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Abstract: Cancer cachexia (CC) is a multifactorial wasting syndrome characterized by a significant
loss in lean and/or fat mass and represents a leading cause of mortality in cancer patients. Nutraceu-
tical treatments have been proposed as a potential treatment strategy to mitigate cachexia-induced
muscle wasting. However, contradictory findings warrant further investigation. The purpose of this
study was to determine the effects of leucine supplementation on skeletal muscle in male and female
ApcMin/+ mice (APC). APC mice and their wild-type (WT) littermates were given normal drinking
water or 1.5% leucine-supplemented water (n = 4–10/group/sex). We measured the gene expression
of regulators of inflammation, protein balance, and myogenesis. Leucine treatment lowered survival
rates, body mass, and muscle mass in males, while in females, it had no effect on body or muscle mass.
Leucine treatment altered inflammatory gene expression by lowering Il1b 87% in the APC group and
decreasing Tnfa 92% in both WT and APC males, while it had no effect in females (p < 0.05). Leucine
had no effect on regulators of protein balance and myogenesis in either sex. We demonstrated that
leucine exacerbates moribundity in males and is not sufficient for mitigating muscle or fat loss during
CC in either sex in the ApcMin/+ mouse.

Keywords: biological sex differences; inflammatory gene expression; protein imbalance; anabolic
suppression; muscle wasting

1. Introduction

Data from the World Health Organization (WHO) show that cancer is a leading cause
of death worldwide, and it accounted for approximately 10 million deaths in 2020 [1].
Colorectal cancer is a common form of cancer, with 1.93 million cases and 916,000 deaths
reported in 2020 [1,2]. Cancer cachexia (CC) is present in approximately 80% of advanced-
cancer patients, worsens patients’ overall outcomes, and increases the risk of mortality;
up to 40% of all cancer-related deaths are directly attributed to cachexia [3]. CC is a
physiologically complex wasting syndrome, currently clinically defined by a loss of body
mass greater than 5% in a 6-month period. This is primarily attributed to a loss in lean
mass, which may be accompanied by a loss in fat mass [4,5]. CC is commonly characterized
by a state of systemic inflammation and circulating proinflammatory cytokines that are
emblematic of this state [6]. There is strong evidence of a correlation between elevated
levels of pro-inflammatory cytokines and cachexia; therefore, chronic inflammation is one
of the key factors contributing to muscle atrophy in CC [7]. Despite significant efforts
toward understanding CC, no effective therapeutic treatments against CC are currently
available [8–11].
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A key factor in the characterization of CC is a negative muscle protein balance, fa-
voring catabolism over anabolism. There have been numerous nutritional intervention
studies carried out in the hopes of correcting this protein imbalance [12–14]. Leucine is a
branched-chain amino acid (BCAA) known to directly stimulate the mechanistic target of
rapamycin and mTORC, mediating protein synthetic signaling [15]. Currently, leucine is
considered a potential therapeutic agent in CC [16]; however, contradictory findings on its
effects warrant further investigation. Studies have observed leucine supplementation in rats
bearing Walker-256 breast-cancer tumors improved body and muscle mass, improved pro-
tein balance, and moderated pro- and anti-inflammatory mediators [17–19]. Despite these
positive effects of leucine supplementation in rats with breast-cancer-induced cachexia,
Lee et al. (2019) [20] suggested that leucine treatment exacerbates the loss of skeletal mus-
cle mass in mice inoculated with Lewis Lung Carcinoma (LLC) tumor cells. Additionally,
several studies reported leucine’s potential adverse effects on the cancer tumor itself,
where leucine enhanced tumor growth in preclinical models of pancreatic and bladder
cancer [21–23]. Therefore, more research is required to define the effects of leucine sup-
plementation during CC across different types of cancer in order to determine if leucine
supplementation is a potentially efficacious therapeutic agent for mitigating CC.

Along with metabolic dysregulation accompanying CC, emerging evidence indicates
that males and females display biological sex differences in the development of cancer and
CC, even in response to cancer treatments [24–26]. For example, females with CC often
experience less severe losses in body mass, muscle mass, and muscle function compared to
males, which may be attributable to the anti-inflammatory effects of estrogen [26]. Addi-
tionally, female skeletal muscle exhibits a greater mitochondrial quality and less resistance
to fatigue [26,27], and our laboratory has demonstrated the significant protection of mi-
tochondrial quality during the early stages of CC in females [28]. Overall, recent studies
indicate that males have greater susceptibility to CC-induced muscle loss [29]; however, few
studies observed this sexual dimorphism simultaneously [30,31], with fewer still examining
potential therapeutic targeting [29,32]. Further evaluation of CC and potential treatments is
critical for a complete understanding of mechanistic alterations and the identification of
potential therapeutic approaches across the biological sexes.

To our knowledge, leucine supplementation as a nutritional intervention across both
sexes in a pre-clinical model of colorectal CC has not yet been studied. Therefore, the
purpose of this study was to determine the effects of leucine supplementation on skeletal
muscle in a well-known model of colorectal CC and ApcMin/+, observing the effects in both
male and female mice. By supplementing the normal diet with leucine, we hypothesized
that male and female mice would exhibit attenuated muscle wasting. We observed that
leucine supplementation differentially affects males and females; leucine supplementation
exacerbated moribundity in males, without attenuating muscle or fat loss in either sex.

2. Methods
2.1. Animals and Housing

All animal experiments were approved by the Institutional Animal Care and Use
Committee (IACUC) of the University of Arkansas. ApcMin/+ male mice and C57Bl/6J
female mice were initially purchased from Jackson Laboratories for colony production
(ApcMin/+: IMSR_JAX:002020. C57Bl6/J: IMSR_JAX:000664). Animals were kept in a
12:12 light–dark cycle and given access to normal rodent chow. ApcMin/+ males were bred
with C57BL6/J female mice as colon cancer is a contraindication for pregnancy. Mice were
genotyped with DNA isolated from tail or ear snips. The ApcMin/+ gene was detected via
semi-quantitative PCR, using the forward primer (GGG AAG TTT AGA CAG TTC TCG T)
and reverse primer (TGT TGG ATG GTA AGC ACT GAG), with an initial denaturation at
95 ◦C for 2 min followed by 35 cycles of denaturation at 95 ◦C for 30 s, annealing at 45 ◦C
for 30 s, extension at 72 ◦C for 30 s, and a final extension at 72 ◦C for 7 min. Mice were
weaned and genotyped at 4 weeks of age. ApcMin/+ and their WT littermates were randomly
assigned to the leucine-enriched water (1.5%) experimental group (WTL; male n = 7, female
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n = 8, or APCL; male n = 7, and female n = 8) or the normal drinking water control group
(WTNL; male n = 7, female n = 8, or APCNL; male n = 7, female n = 8) until tissue collection
and euthanasia at 20 weeks of age [33,34]. This led to the creation of 4 experimental groups
per sex based on genotype and leucine supplementation.

2.2. Leucine Supplementation

Mice receiving leucine supplementation received a 1.5 g/100 mL dose of leucine (Fisher
Scientific; BP385-100) through their drinking water. Leucine dosage was predetermined
based on previous research published by our laboratory, as well as previous research
by Li et al. (2012) [34,35]. L-leucine was dissolved in tap water to create a 1.5% leucine
solution. The mixture was heated to 70 degrees for 40 min to facilitate the dissolving
process. The mixture was cooled down to room temperature before administration to the
animals. Food and water intake were measured and recorded weekly; the intake was not
different across groups.

2.3. Euthanasia and Tissue Collection

Animal tissues, organs, and blood plasma were collected under 3% isoflurane prior
to euthanasia at 20 weeks of age or if mice became moribund prior to the collection date.
Moribundity was determined in conjunction with the veterinary staff and included these
clinical manifestations: hunched posture, lethargy, impaired mobility, severe and rapid
weight loss, and no response to external stimuli. Mice that displayed these symptoms were
euthanized prior to the planned experimental endpoint. Tissues and organs were weighed
and snap-frozen in liquid nitrogen and stored at −80 ◦C for further processing. The tibialis
anterior (TA) muscle was selected for histological and biochemical analysis throughout
this study due to the mixed fiber nature and its susceptibility to cachexia [36]. TA muscle
was submerged in optimum cutting temperature compound (OCT) and then placed in
liquid-nitrogen-cooled isopentane. OCT mounted tissue was then stored at −80 ◦C for
future histological and microscopic analysis.

2.4. Histology

TA muscle stored in OCT were cryo-sectioned into 10 µm thick sections on polar-
ized microscope slides. Muscle sections were then histologically stained for succinate
dehydrogenase (SDH). Oxidative phenotype was quantified and analyzed by counting
relative presence of SDH+ (purple) and SDH- (white) fibers. Following SDH staining, the
cross-sectional area (CSA) of muscle was determined by a blinded researcher who manu-
ally traced SDH+ and SDH- fibers. Images were analyzed using Nikon NIS Elements BR
software package v4.30.

2.5. RNA Isolation, cDNA Synthesis, and Quantitative Real-Time PCR

RNA was isolated from the TA muscle. TA muscle was homogenized with Trizol
Reagents (Life Technologies, Grand Island, NY, USA), and phenol–chloroform extraction
was performed following homogenization. RNA was ethanol-precipitated and diluted in
70% of diethyl pyrocarbonate-treated ethanol. Total RNA was isolated using an Invitro-
gen PureLinkTM RNA Mini Kit (Invitrogen, Waltham, MA, USA; 12183018A). Total RNA
was eluted in rNase-free water. RNA concentration and purity were measured using a
BioTek Take3 micro-volume microplate with a BioTek Synergy HTX Multi-Mode Microplate
Reader, IVD (Fisher Scientific, Waltham, MA, USA; BTS1LASI). A 260/280 nm ratio of >2
was utilized as the quality assessment. Following RNA extraction, samples were stored at
−80 ◦C for future use. RNA was reverse transcribed to cDNA from 1 µg of total RNA using
Superscript Vilo cDNA synthesis kit (Invitrogen; 11755-250) in a final volume of 20 µL at
25 ◦C for 10 min, followed by 42 ◦C for 50 min, and 70 ◦C for 15 min. PCR was performed
using QuantStudio 3 Real-Time PCR system (Applied Biosystems, Waltham, MA, USA;
A28571). A 25 µL reaction composed of TaqMan probes plus Taqman Universal Master
Mix (Applied Biosystems; 4305719) was used to amplify cDNA. Samples were incubated at
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95 ◦C for 4 min, followed by 45 cycles of denaturation, annealed, and extended at 95 ◦C
and 60 ◦C, respectively. TaqMan fluorescence was measured at the end of the extension
of each cycle. All targets were assayed using Taqman probes (Applied Biosystems) for the
following targets: 18S (Mm03928990_g1), Il6 (Mm00446190_m1), Il1b (Mm00434228_m1),
Myod (Mm00440387_m1), Myogenin (Mm00446194_m1), Pax7 (Mm01354484_m1), Nfkb
(Mm00476361_m1), Tnfa (Mm00476361_m1), Ubc (Mm01198158_m1), Deptor (Mm01195339_m1),
Igf1 (Mm00439560_m1), Foxo1 (Mm00490671_m1), Foxo3 (Mm01185722_m1), Fbox32
(Mm00499523_m1), Trim63(Murf1) (Mm01185221_m1), and Ddit4(Redd1) (Mm00512504_g1).
The RT-qPCR measured cycle threshold (Ct) and the ∆Ct value were calculated as the
difference between the target Ct value and the 18S Ct value. The final quantification of
mRNA abundance was calculated using the ∆∆CT method. ∆∆CT = [∆Ct (calibrator) −
∆Ct(sample)]. Relative quantifications were then calculated as 2−∆∆Ct. 18S Ct values were
confirmed to not differ between experimental conditions.

2.6. Statistical Analysis

Differences between groups within each biological sex were determined via two-way
ANOVA (genotype [WT v APC] by leucine [NL v L]) for a global analysis, where a Student–
Newman–Keuls post hoc test was then performed to evaluate differences between means
when a significant interaction effect was observed. Any comparison between sexes was
performed visually and based upon the contrast of differential or similar statistical effects
between sexes. Statistical significance was set at α = 0.05. All data were analyzed, figures
were compiled using GraphPad Prism version 9.5.1 (528) (Graphpad Software LLC., Boston,
MA, USA), and data were expressed as mean ± standard error of the mean (SEM).

3. Results

3.1. Leucine Negatively Affects Survival in Male APCMin/+ Mice

The male APCL mice showed a 10% decrease in survival rate after 14 weeks, 40% by
19 weeks, and 100% by 20 weeks (Figure 1A). The female APCNL was the only female group
to exhibit survival loss prior to the 20-week endpoint (Figure 1B). Body mass was measured
over the course of 20 weeks. Male WTNL and WTL groups did not show differences in body
mass over time. In male APCNL mice, body mass reduction began to happen at 17 weeks.
In male APCL mice, body mass reductions occurred as early as 14 weeks. Additionally,
beginning at 15 weeks, male APCL body mass was lower than APCNL (Figure 1C, p < 0.05).
In females, there were no reductions in body mass between WTNL and WTL. APCNL and
APCL mice began to experience losses in body mass after 17 weeks (Figure 1D, p < 0.05).

3.2. Validation of Cancer Cachectic Phenotype

In males, there was an interaction between genotype and treatment that altered
endpoint body mass. There was no difference in between the WTNL and WTL groups;
however, male APCNL body mass was 16% lower than WTNL body mass, APCL body
mass was 30% lower than WTL, and APCL body mass was 13% lower than APCNL (Table 1
& Figure 1E, p < 0.05). In females, endpoint body mass in APC was 14% lower than WT,
independent of leucine (Table 1 & Figure 1F, p < 0.05). There was a main effect observed
in APC male mice, who had 16%, 33%, and 75% lower soleus, plantaris, and TA muscle
mass, respectively, compared to the WT group (Table 1, p < 0.05). There was a double
main effect of genotype and treatment in male gastrocnemius muscle, where muscle mass
was 44% lower in APC groups compared to WT, and 9% lower in L compared with NL
(Table 1, p < 0.05). There was a main effect of the genotype in females, where APC mice
had 27%, 39%, 43%, and 75% lower soleus, plantaris, gastrocnemius, and TA muscle mass,
respectively, compared to the WT groups (Table 1, p < 0.05). In male mice, heart mass was
7% lower in the APC groups compared to WT (Table 1, p < 0.05). In contrast, in female mice,
heart mass was 11% higher in APC groups compared with WT (Table 1, p < 0.05). In both
male and female mice, spleen mass was 138% and 124% higher compared with WT groups,
respectively (Table 1, p < 0.05). Liver mass was unchanged in males; however, in female
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mice, leucine treatment lowered liver mass 13% in WTL and APCL groups compared with
WTNL and APCNL groups (Table 1, p < 0.05). Gonadal fat mass in APC males was 176%
lower than WT groups (Table 1 & Figure 1G, p < 0.05). Importantly, in females, gonadal fat
mass was 177% lower in APCNL compared with WT groups, and there was a complete
absence of gonadal fat in the APCL group (Table 1 & Figure 1H, p < 0.05). Finally, there
was no effect of leucine on the total polyp count in either male or female mice (Table 1).
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Figure 1. Leucine negatively affects survival in male APCMin/+ mice. (A,B) Survival rate over time for
males and females. Survivability was determined when animals became moribund, and euthanasia
was carried out. (C) Body mass (g) over time (weeks) for male mice. * APC group lower than WT.
** APC group lower than WT, and APCL lower than APCNL (p < 0.05). (D) Body mass (g) over time
(weeks) for female mice. * main effect of genotype at individual data point (p < 0.05). (E,F) End-
point body mass (g) for males and females. (G,H) Gonadal fat mass (mg) for males and females,
respectively. ND indicates “No Data”. Data expressed as mean ± SEM. Letters (a, b, c) indicate
differences between groups; the interaction effect considering Student–Newman–Keuls with adjusted
p < 0.05. ‘ME Genotype’ indicates the main effect of genotype (WTNL vs. APCNL) with α = 0.05. A n
of 3–17 was used for all groups.



Nutrients 2023, 15, 4570 6 of 16

Table 1. Phenotypic data.

Males WTNL WTL APCNL APCL

$ Body Mass (g) 29.5 ± 0.8 a 29.7 ± 0.8 a 25.0 ± 0.8 b 21.9 ± 0.5 c

* Soleus (mg/mm) 0.59 ± 0.04 0.56 ± 0.03 0.47 ± 0.02 0.49 ± 0.03
* Plantaris (mg/mm) 1.08 ± 0.04 1.11 ± 0.02 0.84 ± 0.04 0.74 ± 0.05

*# Gastrocnemius (mg/mm) 8.54 ± 0.20 7.99 ± 0.30 5.62 ± 0.30 4.92 ± 0.30
* Tibialis Anterior (mg/mm) 3.00 ± 0.07 3.25 ± 0.06 1.98 ± 0.20 1.94 ± 0.08

* Heart (mg) 131.6 ± 4.50 130.9 ± 3.10 128.2 ± 5.61 116.1 ± 3.62
* Spleen (mg) 90.1 ± 2.32 97.1 ± 2.15 515.7 ± 39.30 492.5 ± 39.40

Liver (mg) 1364.30 ± 46.50 1318.1 ± 34.30 1306.3 ± 142.50 1185.4 ± 77.90
* Gonadal Fat (mg) 601.25 ± 85.8 596.13 ± 84.30 25.47 ± 6.80 49.57 ± 12.30
Total Polyp count ND ND 46 ± 4 34 ± 5

Females WTNL WTL APCNL APCL

* Body Mass (g) 23.2 ± 0.7 22.9 ± 0.7 19.3 ± 0.6 19.3 ± 0.9
* Soleus (mg/mm) 0.57 ± 0.04 0.39 ± 0.04 0.39 ± 0.02 0.44 ± 0.04

* Plantaris (mg/mm) 0.87 ± 0.05 0.86 ± 0.04 0.58 ± 0.04 0.59 ± 0.04
* Gastrocnemius (mg/mm) 6.44 ± 0.10 6.39 ± 0.10 4.24 ± 0.30 4.20 ± 0.30

* Tibialis Anterior (mg/mm) 2.49 ± 0.10 2.28 ± 0.09 1.59 ± 0.09 1.48 ± 0.10
* Heart (mg) 104.1 ± 4.30 109.60 ± 50 114.40 ± 5.50 123.90 ± 5.70
* Spleen (mg) 89.1 ± 4.50 85.70 ± 4.20 378.7 ± 39.30 346.00 ± 48.10
# Liver (mg) 953.9 ± 18.10 880.10 ± 39.10 1011.00 ± 43.90 851.20 ± 97.00

* Gonadal Fat (mg) 516.8 ± 68.20 409.63 ± 53.10 97.83 ± 32.10 ND
Total Polyp count ND ND 29.8 ± 4 38.5 ± 16

Data shown as mean ± SEM. Asterisk (*) denotes the main effect of genotype (WT vs. APC) and pound (#) denotes
the main effect of leucine (WTNL vs. WTL, APCNL vs. APCL) with significance set at p < 0.05. Dollar sign ($)
denotes interaction effect considering a Newman–Keuls method with adjusted p < 0.05. Superscripts of letters
(a, b, c) indicate differences between groups. ND indicates “No Detected”. An n of 7–12 was used for all groups.

In males, SDH+ CSA was 22% lower in the APC groups compared to WT, due to a
main effect of the genotype (Figure 2A, p < 0.05). SDH- CSA was 28% lower in APC group
compared to WT due to a main effect of genotype (Figure 2C, p < 0.05). In females, there
was no difference in SDH+ CSA between groups (Figure 2B); however, SDH- CSA was
22% lower in the APC groups compared with WT, due to a main effect of the genotype
(Figure 2D, p < 0.05). Representative images of muscle cross sections stained for SDH were
obtained for both males and females (Figure 2E,F).

Nutrients 2023, 15, x FOR PEER REVIEW  7  of  17 
 

 

In males, SDH+ CSA was 22% lower in the APC groups compared to WT, due to a 

main effect of the genotype (Figure 2A, p < 0.05). SDH- CSA was 28% lower in APC group 

compared to WT due to a main effect of genotype (Figure 2C, p < 0.05). In females, there 

was no difference  in SDH+ CSA between groups (Figure 2B); however, SDH- CSA was 

22% lower in the APC groups compared with WT, due to a main effect of the genotype 

(Figure 2D, p < 0.05). Representative images of muscle cross sections stained for SDH were 

obtained for both males and females (Figure 2E,F). 

 

Figure 2. Histological assessment of oxidative capacity. (A,B) Cross-sectional area of male and fe-

male SDH+ TA muscle fibers. (C,D) Cross-sectional area of male and female SDH− fibers. (E,F) Rep-

resentative images of male and female muscle cross sections stained for SDH. Data are expressed as 

mean ± SEM. ‘ME Genotype’ denotes a main effect of genotype (WT vs. APC) with α = 0.05. An n of 

6 was used for all groups. 

Figure 2. Cont.



Nutrients 2023, 15, 4570 7 of 16

Nutrients 2023, 15, x FOR PEER REVIEW  7  of  17 
 

 

In males, SDH+ CSA was 22% lower in the APC groups compared to WT, due to a 

main effect of the genotype (Figure 2A, p < 0.05). SDH- CSA was 28% lower in APC group 

compared to WT due to a main effect of genotype (Figure 2C, p < 0.05). In females, there 

was no difference  in SDH+ CSA between groups (Figure 2B); however, SDH- CSA was 

22% lower in the APC groups compared with WT, due to a main effect of the genotype 

(Figure 2D, p < 0.05). Representative images of muscle cross sections stained for SDH were 

obtained for both males and females (Figure 2E,F). 

 

Figure 2. Histological assessment of oxidative capacity. (A,B) Cross-sectional area of male and fe-

male SDH+ TA muscle fibers. (C,D) Cross-sectional area of male and female SDH− fibers. (E,F) Rep-

resentative images of male and female muscle cross sections stained for SDH. Data are expressed as 

mean ± SEM. ‘ME Genotype’ denotes a main effect of genotype (WT vs. APC) with α = 0.05. An n of 

6 was used for all groups. 

Figure 2. Histological assessment of oxidative capacity. (A,B) Cross-sectional area of male and female
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mean ± SEM. ‘ME Genotype’ denotes a main effect of genotype (WT vs. APC) with α = 0.05. An n of
6 was used for all groups.

3.3. Leucine Alters Inflammatory Gene Expression Only in Male Mice

In males, Il1b mRNA abundance was 3-fold higher in the APCNL group compared
with WTNL, and 87% lower in APCL compared with APCNL (Figure 3A, p < 0.05). Il6
was 2-fold higher in APC groups compared with WT groups due to a main effect of the
genotype (Figure 3C, p < 0.05). Tnfa mRNA abundance was 92% lower in leucine-treated
groups (WTL and APCL) compared to non-leucine-treated groups (WTNL and APCNL)
due to a main effect of the treatment (Figure 4E, p = 0.0535). Nfkb mRNA abundance was
unchanged across groups, regardless of genotype or treatment (Figure 3G). In females, Il1b,
Il6, Tnfa, and Nfkb mRNA abundances were 6-fold, 4-fold, 2-fold, and 36% higher in the
APC, respectively, compared with WT, due to a main effect of genotype (Figure 3B,D,F,H,
p < 0.05).
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Figure 3. Leucine alters inflammatory gene expression only in male mice. (A,C,E,G) Male Il-1b, Il-6,
Tnf-a, and Nf-kb mRNA abundance. (B,D,F,H) Female Il-1b, Il-6, Tnf-a, and Nf-kb mRNA abundance.
Data are shown as mean ± SEM. Letters (a, b) indicate differences between groups, interaction effect
considering Student–Newman–Keuls with adjusted p < 0.05. “ME genotype” indicates main effect
genotype (WT vs. APC), ‘ME treatment’ indicates a main effect of leucine treatment (WTNL and
APCNL vs. WTL and APCL) with α = 0.05. An n of 4–10 was used for all groups.
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for Igf-1, Deptor, and Redd1. Data are shown in mean ± SEM. ‘ME genotype’ denotes a main effect of
genotype (WT vs. APC) with α = 0.05. An n of 5–10 was used for all groups.
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3.4. Leucine Supplementation Did Not Affect the Induction of Anabolic Suppressor Gene
Expression in CC

In males, Igf1 and Deptor mRNA abundance were unchanged across groups (Figure 4A,C).
Redd1 mRNA abundance was 5-fold higher in APC groups compared with WT independent
of leucine supplementation (Figure 4E, p < 0.05). In females, Igf1 and Deptor mRNA
abundance were unchanged (Figure 4B,D). Redd1 mRNA abundance was 9-fold higher
in APC groups compared with WT, independent of leucine supplementation (Figure 4F,
p < 0.05).

3.5. Leucine Supplementation Did Not Affect Induction of Gene Expression in Markers for Protein
Degradation in ApcMin/+

In males, Fbxo32, Murf1, Foxo1, Foxo3, and Ubc mRNA abundance were 5-fold, 5-fold,
2-fold, 80%, and 2-fold higher, respectively, in APC compared with WT, due to a main effect
of the genotype (Figure 5A,C,E,G,I, p < 0.05). In females, Fbxo32, Murf1, Foxo1, Foxo3, and
UBC mRNA abundance were 3-fold, 4-fold, 2-fold, 80%, and 3-fold higher, respectively,
in the APC compared with WT, due to a main effect of the genotype (Figure 5B,D,F,H,J,
p < 0.05).
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Figure 5. Leucine supplementation did not affect the induction of gene expression in markers for
protein degradation in ApcMin/+. (A,C,E,G,I) Male mRNA abundance of Fbxo32, Murf-1, Foxo1, Foxo3,
and Ubc, respectively. (B,D,F,H,J) Female mRNA abundance of Fbxo32, Murf-1, Foxo1, Foxo3, and Ubc,
respectively. Data expressed as mean ± SEM. ME genotype denotes a main effect of the genotype
(WT vs. APC) with α = 0.05. An n of 4–10 was used for all groups.

3.6. Biological Sex Differences in Gene Expression of Myogenic Regulators, Independent of
Leucine Supplementation

In males, Pax7 mRNA abundance was 67% lower in the APC group compared with
WT, due to a main effect of the genotype (Figure 6A, p < 0.05). Myod mRNA abundance
remained unchanged across groups (Figure 6C). Myogenin mRNA abundance was 2-fold
higher in APC compared with WT, due to a main effect of genotype (Figure 6E, p < 0.05). In
females, Pax7 mRNA abundance is 52% lower in APC compared with WT, due to a main
effect of the genotype (Figure 6B, p < 0.05). Myod and Myogenin were increased 2-fold and
82%, respectively, in APC groups compared to WT, due to a main effect of the genotype
(Figure 6D,F, p < 0.05).
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4. Discussion

In the present study, we sought to determine if leucine supplementation would at-
tenuate CC in a common preclinical model of colorectal cancer and to observe whether
this would be the effect for both sexes. We hypothesized leucine supplementation would
improve survival outcomes and attenuate muscle wasting in male and female ApcMin/+

mice, given that leucine is a branched-chain amino acid known for its direct stimulation
of mTORC-mediated protein synthesis. Contrary to our hypothesis, male ApcMin/+ mice
provided with leucine supplementation had worse survival outcomes, exacerbated body
mass loss, and lowered gastrocnemius muscle mass. In females, leucine did not impact sur-
vival, body mass, or muscle masses; however, in contrast with the male mice, we observed
a complete absence of gonadal fat. In addition to effects on phenotypic characteristics, we
observed leucine-attenuated aspects of inflammatory gene expression in ApcMin/+ male
skeletal muscle but not in females. Therefore, we demonstrated biological sex differences in
the response to leucine treatment in ApcMin/+ mice. Most importantly, leucine did not have
a positive effect on the phenotypic characteristics of cachexia and demonstrated deleterious
effects on tumor-bearing mice. Therefore, based on our data, leucine supplementation does
not appear to be an efficacious therapeutic strategy in CC.

In this study, we demonstrate the existence of biological sex differences in survivability
and other phenotypic characteristics, such as muscle and fat mass, in response to leucine
treatment. Notably, leucine appears to have a negative effect on male survivability, given
that our APCL mice became moribund before their 20-week endpoint, and body mass began
to steadily decline at 15 weeks of age, while APCNL male mice did not become moribund
until 19 weeks of age, and body mass loss began at 18 weeks. In contrast, in female
mice, only APCNL mice became moribund prior to the planned experimental endpoint of
20 weeks, with all APCL female mice making it to their 20-week endpoint. Importantly,
both female APCNL and APCL groups became cachectic; therefore, leucine did not improve
survival outcomes in females, rather, leucine may have had less detrimental effects on
survival outcomes in females compared with males. Furthermore, leucine had a main
effect on lowering heart mass in ApcMin/+ males, indicating the presence of cardiac cachexia.
This potential cardiac cachexia could be a driver of the increased moribundity seen in
male ApcMin/+ treated with leucine, and this should be examined further in future studies.
Together, these results indicate that leucine worsened overall outcomes specifically in male
mice. Interestingly, female APCL exhibited a complete absence of gonadal fat. Leucine
has well-documented effects on lipid metabolism [37,38], which may be dysregulated in a
cachectic environment. Despite this complete loss of fat mass, female APCL mice did not
experience the same severity of body mass loss that APCL male mice did. Several studies
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have demonstrated biological sex differences in these phenotypic characteristics between
males and females. Clinical studies have observed worsened survival outcomes in males
with cachexia and found that more males presented diminished muscle mass compared
with females [39,40]. A study observing ApcMin/+-induced cachexia reported diminished
body mass in males and females; however, males experienced greater reductions in body
mass than females [41]. Our results corroborate these prior findings, and demonstrate that
leucine has detrimental effects rather than beneficial effects on survivability, body mass
loss, and muscle mass loss in males, and fat mass loss in females.

The effect of leucine on tumors has previously been examined and could provide
more evidence for the effects noted in the current study. It was demonstrated that leucine
supplementation in pancreatic cancer exacerbated tumor growth and aggressivity [21].
Interestingly, one study observing leucine deprivation in breast cancer found that leucine
deprivation inhibited tumor proliferation and promoted the apoptosis of tumor cells [42].
Unfortunately, in the present study, the effect of leucine supplementation on tumor char-
acteristics was not measured outside of total polyp count, which remained unchanged
following leucine supplementation. There may have been an effect of leucine on other
factors, such as tumor progression or tumor volume in males, which was not present in
females, and this may have been a contributing factor in the exacerbated moribundity
displayed by male ApcMin/+ mice.

Male and female ApcMin/+ mice exhibited splenomegaly, regardless of leucine sup-
plementation. Splenomegaly is a hallmark indicator of systemic inflammation [37]. Fur-
thermore, pro-inflammatory cytokine Il6 is upregulated in skeletal muscle in the ApcMin/+

model of CC [41,43–45]. Prior studies established biological sex differences in Il6 expression
in ApcMin/+ mice and found that cachexia in ApcMin/+ mice is Il6-dependent in male mice but
not in female mice. We observed differences in pro-inflammatory muscle gene expression
between the males and females, whereby females exhibited increased levels of Il6, Il1b,
Tnfa, and Nfkb in the cachectic ApcMin/+ mice, independent of leucine treatment. In ApcMin/+

males, however, leucine attenuated the increase in Il1b. Additionally, leucine lowered Tnfa
levels in both WT and APC groups compared with the groups given normal drinking
water. Il1b is known to stimulate the production of Il6 [46], and the increased expression
of Il1b is related to CC [47]. Therefore, leucine’s ability to attenuate an increase in Il1b
in male cachectic ApcMin/+ mice could be beneficial via reducing downstream expression
of Il6 [48]. However, our data show that Il6 in leucine-treated males remained elevated.
Therefore, our data suggest that the mechanism for enhanced expression of Il6 in CC is
most likely not only dependent on Il1b expression. Our data corroborate findings of prior
studies suggesting that cachexia in male ApcMin/+ is Il6-dependent [43]. However, our
observations revealed that the administration of leucin led to a reduction in the expression
of inflammatory markers 9Il1b and tnfa), except for Il6, which could potentially be corre-
lated with the heightened moribundity observed in ApcMin/+ males. Conversely, leucine
did not impact the induction of inflammatory cytokines in the muscles of female mice,
reflective of a biological-sex-specific effect of leucine. It is important that leucine’s effect
on immune cell infiltration in male and female cancer cachexia is considered as an avenue
for future research. There is a growing body of evidence supporting the importance of
immune cell regulation in cancer cachexia [49,50]; therefore, these factors should be studied
more thoroughly.

Despite the effect of leucine on lowering inflammatory muscle gene expression in
males, our data show that leucine had no effect on improving the markers for the protein
imbalance that occurs in cachexia. Leucine supplementation did not stimulate the common
promotor of protein synthesis, Igf1, nor did it significantly mitigate the induction of the
repressor of protein synthesis, Redd1. Intriguingly, Deptor, another repressor of protein
synthesis, remained unchanged across groups in both males and females, corroborating
recent research from our laboratory, where we found an elevation of Redd1 but not Deptor
in the C26 model of colorectal cancer cachexia [31]. Prior research from our group found
an elevation of Deptor protein content in an LLC model of cachexia [9,28]. Our combined
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data now strongly suggest a specific reliance on Redd1 to mediate repression of muscle
protein synthesis during colorectal-cancer-induced cachexia. Furthermore, a panel of five
genes related to protein breakdown were all increased in the ApcMin/+ groups of both males
and females, with no overt impact of leucine on either attenuating or exacerbating this
induction. In males, it is possible that this elevation may be due to Il6, given that persistent
Il6 expression is a factor linked to enhanced protein degradation in CC [51]. However, in
females, the mechanism is less clear. Il6, Il1b, Tnfa, and Nfkb were all elevated in the muscles
of females; therefore, considering prior literature [41,43], if pro-inflammatory cytokines are
impacting protein breakdown, they are likely not Il6-dependent.

Previous research from our laboratory has shown altered myogenic response during
CC in male and female mice inoculated with LLC tumors [9,28]. Additional research
from He et al. (2013) [52] discovered that Pax7 is elevated in skeletal muscle in the early
stages of CC in the Colon-26 (C26) model of colorectal cancer cachexia. We observed
mRNA abundance levels of myogenic regulators—Pax7, Myod, and Myogenin in male and
female ApcMin/+ mice. We found lowered Pax7 mRNA abundance in males and females,
regardless of leucine supplementation, corroborating prior findings of our laboratory, which
show decreased Pax7 mRNA levels in tumor-bearing male and female LLC mice [9,28].
Furthermore, we found an elevated mRNA abundance of Myod in females, but not in males,
which does not corroborate prior data. Brown et al. (2018) [9] found decreased Myod mRNA
levels in male tumor-bearing mice, and Lim et al. (2022) [28] found no change in Myod
mRNA levels in female tumor-bearing mice. Furthermore, we found increases in Myogenin
mRNA in both sexes. Intriguingly, Moresi et al. (2010) [53] observed a linkage between
myogenin expression and upregulation in E3 ligases, Fbxo32 and Murf1, in a mouse model
of neurogenic atrophy. In our model, we observed elevations in E3 ligases, corroborating
this suggested mechanism and potentially extending it into cachexia. Taken together, there
are clear biological sex differences that exist in the myogenic response of cancer cachexia,
and these responses may be dependent on the stage and progression of cancer, as well as
the type of cancer that induces cachexia.

In conclusion, the purpose of this study was to observe the effect of leucine supple-
mentation, a proposed therapeutic, on skeletal muscle wasting in CC. We hypothesized
that leucine supplementation would attenuate wasting via the stimulation of protein syn-
thesis. However, we observed that leucine provided no beneficial effects to males or
females, and in fact exacerbated moribundity in ApcMin/+ males. Regardless of biological
sex, leucine supplementation appears to provide no benefit as a therapeutic in CC. The
biological sex differences observed in response to leucine provide further insights into the
expanding body of knowledge regarding sex differences in cachexia and may extend our
understanding of mechanisms. Additionally, further research into potentially deleterious
effects may be warranted due to current opportunities in clinical practice and potential
mechanistic insights.
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