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Abstract: Various studies have highlighted the important associations between obstructive sleep
apnea (OSA) and gut microbiota and related metabolites. Nevertheless, the establishment of causal
relationships between these associations remains to be determined. Multiple mendelian randomiza-
tion (MR) analyses were performed to genetically predict the causative impact of 196 gut microbiota
and 83 metabolites on OSA. Two-sample MR was used to assess the potential association, and
causality was evaluated using inverse variance weighted (IVW), MR-Egger, and weighted median
(WM) methods. Multivariable MR (MVMR) was employed to ascertain the causal independence
between gut microbiota and the metabolites linked to OSA. Additionally, Cochran’s Q test, the
MR Egger intercept test and the MR Steiger test were used for the sensitivity analyses. The anal-
ysis of the 196 gut microbiota revealed that genus_Ruminococcaceae (UCG009) (PIVW = 0.010) and
genus_Subdoligranulum (PIVW = 0.041) were associated with an increased risk of OSA onset. Con-
versely, Family_Ruminococcaceae (PIVW = 0.030), genus_Coprococcus2 (PWM = 0.025), genus_Eggerthella
(PIVW = 0.011), and genus_Eubacterium (xylanophilum_group) (PIVW = 0.001) were negatively related to
the risk of OSA. Among the 83 metabolites evaluated, 3-dehydrocarnitine, epiandrosterone sulfate,
and leucine were determined to be potential independent risk factors associated with OSA. Moreover,
the reverse MR analysis demonstrated a suggestive association between OSA exposure and six micro-
biota taxa. This study offers compelling evidence regarding the potential beneficial or detrimental
causative impact of the gut microbiota and its associated metabolites on OSA risk, thereby providing
new insights into the mechanisms of gut microbiome-mediated OSA development.

Keywords: mendelian randomization; gut microbiota; obstructive sleep apnea; causal inference;
inflammation; intestinal immunity

1. Introduction

Obstructive sleep apnea (OSA) is a commonly occurring sleep disorder distinguished
by recurring instances of upper airway constriction or collapse during sleep, leading to
intermittent hypoxia (IH) and disruptions in sleep patterns [1]. OSA can lead to a wide
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range of complications, including cognitive disorders, cardiovascular diseases, metabolic
diseases, and other systemic conditions [2–4]. The onset age of OSA spans the entire
lifespan, from infancy to middle and old age, imposing a significant medical burden [5,6].
The etiology of OSA is complex. Alterations in the craniofacial structure, enlarged tonsils,
edema of the upper respiratory tract, reduced lung volume, and obesity are immediate
causes of OSA [7,8]. However, the underlying etiologies of these immediate factors remain
largely unknown.

The gut microbiome undergoes substantial modifications in both adolescent and adult
patients diagnosed with OSA [9,10]. Several studies have identified a variety of signifi-
cant imbalances in patients with OSA, including Clostridia, Ruminococcus, Faecalibacterium,
and numerous bacteria that produce short-chain fatty acids (SCFAs) [11–14]. Thus, new
strategies involving prebiotics, probiotics, and SCFAs are expected to emerge for targeting
OSA-mediated dysbiosis in the gut microbiome [15]. Previous studies have observed that
OSA causes changes in a variety of serum metabolites, including porphyrins, glycerophos-
pholipids (GPL), fatty acids, eicosanoids, and amino acids. These metabolites are mostly
associated with oxidative stress [16]. Additionally, reduced acetate and butyrate levels
were observed in individuals with OSA-associated hypertension. These disruptions in the
SCFA metabolism are considered to be an integral part of the pathogenesis of OSA [17].
Hypoxia-induced oxidative stress may lead to metabolic changes in OSA patients. A study
conducted in IH animal models of OSA have found that IH leads to reduced levels of
metabolites, including pyruvate, citric acid, succinic acid, and acetoacetic acid, as well as
increased levels of oxides such as trimethylamine oxide (TMAO) in urine [18]. Similarly, a
study conducted in human subjects observed elevated levels of branched-chain amino acids
(BCAAs) such as leucine, isoleucine, and valine [19]. It has been found that chronic IH regu-
lates gut microbes (e.g., Clostridium, Lactococcus, and Bifidobacterium) and the abundance of
important functional metabolites (such as free fatty acids and bile acids), thereby promoting
the occurrence of lipid metabolism disorders [14]. Furthermore, supplementation with
probiotics and key short-chain fatty acids effectively treats hypertension associated with
IH [20]. However, the animal model for IH has limitations, as it cannot accurately simulate
sleep fragmentation and hypercapnia caused by OSA [21]. Additionally, in most obser-
vational studies on OSA, the association between OSA and gut microbiota/metabolites
is susceptible to confounding factors. These limitations of current research methods hin-
der the establishment of causal relationships between gut microbiota/metabolites, and
OSA [9,12,22].

Mendelian randomization (MR) is a novel method for investigating the causal rela-
tionship between gut microbiota and OSA. In the MR analysis, genetic variants are used
as proxies for prospective exposure factors through a succession of algorithms to assess
the causal effect of exposure on outcomes [23]. MR analysis can maximally eliminate the
interference of common environmental confounding factors, avoiding confusion regarding
the chronological order of exposure and outcome. In this study, a bidirectional two-sample
MR was used to determine the causal relationship between 196 gut microbiota groups,
83 types of microbiota-derived metabolites, and OSA risk. In addition, we aimed to provide
new evidence and insights regarding the role of gut microbiota and derived metabolites in
the etiology and pathological process of OSA from a genetic perspective.

2. Materials and Methods
2.1. Study Design Overview and Data Sources

We first used two-sample MR to comprehensively assess the bidirectional causal
relationship between the gut microbiota and its derived metabolites and OSA, as well as
to screen potential microbiota and metabolites related to OSA. Subsequently, multivariate
mendelian randomization (MVMR) analysis was employed to evaluate whether these
potential microbiota and metabolites had an independent effect on the development of
OSA. The outline of the methodology is represented in Figure 1.
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All genome-wide association study (GWAS) data included in this study were limited
to populations of European descent. The FinnGen project (DATA FREEZE 8, https://www.
finngen.fi/en, accessed on 23 March 2023) was used to obtain the GWAS summary statistics
for OSA. The FinnGen Project is a large genetic research program that aims to explore the
relationship between genomic information and health characteristics in Finnish populations
(Europeans). The R8 data include GWAS information and health characteristic records
for 342,499 individuals. GWAS data for OSA were obtained by submitting a request to
the investigators of the FinnGen study for approval. The dataset includes 33,423 patients
with OSA and 307,648 control individuals [24]. Summary statistics for the gut microbiota
were derived from the largest gut microbiota GWAS project; up to 18,340 individuals were
included in this project [25].
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Figure 1. The outline of the methodology. (A) The assumptions for MR analysis. (B) The flow of
two-sample MR analysis [26]. (C) The flow of MVMR analysis. IVs must have a significant correlation
with exposure factor (assumption 1). There was no direct correlation between IVs and outcome
(assumption 2). There should be no correlation between IVs and potential confounding factors
(assumption 3). Jiayi Zhou IVW, inverse-variance weighted; WM, weighted median; MR, Mendelian
randomization; MR-PRESSO, MR pleiotropy residual sum and outlier; OSA, obstructive sleep apnea;
IVs, instrumental variables; MVMR, multivariate Mendelian randomization.

We included the largest collection of GWAS summary data on metabolomics in a
European population to date [26]. This project comprised GWAS data for more than
400 metabolites from 7824 samples. We used the Human Metabolome Database (HMDB,
https://hmdb.ca/, accessed on 10 May 2023, version 5.0) to screen for metabolites associ-
ated with the gut microbiota. The HMDB database contains metabolite information from
different sources, such as blood, stool, and urine of human subjects [27]. We manually
searched the database to extract all fecal metabolites (download link to list of metabolites:
https://hmdb.ca/downloads, accessed on 10 May 2023). We then annotated the metabo-
lites from the metabolomics project [26] based on fecal metabolites of HMDB. In total,
83 gut microbiota-derived metabolites were selected.

In order to mitigate potential gender bias, these three datasets used in our study were
carefully selected to include individuals of both genders, thereby ensuring a balanced repre-
sentation and minimizing the impact of gender-related confounding factors on our analysis.

https://www.finngen.fi/en
https://www.finngen.fi/en
https://hmdb.ca/
https://hmdb.ca/downloads
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2.2. Selection of IVs

As reported in a previous study, a genome-wide significance level (p < 1 × 10−5)
was used as the global IVs screening criterion to obtain sufficient IVs for subsequent
analyses [28]. The 1000 Genomes European Sample Data were employed as the criteria to
remove linkage disequilibrium. A minor allele frequency threshold of 0.3 was permitted
for the palindromic single nucleotide polymorphisms (SNPs). Additionally, the clumping
threshold was set to R2 < 0.001, and the clumping window size was defined as 10,000 kb.

2.3. Two-Sample MR Analysis Methods

All analyses were performed using the R software (version 4.1.1). MR analyses were
conducted using the TwoSampleMR package (version 0.5.6) [29]. The main analysis was
conducted using the inverse variance weighted (IVW), MR-Egger, and weighted median
(WM). At least one of the three main methods suggested a significant causal relationship.
Additionally, simple and weighted-mode methods were employed as Supplementary
Analytical Methods (see Additional File S1: Supplementary Methods). The direction of the
MR analysis results (beta values) was consistent across all five methods.

2.4. MVMR Analysis Methods

To consider the potential for genetic confounding, traits such as obesity, sex, and
smoking were examined in multivariable MR (MVMR) analysis. In simple terms, MVMR
disentangles the direct influence of each risk factor on the outcome event by incorpo-
rating the genetic variation of each risk factor into the same model [30]. In our study,
we constructed an MVMR analysis model by associating potentially associated micro-
biota/metabolites with each common OSA risk factor, to assess whether microbiota and
metabolites are still directly associated with changes in OSA risk while taking these com-
mon risk factors into account. MVMR-Robust, MVMR-IVW, MVMR-Egger, MVMR-Median,
and the Least absolute shrinkage and selection operator (Lasso) were used to determine
the independent effects between exposure and outcome [31]. When at least one MVMR
method provided significant evidence of causality, the causal relationship was considered
robust (see Additional File S1: Supplementary Methods).

2.5. Pleiotropy and Sensitivity Analysis

Cochran’s IVW Q statistics were used to calculate potential heterogeneity among the
IVs [32]. Additionally, a “leave-one-out” evaluation was performed to identify potential
heterogeneous SNPs by excluding each IV SNP. The intercept from the MR-Egger regression
was employed to assess the horizontal pleiotropy of the IVs. The MR-pleiotropy residual
sum and outlier (MR-PRESSO) method was used to supplement the assessment of the
pleiotropy of instrumental SNPs and to screen for possible outlier SNPs [33]. The MR-
Steiger test was used to determine the probable direction of this relationship [34]. The
Bonferroni correction was applied to adjust the p-values, with a significance threshold set
at 0.00017 (0.05/279) to determine strong evidence of a causal association.

2.6. Enrichment Analysis of Microbiota-Derived Metabolites

The HMDB database was used for the classification and molecular annotation of
metabolites [27]. The MetaboAnalyst (version 5.0) platform was employed to analyze and
interpret the functions of the metabolites [35].

3. Results

Our research included 196 known taxa (Additional File S2: Table S1) and 83 microbiota-
derived metabolites (Additional File S2: Table S2) after excluding undetermined microbiota
taxa. The global F-value of the IVs ranged from 17.75 to 760.95, which helped to avoid the
confounding bias associated with weak IVs. Details of all IVs included in this study are
presented in the Supplementary Materials (Additional File S2: Table S3, Table S9, Table S15
and Table S21).
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3.1. Causal Relationship between OSA and Gut Microbiota in Two-Sample MR Analysis

Fourteen microbial taxa were associated with OSA. Among them, seven microbiota
taxa were associated with an increased risk of OSA, including class_Actinobacteria (OR = 1.13,
PIVW = 0.0034), family_Peptostreptococcaceae (OR = 1.14, PIVW = 0.0091), genus_Ruminococcaceae_
UCG009 (OR = 1.09, PIVW = 0.0097), genus_Subdoligranulum (OR = 1.10, PIVW = 0.0406),
genus_Butyricimonas (OR = 1.09, PIVW = 0.0267), genus_Clostridium (innocuum group) (OR = 1.08,
PWM = 0.044), and genus_Coprococcus3 (OR = 1.15, PIVW = 0.0143) (Figure 2).
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The results showed that seven microbiota taxa was associated with a decreased risk of
OSA (Figure 2). The detailed results can be viewed in Additional File S2: Table S4. They
were as follows: family_Ruminococcaceae (OR = 0.91, PIVW = 0.0297), genus_Anaerotruncus
(OR = 0.90, PIVW = 0.0264), genus_Coprococcus2 (OR = 0.86, PWM = 0.0253), genus_Eggerthella
(OR = 0.93, PIVW = 0.0107), genus_Enterorhabdus (OR = 0.91, PIVW = 0.0364), genus_Eubacterium
(xylanophilum group) (OR = 0.87, PIVW = 0.0013), and genus_Holdemania (OR = 0.93, PIVW = 0.0150).

The reverse MR analysis was conducted to investigate the putative causal effects of
OSA and all 196 microbiota taxonomies (Additional File S2: Table S10). The results showed a
nominally causal effect OSA on genus_Ruminococcaceae (UCG004) (beta = 0.08, PIVW = 0.0331),
family_Family_XI (beta = 0.24, PWM = 0.0429), genus_Actinomyces (beta = −0.09, PIVW = 0.0402),
genus_Collinsella (beta =−0.27, PEgger = 0.0278), genus_Desulfovibrio (beta =−0.11, PWM = 0.0417),
and genus_Slackia (beta = −0.11, PIVW = 0.0194) (Figure 3).
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3.2. Causal Relationship between OSA and Gut Microbiota Metabolites in Two-Sample MR Analysis

The bidirectional causal relationships between the 83 metabolites and OSA were eval-
uated (Additional File S2: Table S16). Among them, betaine (OR = 0.60, PWM = 0.0191),
gamma-glutamylvaline (γ-EV) (OR = 0.55, PWM = 0.0316), and kynurenine (OR = 0.56,
PEgger = 0.0486) were found to have potential protective effects against OSA (Figure 4). In
addition, 3-dehydrocarnitine, androsterone sulfate, butyrylcarnitine, epiandrosterone sul-
fate, leucine, and phenylalanylphenylalanine were potentially associated with an increased
risk of OSA (OR > 1, p < 0.05).
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Figure 4. Heatmap plot of the potential causal relationship between OSA and metabolite. For upper
part, exposure: outcome (metabolite: OSA); for lower part, exposure: outcome (OSA: metabolite).
Enrichment map of HMBD analysis for the metabolites. * p < 0.05. OSA, obstructive sleep apnea;
IVW, inverse-variance weighted.

The reverse MR analysis investigating suggestive association between exposure to OSA
and three metabolites (Additional File S2: Table S22), including gamma-glutamylmethionine
(beta = −0.12, PEgger = 0.0420), guanosine (beta = 0.06, PIVW = 0.0166), and succinylcarnitine
(beta = 0.06, PEgger = 0.0364) (Figure 4).

Enrichment analysis revealed that the metabolites causally related to OSA were
mainly associated with key metabolic pathways, including glycine, serine, and threo-
nine metabolism; tryptophan metabolism; valine, leucine, and isoleucine biosynthesis;
aminoacyl-tRNA biosynthesis; and purine metabolism in the KEGG pathway.

3.3. Sensitivity Analysis

When assessing the causal relationship between betaine, leucine, and OSA, we ob-
served heterogeneity among the IVs (IVW Cochrane Q test: p-value < 0.05); however, no
horizontal pleiotropy were found. In addition, for the other potential causal associations,
the Cochrane Q test showed no heterogeneity among the IVs, and the MR-Egger regression
demonstrated no horizontal pleiotropy (Additional File S2: Tables S3–S26). The leave-
one-out analysis and funnel plot confirmed the robustness of the MR results (Additional
File S3: Supplementary Figures). The MR Steiger test provided further support for our
conclusions regarding all 14 potential causal relationships between the gut microbiota and
OSA (Additional File S2: Tables S3–S26).

3.4. MVMR Analysis for OSA and Gut Microbiota/Metabolites

MVMR analysis revealed that some gut microbiota and metabolites were associated
with OSA (Figure 5). For example, when adjusted for obesity, family_Ruminococcaceae (ad-
justed OR = 0.90, PRobust = 0.0426), genus_Coprococcus2 (adjusted OR = 0.86, PLASSO = 0.0031),
genus_Eggerthella (adjusted OR = 0.94, PRobust = 0.0237), and genus_Eubacterium (xylanophilum
group) (adjusted OR = 0.89, PRobust = 0.0223) demonstrated negative correlations with the
occurrence of OSA. Even after adjusting for gender and smoke, these associations were also
robust (Figure 5A and Additional File S2: Table S27). The genus_Ruminococcaceae (UCG009)
and genus_Subdoligranulum were found to be associated with an increased risk of OSA.
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Figure 5. MVMR associations of OSA with gut microbiota and metabolites. For each MVMR analysis,
we added each genetic confounding separately. (A) The direct causality between gut microbiota
and OSA. (B) The direct causality between metabolites and OSA. Lasso, least absolute selection and
shrinkage operator; IVW, inverse-variance weighted; MVMR, multivariate Mendelian randomization;
Median, weighted-median; OR, odds ratio; OSA, obstructive sleep apnea. * p < 0.05.

Alternatively, when metabolites were used as exposures, 3-dehydrocarnitine, epiandros-
terone sulfate, and leucine were found to be potentially independent risk factors for the
development of OSA (Figure 5B and Additional File S2: Table S28). When adjusted for
obesity, the associations were as follows: 3-dehydrocarnitine on OSA (adjusted OR = 1.40,
PLasso = 0.0231), epiandrosterone sulfate on OSA (adjusted OR = 1.19, PRobust = 1.44 × 10−5),
and leucine on OSA (adjusted OR = 1.70, PRobust = 0.0009). Even after adjusting for gender
and smoking, these associations were also robust.

4. Discussion

This study is the first to assess the bidirectional causal relationship between 196 gut
microbiota- and 83 microbiota-derived metabolites and OSA risk. The genus_Ruminococcaceae
(UCG009) and genus_Subdoligranulum might be risk factors for OSA onset. Moreover, the lev-
els of the family_Ruminococcaceae, genus-Coprococcus2, genus_Eggerthella, and genus_Eubacterium
(xylanophilum group) were negatively correlated with the risk of OSA. The MVMR analysis
revealed that some metabolites (3-dehydrocarnitine, epiandrosterone sulfate, and leucine)
were potential independent risk factors for OSA development. Our findings highlight
the potential impact of disturbances in the gut microenvironment, alterations in derived
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metabolites, and increased systemic pro-inflammatory responses on OSA. These findings
provide important information regarding the potential gut-microbiome-related pathogene-
sis and targeted treatment strategies for OSA.

4.1. Amino Acid and Lipid Metabolism Disorders Associated with OSA

The study demonstrated that gut microbiota-derived metabolites, particularly leucine
and 3-dehydrocarnitine, were associated with an increased risk of OSA, and this causal
relationship remained robust even after adjusting for obesity, sex, and smoking. Notably,
elevated leucine and isoleucine levels were observed in children diagnosed with OSA but
were not associated with obesity [36], and circulating isoleucine levels were associated with
the OSA wakefulness index and sleep fragmentation. Conversely, randomized controlled
trials suggested a decrease in leucine levels in individuals with OSA treated with continu-
ous positive airway pressure [37]. The presence of OSA is a risk factor for type 2 diabetes
and significantly increases the risk of diabetic nephropathy [38]. Meta-analysis has shown
that elevated leucine is associated with an increased risk of developing type 2 diabetes [39].
In addition, lipid metabolism disorders in OSA are closely associated with cardiovascular
diseases and diabetes [40], and 3-dehydrocarnitine (a carnitine precursor) and butyrylcar-
nitine (a short-chain acylcarnitine) are involved in fatty acid metabolism [41]. Moreover,
patients with severe sleep apnea showed a significant increase in the levels of free fatty
acids throughout the sleep cycle compared to controls [42], and a plasma metabolomic
study revealed that butyrylcarnitine levels were associated with steatosis [43]. Furthermore,
a previous MR study reported an increased risk of polycystic ovary syndrome (PCOS)
with genetically predicted levels of 3-dehydrocarnitine [44], and an observational study
suggested that the prevalence of OSA was higher in patients with PCOS. That study also
found that androgen metabolites, including epiandrosterone sulfate and androsterone
sulfate, were related to OSA. Interestingly, increased free testosterone levels were found
to be associated with a high risk of PCOS combined with OSA [45]. Microorganisms can
metabolize carnitine to betaine, and betaine supplementation can enhance the antioxidant
capacity and protect the central nervous system [46,47]. Notably, in the present study,
betaine was associated with a reduced risk of OSA. Animal experiments have shown that
transplantation of gut microbiota leads to changes in metabolism and sleep status [48].
Based on these findings, further exploration is needed to determine whether microbial-
targeted modifications aimed at reducing leucine levels and supplement betaine may be an
effective intervention for OSA.

4.2. Inflammation and OSA

OSA patients commonly experience IH and sleep disruption, which can lead to
oxidative stress and inflammatory responses in the brain [49]. In this study, gamma-
glutamylmethionine (γ-EV) was found to have a potential protective effect against OSA.
A previous study has shown that activation of the calcium-sensing receptor (CaSR) by
α-EVs has an anti-inflammatory effect on mouse adipocytes, resulting in maintaining
intestinal homeostasis [50]. The fragmented sleep experienced by individuals with OSA
can contribute to dysbiosis of the gut microbiota and disruption of intestinal homeostasis,
consequently leading to the occurrence of gastrointestinal comorbidities such as gastroe-
sophageal reflux disease [51]. The γ-Glutamyl peptide, which is present in beans, garlic, and
onions, among other foods, is known for its potential as an anti-inflammatory peptide. This
is attributed to its ability to activate CaSR. Furthermore, studies conducted in vitro have
demonstrated the anti-inflammatory properties of γ-EV on gastrointestinal inflammation
and vascular endothelial cells [52]. IH elicits sympathetic nervous system activation and
provokes oxidative stress, thereby initiating a cascade of systemic inflammation [53]. There-
fore, it is speculated that γ-EV can reduce the systemic multi-system damage caused by
OSA through its anti-inflammatory effect. Moreover, a cohort study has demonstrated the
negative correlation between γ-EV and chronic kidney disease through metabolomics [54].
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Collectively, γ-EV may have health benefits through its anti-inflammatory and anti-obesity
properties, consistent with the observations in the present study.

In addition, our study establishes a link between SCFA-producing bacteria and a
reduced risk of OSA, such as family_Ruminococcaceae. Ruminococcaceae is one of the primary
bacteria responsible for producing SCFAs, and variations in its abundance can influence
SCFA secretion [55,56]. SCFAs derived from Ruminococcaceae have been shown to reduce
intestinal inflammation and promote stem cell differentiation and repair [57]. Hence, it is
plausible that the protective effects of Ruminococcaceae against OSA are partially attributable
to SCFA production. SCFAs, primarily acetate, propionic acid, and butyric acid, are the
primary end products of human gut microbiota metabolism [58]. In OSA patients, both gut
microbial diversity and the ratio of firmicutes to Bacteroides are reduced [59]. Moreover,
CIH has been found to alter the distribution of intestinal microbiota in mice [14]. SCFAs
are among the most important microbiota-derived metabolites. Several animal and clinical
studies have found reduced SCFA levels and diminished abundance of SCFA-producing
bacteria in individuals with OSA or IH animal models [12,60,61]. Notably, SCFAs, mainly
acetate, can promote the differentiation and secretion of intestinal epithelial goblet cells [62],
thereby improving the tight functional connection of intestinal epithelial cells, enhancing
the intestinal epithelial immune defense barrier function [63,64] and synergistically inhibit-
ing the formation of harmful bacteria and their metabolites [65]. Furthermore, acetate and
butyrate exert anti-inflammatory effects by restoring the Th17/Treg imbalance [66]. In
individuals with OSA, a decrease in SCFA-producing bacteria, an imbalance in effector
helper T cells (Th cells), and an increase in the corresponding inflammatory cytokines were
also found [17]. Therefore, SCFA supplementation and fecal microbiota transplantation
are expected to become effective treatments for OSA [15]. As important SCFA producers,
Ruminococcaceae is also associated with OSA comorbidities. Ruminococcaceae (UCG013)
has been shown to promote obesity resistance in mice [67]. Ruminococcaceae (UCG010)
was significantly reduced in the gut of hypertensive patients [68]. However, to date, no
clinical trials have described the beneficial effects of probiotic supplementation on OSA
prevention. As such, further studies are needed to evaluate whether probiotics and SCFAs
are promising novel strategies against OSA-mediated dysbiosis.

4.3. Intestinal Microenvironment Disorders and OSA

In the present study, several gut microbial taxa were identified as potentially protec-
tive against OSA, with a significant proportion belonging to the family_Ruminococcaceae.
Ruminococcaceae are of great value in maintaining intestinal homeostasis and the stabil-
ity of the gut microbiota [69]. A study found a significant reduction in Ruminococcaceae
abundance among patients with mild, moderate, and severe OSA (n = 113) [12]. These
findings are consistent with our results, further supporting the potential protective effect of
Ruminococcaceae abundance against OSA.

What is clearly known is that most bacteria in the Ruminococcaceae family are involved
in bile acid (BA) metabolism. Recent studies have indicated that BA metabolism is closely
linked to sleep. Specifically, BA metabolites influence sleep regulatory centers and circadian
rhythms [70], affecting human sleep quality and health. Animal experiments conducted
by Ferrell et al. [71] demonstrated that even short-term (no more than five days) circadian
disruption substantially altered the expression of hepatic clock genes and BA metabolism.
In addition, Kanemitsu et al. [72] found that specific BAs block the activation of circadian
transcription factors and the nuclear receptor peroxisome proliferator-activated receptor
y. However, there is no unified theory linking IH to BA regulation in humans or animals.
It has only been observed in animal models that CIH disrupts BA metabolism [73]. In
our study, we also identified the genus_Eubacterium (xylanophilum group) and two genera
(Anaerotruncus and Coprococcus2) belonging to genus_Ruminococcaceae as protective factors
against OSA. The genus_Eubacterium is significantly associated with secondary BA syn-
thesis [74]. Our study provides preliminary evidence supporting the possible protective
role of Ruminococcaceae and BA metabolism in the pathogenesis of OSA. However, further
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larger-scale prospective studies are needed to reveal the possible role of the gut microbiota
belonging to Ruminococcaceae in sleep-disordered breathing.

4.4. Strengths and Weaknesses

This study has several strengths. First, this study utilized the largest and most recent
GWAS data collection for OSA, comprising 33,423 patients and 307,648 controls. Second,
we separately examined the causal relationships between the gut microbiota or metabolites
and OSA and identified three microbe-derived metabolites that were associated with an
increased risk of OSA for the first time. Third, this is the first MR study to evaluate the
causal relationship between OSA and gut microbiota. It utilized various complementary
MR methods and confounding bias correction for recognized risk factors for OSA. As a
result, this study provides independent evidence of the association between gut microbiota
and OSA risk.

However, this study had several limitations. First, the GWAS included in this study
was based on European populations. Future research could include populations with
diverse characteristics, which may increase the representation of the present findings across
different populations. Second, the GWAS data for gut microbiota included in this study
did not contain detailed species-level information. The analysis was only performed at
the genus level but not at a more specialized level, such as species or strain levels. Future
studies exploring the relationship between specific intestinal bacteria and OSA at the
species level could provide more theoretical support for the involvement of the microbiome
in the pathophysiological mechanisms of OSA.

4.5. Future Directions

There are several avenues for future research that can expand upon and further elu-
cidate the scope of the relationship between gut microbiota and OSA. Tracking changes
in gut microbiota composition and their association with OSA development and clinical
outcomes would provide valuable insights into the dynamic nature of this relationship.
Additionally, further mechanistic investigations are warranted to unravel the underlying
mechanisms through which specific microbial taxa and their derived metabolites modulate
the occurrence of sleep apnea events. Exploring the interactions between these microbial
communities and key factors such as the immune system, inflammatory responses, and the
gut–brain axis could shed light on the potential mechanisms driving OSA. Interventions
targeting the gut microbiota, such as dietary modifications, probiotic supplementation, or
fecal microbiota transplantation, could be explored to modify the composition and metabo-
lite profiles of microbial communities, thus improving symptoms and sleep quality in OSA
patients. These future research directions have the potential to deepen our understanding
of the pathogenesis of OSA and offer more effective management and care for patients.

5. Conclusions

In this study, some metabolites, such as leucine and 3-dehydrocarnitine, increased the
risk of OSA, while gamma-glutamylvaline and betaine had protective effects. And several
SCFA-producing gut microbial taxa were identified as potentially protective against OSA, a
significant portion of which belong to the Ruminococcaceae family. Through bidirectional
MR and MVMR, we provide evidence that gut microbiota and the derived metabolites are
causally associated with OSA. These causally associated gut microbiota and metabolites are
associated with disturbances in the gut microenvironment, changes in derived metabolites,
and an increase in systemic pro-inflammatory response.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu15214544/s1. Additional File S1: Supplementary methods
and results; Additional File S2: Supplementary Tables S1–S28; Additional File S3: Supplementary
Figures S1–S12. References [75–81] are cited in the Supplementary Materials.
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