnancy disorders in disease programming.

It has been suggested that the intrauterine metabolic milieu is different for GDM and
MO [49] (Figure 1). Nonetheless, despite these differences between GDM and MO, MO’s
intrauterine environment is also hyperglycemic and pro-oxidative. Similar to GDM, MO
human placentas present mitochondrial dysfunction, i.e., disrupted biogenesis (evidenced
by decreased PGC-1α protein expression levels and decreased citrate synthase activity) [50]
and bioenergetics (decreased complex-I activity and decreased ATP levels) [50,51], excessive
ROS formation and oxidative damage (MDA and protein carbonylation increased levels,
increased DCF fluorescence) [50–52], and lower antioxidant defenses (decreased SOD
activity, decreased GPx-4 expression levels) [50,53], either in human whole placental tissue
or in cytotrophoblasts (Figure 1).

This modified metabolic environment has been suggested to contribute to MO-induced
placental metabolic dysfunction, highlighting the potential impact of MO-induced pla-
cental mitochondrial dysfunction on fetal growth. Animal models have shown that
MO induces mitochondrial dysfunction in the offspring’s organs postnatally, with the
liver [54–58] being the most studied and reported in the literature in murine [55,56] and
ovine animal models [57]. The majority describes decreased hepatic mitochondrial respi-
ratory chain (MRC) complex activities [54,57] and expression [55], except for the work by
Alfaradhi et al., of which offspring’s hepatic MRC complex activities were described to be
increased [56]. MO-induced offspring’s hepatic MRC alterations are evident, at least in the
early stages after birth. Only a limited number of these studies explored mitochondrial
dynamics and biogenesis. Therefore, we consider it essential to investigate the pathways
involved in these mechanisms, given their significant role in mitochondrial fitness [59].
Mitochondrial alterations in MO’s offspring were also described in other tissues, namely in
murine [60–66] and non-human primate studies [67], reporting alterations in the offspring’s
cardiac tissue [60–62,64], skeletal muscle [63,67], and hypothalamus [65]. Importantly, the
majority of these studies consistently report impaired mitochondrial oxygen consumption
across various time points in the offspring’s life. However, the increased fusion events
were only reported for MO offspring’s hypothalamus. Furthermore, in both murine and
non-human primate animal models, there is compelling evidence of diminished antioxidant
defenses in MO offspring’s hearts [68], and livers [56,69,70] and these include decreased
SOD2, GPx1 expression levels, and reduced-to-oxidized glutathione ratio (GSH/GSSG),
as well as increased levels of oxidative stress markers (e.g., TBARS) in the pancreas [69],
liver [69–71], and skeletal muscle [67].

Prolonged fetal exposure to MO- and GDM-induced hypoxia can lead to the develop-
ment of IUGR. Notably, studies have identified commonalities between GDM, MO, and
IUGR in the placenta, highlighting mitochondrial function impairment (i.e., increased
mitochondrial content, decreased gene expression of MRC complexes’ subunits [72], and
increased placental ATP content [73]) and oxidative stress (i.e., increased ROS measured us-
ing the fluorescence levels of H2-DCF-DA [74] and augmented catalase expression, possibly
as a compensatory mechanism [75]) contributing to metabolic dysfunction in human IUGR
placenta [72], specifically in a mice IUGR model achieved with maternal diet restriction [73]
and in rat IUGR models achieved with hypoxia induction [74,75]. In IUGR offspring,
mitochondrial dysfunction is verified across several organs, including the heart [76–78]
and liver [79], and this is reported heterogeneously regarding the fetal or offspring’s age.
Moreover, oxidative stress is also present in IUGR offspring’s brain and heart (increased
lipid peroxidation biomarker MDA in rat IUGR model achieved with surgery [80] and in a
non-human primate IUGR model achieved with maternal diet reduction [77]), as well as in
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the liver (increased lipid peroxidation biomarker 4-Hydroxynonenal (4-HNE) levels and
decreased glutathione levels in a rat IUGR model achieved with diet restriction [81]) across
different time-points in the fetal or offspring’s life.

In this context, the upcoming sections will delve into current research with antioxi-
dants, particularly focusing on polyphenols, to gain a deeper understanding of the potential
benefits of maternal supplementation with naturally occurring or modified antioxidants
during pregnancy that might improve the overall offspring’s health, especially in cases of
MO, GDM, and IUGR pregnancies.

3. Antioxidants and Mitochondriotropic Activity of Naturally Occurring and
Synthetic Antioxidants

Developmental programming due to MO, GDM, and IUGR involves a complex in-
terplay of tissue-specific and general mechanisms [82], in which epigenetic changes, mi-
tochondrial changes, and oxidative stress are highlighted as the main players in this
relationship [7]. Moreover, tissue and mitochondrial dysfunction commonly resulting from
an exacerbation of pregnancy-associated oxidative stress results in maternal metabolic
dysfunction in a positive feedback loop [83]. Thus, maternal supplementation with antioxi-
dants represents a promising approach to mitigate developmental programming effects
in the offspring exposed to pregnancy-related disorders characterized by elevated ROS.
Antioxidant therapy has been studied as a possible strategy for exogenous antioxidants,
such as those from dietary and synthetic sources, to act synergistically with endogenous
antioxidants in restoring redox homeostasis [84].

3.1. Naturally Occurring Antioxidants
3.1.1. Endogenous Antioxidants

Under physiological conditions, the human body naturally produces antioxidant
molecules to eliminate excessive ROS, preventing oxidative stress and subsequent tissue
damage [85]. The endogenous antioxidant defense system contains antioxidant enzymes
such as SOD, CAT, and GPx, as well as non-enzymatic compounds such as glutathione,
proteins like ferritin, and low molecular weight scavengers such as Coenzyme Q10 (CoQ10)
that are responsible for maintaining cellular redox homeostasis [86]. SOD belongs to the
first line of the antioxidant defense system by converting the superoxide anion radical to
hydrogen peroxide (H2O2) [85,86]. In turn, both CAT and GPx are involved in the reduction
of H2O2 to water and molecular oxygen [85,86]. In fact, enzymatic antioxidants are more
effective in counteracting oxidative stress due to their ability to eliminate ROS, preventing
damage to proteins, DNA, and lipids [85]. On the other hand, non-enzymatic antioxidants
can act by capturing transition metal ions that are mostly responsible for producing reactive
oxygen radical species or can store metal ions necessary for the synthesis of enzymes con-
taining metal ions (metal-binding proteins, e.g., ferritin and transferrin) [85,86]. Moreover,
they can scavenge reactive radicals (e.g., glutathione and uric acid) and directly interfere
with the initiation and propagation steps of the peroxidation process, acting as inhibitors
of lipid peroxidation [85–87] and protecting cells from harm, playing an important role
in metabolism as is the case of CoQ10, a naturally occurring endogenous lipid-soluble
antioxidant located in the inner mitochondrial membrane.

3.1.2. Dietary Antioxidants

Dietary antioxidants such as Vitamin C and E, carotenoids, and polyphenols are
naturally occurring exogenous antioxidants that complement the activity of the endoge-
nous antioxidant defense system [86]. Research has been dedicated to unraveling the
mechanisms underlying the actions of dietary phytochemicals, with a particular empha-
sis on polyphenols, and how polyphenols exert their beneficial effects, including their
antioxidant capacity.

Polyphenols are subdivided into two major classes: flavonoids, which include quercetin
and epigallocatechin-3-gallate (EGCG), and non-flavonoids, which include resveratrol and
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curcumin [88]. Dietary polyphenols present multiple benefits to human health, such
as anti-cancer [89], antioxidant [90,91], anti-inflammatory [91,92], anti-obesity [91], and
anti-diabetic [93]. Among the natural polyphenols, the most extensively researched com-
pounds are resveratrol (3,4′,5-Trihydroxystilbene), curcumin (1E,6E)-1,7-bis(4-hydroxy-3-
methoxyphenyl)hepta-1,6-diene-3,5-dione), EGCG, and quercetin, owing to their impact in
biological properties.

Polyphenols have been considered a potential therapeutic approach due to their ability
to mitigate oxidative stress events via ROS scavenging, modulating ROS-removing en-
zymes, inhibiting ROS-producing enzymes, or via the chelation of metals that are involved
in metal-dependent hydroxyl formation via the Fenton reaction [88]. Although polyphenols
have the capacity to reduce ROS, which is intrinsically related to their chemical structure
and the presence of at least one phenol group, the indirect action of dietary polyphenols
relies on the upregulation of endogenous antioxidant proteins [85]. It has been suggested
that resveratrol activates SIRT1 by directly inhibiting phosphodiesterase (PDE) enzymes,
increasing cAMP levels and AMPK activation with a subsequent increase in NAD+ levels
activating SIRT1 [94]. SIRT1 activation is associated with a multitude of beneficial effects,
namely the ability to decrease oxidative stress, inflammation, and regulation of the expres-
sion of mitochondrial genes involved in biogenesis and lipid metabolism (SIRT1/PGC-1α
axis) [95–104]. Although the mechanism is not yet well known for curcumin’s action on
SIRT1, this protein is also suggested to represent a target of curcumin. Additionally, re-
search has suggested that curcumin’s antioxidant action also relies on its ROS scavenging
properties, which are attributable to the compound’s structure. On top of the mechanisms
of action described above, an important indirect mechanism to mitigate cellular oxidative
stress is the activation of the nuclear factor erythroid 2–related factor 2 (Nrf2)/antioxidant
responsive element (ARE) pathway. Both resveratrol [105] and curcumin [106–108] can
induce the transcriptional activation of Nrf2 and subsequent upregulation of the expres-
sion of Nrf2 target genes, including NAD(P)H:quinone oxidoreductase 1 (NQO1) and
heme oxygenase-1 (HO-1), conferring an additional antioxidant ability by increasing the
expression of antioxidant enzymes.

In addition to the mitigation of oxidative stress, antioxidant compounds present ef-
fects in other biological processes, such as mitochondrial function and inflammation. For
instance, resveratrol has been reported to induce BNIP3-related mitophagy and attenuate
hyperlipidemia-related endothelial dysfunction [109] via the involvement of AMPK and
hypoxia-inducible factor 1 (HIF-1). On the other hand, resveratrol effects can also contribute
to increasing mitochondrial activity by regulating the expression of genes associated with
oxidative phosphorylation, biogenesis, and lipid metabolism [95,97]. Curcumin’s main
described mechanisms of action in mitochondria are targeting mitochondrial biogenesis,
intrinsic apoptosis, mitochondrial permeability transition pore, mitochondrial MRC uncou-
pling, and ATP synthase [88]. Resveratrol and curcumin have also been associated with
potential anti-inflammatory mechanisms. These compounds have demonstrated the ability
to inhibit the nuclear factor-kB (NF-kB) signaling pathway, which subsequently prevents
the expression of inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) and
interleukin-6 (IL-6) (resveratrol [110,111], curcumin [112]).

3.2. Synthetic Antioxidants

In addition to naturally occurring antioxidants, synthetic antioxidant molecules such as
N-Acetylcysteine (NAC), MitoTEMPO, and Mitoquinone (MitoQ) possess the capability to
exert direct and indirect antioxidant effects in vivo [84,113,114]. These compounds have been
developed to overcome mainly pharmacological limitations. For instance, NAC, a cysteine
derivative, overcomes the cysteine low intracellular concentration limits, contributing to a
more efficient rate of GSH synthesis [115,116]. Therefore, NAC not only makes a significant
antioxidant contribution by serving as a precursor to intracellular GSH [116,117], but also
directly interacts with certain free radicals and activates the Nrf2 signaling pathway, providing
an effective means to combat oxidative stress at the cellular level [118].
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In turn, as mitochondrial oxidative stress is associated with multiple diseases, targeting
specifically mitochondrial ROS and modulating redox signaling may represent a more
efficient antioxidant therapy [119]. However, it is still a challenge to specifically target and
accumulate antioxidant molecules within the mitochondrial matrix [119]. MitoTEMPO and
MitoQ are some examples of successful mitochondria-targeted antioxidants [119].

Mitochondria-Targeted Antioxidants

Although targeting mitochondria is not easily achievable, the linkage of an antioxidant
molecule to a lipophilic cation, such as the triphenylphosphonium (TPP+) moiety, has been
used to direct these molecules to the negatively charged mitochondrial matrix [114,120].
MitoQ, the mitochondria-targeted golden-standard antioxidant, is composed of a CoQ10
linked to a TPP+ moiety via a 10-carbon chain [121]. MitoQ’s remarkable antioxidant
and antiapoptotic properties are primarily attributed to its ability to induce mitophagy,
a selective process of degrading or removing damaged or dysfunctional mitochondria
within a cell [122,123]. In addition to preventing ROS overproduction, MitoQ was also
shown to decrease mitochondrial oxidative stress in in vitro and in vivo models of diabetic
kidney disease by promoting the restoration of mitophagy via the Nrf2/PTEN-induced
kinase (PINK) pathway [124,125]. Other molecules have been synthesized since then,
such as MitoVitE, MitoTEMPOL, and SkQ1 [114]. In particular, mitochondria-targeted
antioxidants based on caffeic acid (AntiOxCIN4) and gallic acid (AntiOxBEN2) were
developed to overcome their highly hydrophilic character that makes it difficult to cross
biological membranes [120] and target mitochondrial oxidative stress [120,126–128]. In fact,
AntiOxCIN4 supplementation prevented hepatic steatosis in a non-alcoholic fatty liver
disease (NAFLD) mice model [129], highlighting the potential of mitochondria-targeted
therapeutic approaches for the treatment of non-communicable CDs.

Despite the wide variety of antioxidants being currently studied for the mitigation
and/or prevention of non-communicable CD, maternal antioxidant supplementation stud-
ies are limited only to a few of these compounds, such as MitoQ, NAC, resveratrol, and
curcumin. For this reason, in the next section, we explore the potential benefits of maternal
supplementation with naturally occurring or modified antioxidants before and/or during
pregnancy that might improve the overall offspring’s health, especially in cases of MO,
GDM, and IUGR pregnancies.

4. Exploring the Role of Dietary Antioxidant Supplementation during Pregnancy in
Offspring Non-Communicable Disease Prevention

Maternal nutritional status is of paramount relevance during the pre- and post-
conception period and throughout lactation for optimal fetal development [130]. Evidence
suggests that maternal dietary adjustments, such as maintaining a balanced energy and
protein intake, can be beneficial during these phases to reduce the risk of fetal loss, stillbirth,
and perinatal death [131]. Although a maternal high-protein diet has been associated with
a higher percentage of small for gestational age (SGA) infants [131], the supplementation of
specific amino acids has shown positive outcomes. Specifically, oral L-Arginine supplemen-
tation during pregnancy has been shown to improve fetoplacental circulation and birth
weight in humans [132] and increase fetal viability and birth weight in pigs and sheep [132].
In a non-pregnant individual’s liver, it has been reported that L-Arginine can induce an-
tioxidant response via stimulation of GSH synthesis and activation of the Nrf2 pathway,
highlighting the potential role of L-Arginine to modulate antioxidant defenses [133]. More-
over, antenatal iron and folic acid supplementation are recommended by the WHO to
prevent fetal and neonatal loss, SGA, maternal anemia, and iron deficiency [134].

In non-pregnant individuals with iron deficiency, the supplementation led to a signifi-
cant decrease in oxidative stress [135], although it remains controversial regarding maternal
supplementation, particularly in already-iron-sufficient mothers [136]. The overall diet’s an-
tioxidant impact may vary, our main focus in this review is centered on specific antioxidant
supplementation in pregnancy-associated disorders and its potential to mitigate offspring’s
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development of CDs. In this section, we discuss the literature concerning the impact of
vitamins, resveratrol, curcumin, NAC, and MitoQ supplementation in pregnancies com-
plicated by MO, GDM, and IUGR, exploring the consequent effects in the mother, in the
fetoplacental unit, and in the offspring.

4.1. Vitamins

The debate on vitamin supplementation during pregnancy is extensive. Current re-
search suggests that vitamin C and E supplementation during pregnancy may not reduce
the risk of fetal or neonatal loss, SGA infants, nor preterm birth, with no observable bene-
ficial effects [137–139]. Vitamin A supplementation during pregnancy has demonstrated
positive outcomes in specific cases, such as improved fetal growth, in mothers experiencing
night blindness, and those with HIV [140]. Additionally, supplementation in the postpar-
tum period, when maternal vitamin A concentrations are low, has increased breast milk’s
retinol content [140], potentially leading to reinforced immunity in these children. However,
studies have shown that for some specific cases, high doses of, for example, vitamin E and
beta-carotene, are associated with an increased risk of preterm birth. Thus, the safety and
efficacy of antioxidant supplementation should be carefully assessed to reach optimal types,
dosages, and timing of antioxidant supplementation for different populations of pregnant
women. In light of these findings and taking into consideration that clinical trials involving
pregnant women are still a subject of controversy [141], there is an emerging need to explore
novel, safe, effective, and beneficial options for supplementation during pregnancy.

4.2. Resveratrol

In a pregnant obese rat model induced via a high-fat diet (HFD), maternal resveratrol
supplementation decreased the number of large adipocytes and increased the number of small
adipocytes in the mothers’ adipose tissue, contributing to the shift from hypertrophic to hyper-
plastic expansion of white adipose tissue (WAT) [142]. Maternal resveratrol supplementation
also induced thermogenesis in MO offspring’s brown and white adipose tissues with increased
thermogenic genes’ expression levels (e.g., PR/SET Domain 16 (PRDM16) and uncoupling
protein 1 (UCP-1)) [142]. The mechanism of action may likely be mediated via the AMPK/SIRT1
pathway. This is supported by studies demonstrating that resveratrol promotes AMPK and
SIRT1 phosphorylation, increasing their activity and downstream signaling [142,143].

In addition, oral supplementation of resveratrol in HFD-induced obese mothers de-
creased the expression of hepatic genes encoding for proteins involved both in glycolysis
(i.e., Glucose-6-phosphate dehydrogenase (G-6-PDH), Phosphoenolpyruvate carboxykinase
(PEPCK)) and in inflammation (i.e., IL-6), where it decreased the concentration of a DNA
oxidation marker (8-Oxo-2′-deoxyguanosine—8-oxo-dG) and decreased the nitrotyrosine
immunostained area in comparison with the MO group. These results suggest that resver-
atrol attenuated insulin resistance mechanisms, inflammatory processes, and oxidative
stress in the maternal liver [144]. At 19 days of gestation, in the placental tissue, resveratrol
supplementation in obese mothers carrying male fetuses decreased the levels of the lipid
peroxidation biomarker (MDA) in comparison with the MO group, while for female fetuses,
ROS levels were decreased along with SOD increased activity [144]. In the hepatic tissue of
male offspring, maternal resveratrol supplementation increased GPx activity, while female
hepatic tissue presented decreased DNA oxidation marker 8-oxo-dG, highlighting the
antioxidant effect of resveratrol in a sex-specific way [144]. Hepatic Nrf2 activation may be
involved in the improvement of antioxidant capacity induced via resveratrol [145].

The promising results observed with antioxidant supplementation in the context of
type 2 diabetes [96,146] have prompted researchers to investigate its effects in a GDM
context [147–149]. Notably, improvements in maternal glucose and insulin tolerance were
reported in a GDM genetic mouse model (C57BL/KsJdb/+ (db/+)) treated with resveratrol
via AMPK activation [147]. In addition, and as reported for mice GDM mothers’ liver,
a study showed that resveratrol administration via oral gavage induces decreased hep-
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atic glucose-6-phosphatase (G6Pase) activity in mice GDM offspring, contributing to the
downregulation of the gluconeogenesis pathway [147].

4.3. Curcumin

Similar to resveratrol, curcumin administration via orogastric gavage in mothers on an
HFD demonstrated the capacity to enhance insulin sensitivity and activate thermogenesis
in brown adipose tissue (BAT) and WAT in male mice offspring (Figure 2) [150]. This
effect is achieved by increasing the expression of thermogenic genes, such as PRDM16
and UCP-1 [150]. These favorable outcomes are likely to contribute to the improvement of
mitochondrial function and energy expenditure in offspring born to mothers following an
HFD [142], which have been suggested to be impaired by MO [66].
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Growth Restriction (IUGR))-induced deleterious developmental programming of the offspring. An-
tioxidants may act by improving maternal metabolism and health during pregnancy; by preventing
placental dysfunction associated with adverse maternal conditions; or by directly preventing fetal ab-
normalities during development and developmental programming of disease. Multiple antioxidants
(e.g., N-Acetylcysteine (NAC), polyphenols (i.e., resveratrol and curcumin), and MitoQ) were shown
to act in the maternal liver, white adipose tissue (WAT), and blood parameters; placental function;
and offspring liver, heart, WAT, and brown adipose tissue (BAT).

Notably, curcumin oral gavage administration also ameliorates GDM symptoms (e.g.,
hyperglycemia and insulin resistance) by promoting maternal hepatic AMPK activation
and increasing the expression of GSH, SOD, and CAT in the livers of the GDM genetic
mouse model (C57BL/KsJdb/+ (db/+)) [148]. In this study, it was suggested that AMPK
upregulation may contribute to the inhibition of histone deacetylase 4 (HDAC4) and the
subsequent downregulation of G6Pase protein expression and activity [148]. Thus, the
effects of curcumin-induced AMPK increased activation on hepatic mitochondrial function
and ROS production demand further investigation.

Maternal malnutrition has been associated with placental insufficiency and, con-
sequently, with IUGR. Some studies reported that oral gavage administration and oral
supplementation of curcumin induced beneficial effects on placental inflammation and ox-
idative damage via the regulation of the NF-kB and Nrf2 signaling pathways, respectively,
in mouse and rat low protein diet-induced IUGR models [151,152], improving placental
efficiency, alleviating placental apoptosis, and contributing to the loss of blood sinusoids
area in the placental labyrinth [151,152].

Dietary polyphenol supplementation, such as resveratrol and curcumin, has already
been demonstrated to prevent IUGR-induced inflammation and oxidative damage in the
liver of the offspring of the IUGR spontaneous piglet model and IUGR rat model induced
via bilateral artery ligation and protein restriction [153–155].

4.4. NAC

In a mice model of MO induced via an obesogenic diet, maternal NAC oral sup-
plementation decreased WAT, hepatic fat, and inflammation and increased thermogenic
gene expression in BAT [156]. Furthermore, an increase in GPx activity and rescue of the
expression of some NADPH oxidase (NOX) enzyme complex genes to control the levels
in the left ventricular cardiac tissue of male and female offspring were observed 7 days
after birth, emphasizing the potential antioxidant effect of maternal NAC supplementation
in the offspring’s postnatal health [157]. Additionally, maternal NAC supplementation
has been shown to prevent increased MO-induced activation of the cardiac Akt-mTOR
signaling pathway [157], which has been associated with the development of offspring’s
cardiac hypertrophy [158]. However, MO offspring born to NAC-treated mothers devel-
oped cardiac hypertrophy [157], suggesting that another mechanism can be behind cardiac
hypertrophy development. Nonetheless, in male offspring, maternal NAC supplementa-
tion improved MO-induced cardiac physiological abnormalities, including increased heart
weight, interventricular septal thickness, and collagen content, potentially via the attenu-
ation of oxidative stress, due to the role of ROS in the signaling of these pathways [157].
Although some evidence exists regarding the offspring’s cardiac benefits of antioxidant sup-
plementation in obese mothers, further research is required to understand the mechanisms
underlying these effects.

Oral gavage administration of NAC seems to decrease maternal oxidative stress by
upregulating antioxidant defenses in the liver, including SOD, GPx, and CAT activities
and GSH levels, and by reducing MDA levels in a GDM genetic animal mice model [149].
In addition, NAC contributed to redox homeostasis via the activation of Nrf2/HO-1 and
decreased the expression of pro-inflammatory cytokines IL-6 and TNF-α in the maternal
liver of a GDM mice genetic animal model [149]. Despite the relevant positive outcomes of
antioxidant supplementation in GDM-portraying mothers, there are fewer results reported
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for the offspring. However, resveratrol [147], curcumin [148], and NAC [149] oral gavage
administration have been demonstrated to contribute to the restoration in litter size and
body weight at birth.

Interestingly, maternal supplementation with NAC in the drinking water of a IUGR
model induced by implanting ameroid constrictors on uterine arteries of pregnant guinea
pigs at mid-gestation was also demonstrated to play an important role in restoring fetal
weight and placental efficiency by preventing endothelial dysfunction associated with
IUGR [159]. NAC was shown to be able to revert the functional and epigenetic pro-
gramming of endothelial nitric oxide synthase (eNOS) by reverting the reduced DNA
methylation in the promoter region of the nitric oxide synthase 3 (NOS3) gene in primary
cultures of endothelial cells from umbilical, fetal aorta, and femoral arteries of IUGR guinea
pigs’ model [159].

4.5. MitoQ

In a hypoxic pregnancy of a rodent animal model, MitoQ was demonstrated to restore
the placental levels of the activating transcription factor (ATF4), preventing the activation
of mitochondrial oxidative stress and the unfolded protein response (UPR) signaling
pathway [160]. Another interesting finding of this study was that MitoQ was demonstrated
to increase placental volume, the fetal capillary surface area in the labyrinth zone, and the
volume of maternal blood spaces in the placenta in this rat hypoxic pregnancy model [160].
The authors suggested that this mechanism may improve substrate supply to the fetus as a
consequence of the increase in nitric oxide (NO) bioavailability. In fact, NO is essential to
maintain both endothelial function and umbilical blood flow [5].

Despite the antioxidant compounds’ potential contribution to endothelial cell home-
ostasis and oxidative stress reduction, ROS acts as second messengers to the activation
of several cellular signaling pathways, namely trophoblastic proliferation, which is cru-
cial during the early stages of pregnancy [161]. A recent study reported that although
MitoQ oral gavage administration decreased placental oxidative damage markers (MDA
and 4-HNE) both during early and late gestation in a reduced uterine perfusion pressure
(RUPP)-induced mouse preeclampsia model, at an early gestation stage, multiple negative
outcomes were observed [161]. MitoQ-treated preeclampsia mice mothers presented fetal
loss 2 days after MitoQ administration and a significant increase in systolic and diastolic
blood pressure [161]. Moreover, fetal and placental weight were significantly lower in
the treated group as well as in the labyrinth/spongiotrophoblast ratio and the density
of placental blood sinuses [161]. This study suggests that further studies are demanded
regarding antioxidant therapy in early pregnancy.

Overall, it seems that maternal antioxidant supplementation exerts potential bene-
fits to mitigate, or even prevent, pregnancy-related disorders, mainly via three different
ways including through direct action on maternal metabolism, by improving fetoplacental
function, and through direct action on the offspring.

5. Future Perspectives

Given the role of ROS as signaling molecules, it is critical to diverge future research
into understanding whether an optimal concentration of each supplement can be reached
without compromising whole-body signaling and metabolic function and whether these
can be defined throughout the whole stages of pregnancy. Thus, there is still a great win-
dow left to explore the effects of maternal antioxidant supplementation in the offspring
exposed to an adverse intra-uterine environment. It remains imperative to explore strate-
gies targeted towards mitochondria and oxidative stress, which may prevent metabolic
dysregulation and pregnancy-associated disorders inducing metabolic dysregulation and
oxidative stress both in the fetoplacental unit and in the offspring. Indeed, given the efficacy
of new antioxidants, such as AntiOxBEN2 and AntiOxCIN4 in multiple oxidative stress-
and mitochondrial dysfunction-related pathologies, it would be interesting to evaluate



Nutrients 2023, 15, 4623 13 of 20

whether these antioxidants are able to target pregnancy-related disorders’ adverse effects
on maternal and offspring’s health.

6. Conclusions

This review highlights the potential link between pregnancy-related disorders, such
as GDM, MO, and IUGR, and the increased predisposition of chronic diseases in the
offspring later in life. Pregnancy-related disorders appear to contribute to mitochondrial
dysfunction and oxidative stress both in the fetoplacental unit and in the offspring’s
organs (i.e., liver, pancreas, adipose tissue, and heart). Furthermore, this review presents
compelling evidence supporting that maternal antioxidant supplementation, including
resveratrol, curcumin, and NAC, may offer a promising strategy for mitigating metabolic
dysfunction and oxidative stress induced by pregnancy-related conditions in the mothers,
in the fetoplacental unit, and in the offspring. This area of research on maternal antioxidant
administration warrants further investigation and attention as a potential means to prevent
or mitigate the offspring’s metabolic disease programming to chronic diseases.
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