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Abstract: Colorectal cancer (CRC) is one of the most common cancers and is the second leading cause
of cancer-related death in the world. Due to the westernization of diets, young patients with CRC are
often diagnosed at advanced stages with an associated poor prognosis. Improved lifestyle choices are
one way to minimize CRC risk. Among diet choices is the inclusion of bee propolis, long recognized
as a health supplement with anticancer activities. Understanding the effect of propolis on the gut
environment is worth exploring, and especially its associated intratumoral immune changes and
its anticancer effect on the occurrence and development of CRC. In this study, early stage CRC was
induced with 1,2-dimethylhydrazine (DMH) and dextran sulfate sodium (DSS) for one month in an
animal model, without and with propolis administration. The phenotypes of early stage CRC were
evaluated by X-ray microcomputed tomography and histologic examination. The gut immunity of
the tumor microenvironment was assessed by immunohistochemical staining for tumor-infiltrating
lymphocytes (TILs) and further comparative quantification. We found that the characteristics of the
CRC mice, including the body weight, tumor loading, and tumor dimensions, were significantly
changed due to propolis administration. With further propolis administration, the CRC tissues of
DMH/DSS-treated mice showed decreased cytokeratin 20 levels, a marker for intestinal epithelium
differentiation. Additionally, the signal intensity and density of CD3+ and CD4+ TILs were signif-
icantly increased and fewer forkhead box protein P3 (FOXP3) lymphocytes were observed in the
lamina propria. In conclusion, we found that propolis, a natural supplement, potentially prevented
CRC progression by increasing CD3+ and CD4+ TILs and reducing FOXP3 lymphocytes in the tumor
microenvironment of early stage CRC. Our study could suggest a promising role for propolis in
complementary medicine as a food supplement to decrease or prevent CRC progression.

Keywords: early stage colorectal cancer; propolis; gut immunity; tumor microenvironment;
cytokeratin 20; CD4 protein; forkhead box protein P3
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1. Introduction

Colorectal cancer (CRC) is one of the most common cancers and is the second leading
cause of cancer-related death in the world [1,2]. There are significant differences in the
incidence and mortality of CRC between different regions, ages, and lifestyles [2,3]. For
example, the incidence of people under 50 years of age suffering from CRC is rising globally
due to the westernization of diets [4–7]. The Western diet may have deleterious effects on
the gut, such as promoting unfavorable microbes, increasing DNA damage in colon cells,
and impeding their DNA repair [4,7]. However, patients, mostly those with early onset
CRC, are often diagnosed at advanced stages and thus have poor prognoses [8,9].

Improved lifestyle choices are one way to minimize CRC risk because poor diet in-
creases the risk of its onset [10,11]. However, many naturally occurring products have
effective anti-CRC properties [12]. One of these natural products, propolis, is a com-
plex resinous mixture obtained by honeybees, in turn derived from a variety of plant
flowers [13,14]. Propolis is recognized as a useful health supplement due to its poten-
tial beneficial and nontoxic effects on human health [15,16]. However, propolis also has
clinical uses, including for anticancer treatment and as an adjuvant therapy to reduce
complications [17,18]. This natural product not only exhibits potent anti-CRC activity by
regulating various signaling molecules [19], but also triggers CRC cell death by increasing
DNA condensation to reduce the proliferation rate [20,21].

Many studies have highlighted the impact of the tumor immune microenviron-
ment on tumorigenesis, prognosis, and metastasis in CRC [22]. Colorectal tumors often
contain prominent immune infiltrates with antitumoral adaptive immunity [23,24]. At
all stages of CRC, the immune microenvironment—characterized by different immune
responses—might contribute to different outcomes [25,26]. Therefore, gaining an under-
standing of the effects of propolis on the gut environment, especially intratumoral im-
mune changes, and of its anticancer effect on the occurrence and development of CRC,
is worthwhile.

Dysregulated inflammatory responses are a major risk factor for CRC onset [27].
Studies have demonstrated that any regimens or supplements that exhibit strong anticancer,
anti-inflammatory, or enhanced immune response can be used to prevent modalities for
CRC [28]. It is conceivable that if the inflammation of the intestinal tract were to be
suppressed, this would be clinically beneficial. However, there have been no studies on
propolis-induced changes to the intratumoral microenvironment of CRC tissues, or on the
effect of propolis on CRC cells. In this study, we used X-ray microcomputed tomography
(µCT) to visualize colon malformations and tumors in situ in living CRC-bearing mice
after propolis administration. We also evaluated the effects of propolis on the intratumoral
microenvironment of CRC tissues by using hematoxylin and eosin (H&E) staining and
immunohistochemical examination. Here, we have demonstrated that propolis is a useful
natural product in alleviating or attenuating primary CRC in an animal model.

2. Materials and Methods

Experimental animals and CRC induction by a carcinogen. BALB/c mice aged 7 weeks
were purchased from the National Laboratory Animal Center (Taipei, Taiwan) [29,30].
The animal experiment was conducted in compliance with ARRIVE (Animal Research:
Reporting of In Vivo Experiments) guidelines on the principles of reduction, refinement, and
replacement and was approved (approval no. IACUC 109-024) by the Institutional Animal
Care and Use Committees of Cathay General Hospital, Taipei. Mice (3–5 per cage) were
housed in an individually ventilated cage rack system (Tecniplast, Varese, Italy) under the
following conditions: 50 ± 10% humidity, 12/12 h light/dark cycle, at 23 ± 2 ◦C. A colonic
carcinogen 1,2-dimethylhydrazine (DMH; cat. no. D0741, Tokyo Chemical Industry Co.,
Tokyo, Japan) and sodium dextran sulfate (DSS, 40 kDa; cat. no. D5144, Tokyo Chemical
Industry Co.) were used to induce local colon tumors. Propolis (Promunel Propolis ESIT6;
B Natural, Corbetta, Italy) was used as a supplement in the experimental mice. Briefly,
mice were quarantined for the first 7 days then randomly allocated as follows: (Group I)
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control group (n = 2), comprising mice that received no treatment; (Group II) DMH/DSS
group (n = 6), comprising mice that received DMH through intraperitoneal injection and
DSS in their drinking water, but no propolis; and (Group III) DMH/DSS/propolis group
(n = 3), comprising mice that received DMH/DSS and propolis.

The times for injecting DMH (40 mg/kg body weight), drinking deionized water or
aqueous DSS (3%), monitoring body weight, eating propolis (30 mg/mouse per time) [31],
performing µCT, and final sacrifice are shown schematically in Figure 1A. Mice were
euthanized with CO2 in a cage when they showed weakness and rapid weight loss of
15–20% at the end of this experiment. The CO2 flow rate was set to displace 30% of the
cage volume per min. The criteria to confirm death were immobility for more than two
minutes and lack of spontaneous breathing. Colons were removed by dissection, rinsed
with ice-cold 0.9% NaCl, placed on filter paper, and their lengths measured by ruler. The
duration of this experiment was about five weeks.
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dextran sulfate sodium; DIW, deionized water. *, p < 0.05 and #, 0.05 < p < 0.1 (Mann–Whitney U 
test). 

In vivo µCT and image analysis. Animals were anesthetized with 1% isoflurane, and 
30 mg/kg Baritop LV (150 µL, Guojien Co., Taichung, Taiwan) was probably administered 
before anesthesia if taken orally. Three hours after Baritop administration, the mice were 
positioned supine in the sample holder of the µCT (Skyscan 1176, Bruker micro-CT, Kon-
tich, Belgium) and immobilized with medical tape to reduce motion artifacts. Scan condi-
tions were as follows: 50 kV source voltage, 0.2 mm aluminum filter, 400 µA source 

Figure 1. Change in body weight of CRC-bearing mice following propolis administration. (A) Timing
of DMH and DSS induction of CRC and propolis administration. Red line indicated the day for
subcutaneous injection of DMH (40 mg/kg body weight) and red boxes were the days for drinking
DSS (3%). The days for body weighing and propolis (30 mg/mouse) feeding were indicated in
bold. The X-ray microcomputed tomograph (µCT), sacrifice, and colon sampling were performed at
day 34. (B) Body weights. Red line, mice with DMH/DSS treatment; green line, mice with DMH/DSS
treatment and propolis administration. CRC, colorectal cancer; DMH, 1,2-dimethylhydrazine; DSS,
dextran sulfate sodium; DIW, deionized water. *, p < 0.05 and #, 0.05 < p < 0.1 (Mann–Whitney U test).
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In vivo µCT and image analysis. Animals were anesthetized with 1% isoflurane, and
30 mg/kg Baritop LV (150 µL, Guojien Co., Taichung, Taiwan) was probably administered
before anesthesia if taken orally. Three hours after Baritop administration, the mice were
positioned supine in the sample holder of the µCT (Skyscan 1176, Bruker micro-CT, Kontich,
Belgium) and immobilized with medical tape to reduce motion artifacts. Scan conditions
were as follows: 50 kV source voltage, 0.2 mm aluminum filter, 400 µA source current,
exposure time 100 ms, 35 µm isotopic resolution, 1 projection image per 0.7◦ gantry rotation
step, rotation range 360◦, with a field of view covering all abdominal regions through to
the anus.

Volume data were reconstructed using NRecon software v2.0 (Bruker micro-CT).
Image analysis of the mouse abdominal region was performed using CT vox software
v3.3 (Bruker micro-CT). Color chromatic aberrations were adjusted to present a clear and
analyzable image of the gut. Analysis was performed by a single experienced technologist
to avoid reader variability in image analysis.

Histopathological evaluation and characterization of tumor lesions, and immunohisto-
chemical examination. All colorectal tissues were dissected longitudinally and prepared
as formalin-fixed, paraffin-embedded blocks. Serial sections of 5 µm were obtained using
a rotary microtome (Accu-Cut SRM 200, Sakura Finetek, CA, USA). H&E staining was
performed with DRS 2000 Automated Slide Stainer (Sakura Finetek) at room temperature
after the routine protocol of deparaffinization, rehydration, and staining with hematoxylin
solution for 5 min, followed by 5 dips in 1% HCl in 70% ethanol. Before mounting sections
on glass slides, sections were rinsed, stained with eosin solution for 3 min, dehydrated
with graded alcohol, and cleared in xylene. Tumor dimensions were measured using
microcalipers, and tumor size was expressed as area calculated from the longest length and
its maximum perpendicular width (length × width) [32].

Expressions of cytokeratin 20 (KRT20), CD3 protein (CD3), CD4 protein (CD4), and
forkhead box protein 3 (FOXP3) were examined on an automated BenchMark GX slide
stainer (Roche Diagnostics, Rotkreuz, Switzerland) with a closed and fixed program: de-
paraffinization at 75 ◦C for 8 min using EZ Prep solution (cat. no. 950-102, Ventana Medical
Systems, Inc., Tucson, AZ, USA), antigen retrieval at 95 ◦C for 64 min (for KRT20, CD4,
and FOXP3) or 92 min (for CD3) using Cell Conditioning 1 solution (cat. no. 950-124,
Ventana Medical Systems), incubation at 37 ◦C with anti-KRT20 (1:400; cat. no. 18306-1-AP,
Proteintech Group, Inc., Rosemont, IL, USA) for 1 h, anti-CD3 (clone 2GV6, prediluted; cat.
no. 790-4341, Roche Diagnostics) for 2 h, anti-CD4 (1:200; cat. no. ab183685, Abcam, Cam-
bridge, UK) for 2 h, or anti-FOXP3 (1:50; cat. no. ab 215206, Abcam) for 2 h. N-Histofine
Simple Stain Mouse MAX PO (R) anti-rabbit (cat. no. 414341F, Nichirei Biosciences, Inc.,
Japan) was used as secondary antibody at 37 ◦C for 12 min twice, and visualization was
performed by OptiView DAB IHC Detection Kit (cat. no. 760-700, Roche Diagnostics). All
sections were counterstained with Hematoxylin II (cat. no. 790-2208, Ventana Medical
Systems) at 25 ◦C for 8 min and with Bluing Reagent (cat. no. 760-2037, Ventana Medical
Systems) at 25 ◦C for 4 min [29].

Finally, all sections were washed, mounted with an automatic cover slipper (Glas-J1;
Sakura Finetek), observed, and photographed with an Echo Revolve microscope (RVL-100-
M, Echo, San Diego, CA, USA). A medically qualified specialist examined the sections under
high magnification to determine the cells with positive signals, which were quantified by
using QuPath (version 0.3.0, https://qupath.github.io; accessed on 15 June 2023) [33].

Statistical analysis. The Mann–Whitney U test was used to compare tumor cover per-
centages and dimensions in CRC-bearing mice without and with propolis administration,
and positive percentages of CD3+, CD4+, and FOXP3 lymphocytes in tumor microenvi-
ronments. These statistical analyses were computed using SPSS software (version 20, IBM
Corp., Armonk, NY, USA), and the statistical significance was defined as p < 0.05.

https://qupath.github.io
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3. Results
3.1. Propolis Administration Increased the Body Weight of DMH/DSS-Treated Mice

The body weight changes of the mice were used to evaluate their health status from
the time of DMH administration [30]. The mice in both DMH/DSS-treated groups (Groups
II and III) had significant weight loss after DMH/DSS induction. Two typical periods of
weight loss occurred after the mice drank 3% DSS, but they resumed weight gain when
they stopped drinking 3% DSS. In contrast, the mice gained weight only in the DMH/DSS-
treated group with propolis administration (Group III) but not in the propolis-untreated
group (Group II) (Figure 1B). These propolis- and DMH/DSS-treated mice in Group II
always maintained a more stable body weight during the experimental time and showed a
significantly increase at Day 20 (p = 0.039, Mann–Whitney U test).

3.2. Lower Contrast of µCT Imaging and Longer Length of Mice Colons in CRC Bearing Mice with
Propolis Administration

To examine the DMH/DSS-induced changes in colons in vivo, µCT-images with
different visual contrasts were acquired 3 h after the injection of an intravenous contrast
agent (Figure 2). Briefly, the control mice with no DMH/DSS induction (Group I) showed a
negative accumulation of barium in their colons. However, the colons of DMH-induced
mice (Groups II and III) were easily visualized after the mice drank a second 3% DSS
suspension, but a colon image with a relatively lower contrast was observed from the mice
(Group III) further administered with propolis.
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Figure 2. Detection of CRC in mice by X-ray microcomputed tomograph. Each mouse was imaged
3 h after administration of Baritop LV (30 mg/kg). Control mice, not treated with DMH/DSS and
not given propolis; DMH/DSS, mice with DMH (40 mg/kg body weight)/DSS (3%) treatment;
DMH/DSS/propolis, mice with DMH/DSS treatment and propolis administration. White arrows
indicated the sites with barium accumulation. CRC, colorectal cancer; DMH, 1,2-dimethylhydrazine;
DSS, dextran sulfate sodium.

The colon length of the mice in the control group with no treatments (Group I) was
8.9 ± 0.1 cm (Figure 3). However, there was a decreased colon length in the DMH/DSS-
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treated mice (Group II) (7.9 ± 0.4 cm, Figure 3), while it was significantly recovered to
8.8 ± 0.2 cm in Group III (p = 0.046, Mann–Whitney U test). Moreover, in Figure 3,
compared with the DMH/DSS-treated mice (Group II), the tumor area of the mice with
DMH/DSS-induced CRC and administration of propolis (Group III) was relatively smaller.
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Figure 3. Inhibition of colon shortening in CRC-bearing mice by administration of propolis. Each
group was individually framed with a black box including the representative colon image (upper
one) and its inner layer (lower one). CRC, colorectal cancer; DMH, 1,2-dimethylhydrazine; DSS,
dextran sulfate sodium.

3.3. Changes of Total Tumor Dimension in Colon of CRC-Bearing Mice with Propolis
Administration

In our model of mice CRC induced by DMH/DSS for one month, the CRC tissues grew
locally in the mucosa layer and had not grown beyond the muscularis mucosa of the colon
(Figure 4). These early tumors were not found to have spread to nearby lymph nodes or to
distant organs, no matter whether the mice were administered propolis or not. Moreover,
the representative image in Figure 4A and the tumor dimensions in Figure 4B showed
that the H&E-stained CRC tissue sections from the mice without propolis administration
(Group II) had a larger tumor size (21.6 ± 7.4 mm2) than those in the propolis-administered
mice (Group III) (7.1 ± 2.0 mm2) (Mann–Whitney U test, p < 0.05).
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Figure 4. Reduction in DMH/DSS-induced CRC formation following propolis administration.
(A) Representative histopathological images of mice colons. Scale bar, 250 µm. Red square in-
dicated an image with a higher magnification (scale bar, 25 µm). (B) The tumor dimensions from
the H&E-stained CRC tissue sections. CRC, colorectal cancer; DMH, 1,2-dimethylhydrazine; DSS,
dextran sulfate sodium; M, mucosa; LP, lamina propria; MM, muscularis mucosa; H&E, hematoxylin
and eosin. *, p < 0.05 (Mann–Whitney U test).

3.4. Effect of Propolis on the Level of KRT20 in CRC-Bearing Mice

The colon sections of the control mice without CRC (Group I) showed gradually
increased signals of anti-KRT20 staining from the crypt bottom to the top of colorectal
crypts (Figure 5). In contrast, the colon sections from the groups with DMH/DSS-induced
CRC (Groups II and III) had intense staining from the anti-KRT20 antibody, but a moderate
positive reaction was observed in the mucosal layer of the CRC tissues of the mice (Group
III) with DMH/DSS induction and propolis administration (Figure 5).
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Figure 5. Representative images of immunohistochemical staining for KRT20 in colon of mice.
KRT20 staining increased from bottom to the top of the crypt in colonic mucosa of control mice. An
intense staining of KRT20 was in the colon sections from the mice with DMH/DSS-induced CRC
and a moderate positive reaction was in the mucosal layer of CRC tissues of the mice with propolis
administration. KRT20, cytokeratin 20; CRC, colorectal cancer; DMH, 1,2-dimethylhydrazine; DSS,
dextran sulfate sodium. Scale bar, 100 µm.

3.5. Associations between the Propolis Administration and the Density of Tumor-Infiltrating T
Lymphocytes Subsets in Mice with DMH/DSS-Induced CRC

To detect the differences of tumor-infiltrating T lymphocytes (TILs) in the gut mi-
croenvironment between the CRC-bearing mice without and with propolis administration,



Nutrients 2023, 15, 4494 8 of 14

the signal intensities due to CD3, CD4, and FOXP3 in the lamina propria with neoplastic
lesions were detected and measured (Figure 6). Briefly, the CRC-bearing mice (Group II)
had a weakly positive signal and a lower density of CD3+ and CD4+ TILs in the lamina
propria when mice were not administered propolis (Figure 6A). In contrast, the signal
intensity and density of these TILs were significantly increased in the neoplastic lesions
of CRC-bearing mice with propolis administration (Group III) (Figure 6B). Conversely,
fewer FOXP3 lymphocytes were found in the lamina propria of the colons of mice in
Group III when compared with the results from the CRC-bearing mice without propolis
administration (Group II) (Figure 6A,B).
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Figure 6. Effects of propolis administration on the density of tumor-infiltrating T lymphocytes in
colons of CRC-bearing mice. (A) CD3+, CD4+, and FOXP3 lymphocytes in the lamina propria with
neoplastic lesions in colons of CRC-bearing mice. Scale bar, 250 µm. Red square indicated an image
with a higher magnification (scale bar, 25 µm). (B) The signal intensity and density of CD3+, CD4+,
and FOXP3 lymphocytes. CRC, colorectal cancer; DMH, 1,2-dimethylhydrazine; DSS, dextran sulfate
sodium. CD3, CD3 protein; CD4, CD4 protein; FOXP3, forkhead box protein 3. *, p < 0.05 and
**, p < 0.01 (Mann–Whitney U test).

4. Discussion

We found that propolis has an anticancer effect on early stage CRC by affecting
epithelial differentiation and gut immunity in the tumor microenvironment [34]. Recently,
propolis has been found to have potential against SARS-CoV-2 infection and the resulting
COVID-19 disease [35]. The anti-inflammatory properties attributed to propolis have also
been examined in numerous studies [36]. For example, propolis is known to potentially
treat or prevent gastrointestinal disorders, such as inflammatory bowel disease [37,38].
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These outcomes are consistent with our results showing that propolis may have an anti-
colorectal carcinogenesis property. As reviewed by Chiu et al., numerous studies have
demonstrated that propolis is effective against various types of cancer, including CRC, due
to the presence of various phytochemicals in propolis [19]. This propolis-induced anti-CRC
property may be caused by enhanced apoptosis or an increased efficacy of co-administered
anticancer drugs [16,39,40].

Like the previous model of CRC induction in mice by DMH/DSS administration [29],
the one-month induction in this study limited the colon tumor lesion to the mucosa layer,
which was diagnosed as early stage CRC. In this early stage CRC, we further revealed that
the administration of propolis appeared to consistently attenuate the effect of DMH/DSS
on CRC induction. We readily observed this anticancer effect of propolis on CRC regression
by µCT, a technique that can diagnose CRC in vivo [41–43]. Here, we demonstrated that
barium (sulfate) could cover the irregular mucosa on the colonic surface of CRC, showing
slightly protruding plaques on images according to the severity of the CRC. Clinically, a
combined barium/CT image better shows the destruction of the tumor mucosa than CT
alone [41]. We further showed that µCT could be used to assess the neoplastic colonic
lesions in vivo, even in early stage CRC. Our results are consistent with the report of Hal-
ligan et al. who said that computed tomographic colonography is a useful screening test
in patients with symptoms suggestive of CRC [43]. However, an appropriate pathological
diagnosis after in vivo X-ray µCT examination is also required. Thus, different patho-
logical tests need to be performed to evaluate or demonstrate that propolis also reduces
the size of colonic neoplastic lesions through the expression of common tumor markers,
such as KRT20.

KRT20 is a marker for intestinal epithelium differentiation [44–47]. Imai et al. reported
that KRT20 expression was closely associated with invasive histological features and had
prognostic significance [46]. In other words, KRT20 is more commonly expressed in CRC
tissues and nodal metastasis [48]. CRC patients with poor prognosis show high levels
of KRT20 [46,47]. We found that KRT20 was absent in the crypt bottom but gradually
increased towards the top of the colorectal crypts in the control group (Group I). This
distribution in the normal colon is identical to that reported by others [44,49]. We further
revealed that the increased KRT20 in DMH/DSS-induced CRC decreased because of the
propolis administration. As Tunca et al. reported, the expression of KRT20 is associated
with CRC recurrence and survival rates [50]. Thus, our data possibly indicated that
propolis may improve CRC outcomes. Taken together, the decreased KRT20 activity due to
propolis in early stage CRC tissues may reduce the chance of cancer worsening, metastasis,
or recurrence.

For years, propolis has long been considered to have anti-inflammatory properties and
has been used as an immunomodulatory agent [51,52]. This natural product is also known
to promote gut health by modulating gut immunity [53]. In this study, we found that propo-
lis administration increased the density of CD3+ and CD4+ TILs and decreased the density
of FOXP3 lymphocytes in the lamina propria of the tumor microenvironment in the mice
with early stage CRC. Intratumoral-infiltrating CD3, CD4, and FOXP3 lymphocytes are
known to be strong positive predictive markers for the prognosis of CRC [54,55]. However,
there are numerous reports showing that the FOXP3 lymphocytes in CRC are substantially
different from those in other human cancers. For example, Kuwahara et al. reported
that CRC patients with low CD4 lymphocytes and low FOXP3 lymphocytes exhibited
extremely poor prognoses [55]. Ohue et al. further asserted that the presence of high num-
bers of FOXP3 lymphocytes corresponded to a better prognosis for CRC patients [56–58].
FOXP3 lymphocytes indicate a CRC prognosis, but in other cancers the presence of high
FOXP3 lymphocytes in the tumor microenvironment is associated with unfavorable prog-
noses [59]. Thus, these variable differences must play a key role in the immunity of the gut
microenvironment.

These contradictory results have stemmed from an assessment of the prognostic impact
of FOXP3 lymphocytes in different tumor tissues [60,61]. These diagnostic difficulties are
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like those described by Betts et al., stating that the role of FOXP3 lymphocytes possibly
depends on the type of immune response present in the tumor microenvironment, especially
for CRC [60]. It is well known that CD3+ and CD4+ TILs in CRC correlate with a better
prognosis, and that a high density of different TILs in the gut microenvironment is critical
for immunity in the gut [54,55,62]. Therefore, propolis, which could increase the number of
CD3+ and CD4+ TILs in the tumor microenvironment, can be classified as a natural product
that is beneficial in preventing the CRC progression at the initial stage. Further, the FOXP3
lymphocytes could suppress the CD4+ TILs and so exacerbate CRC [60]. In other words, the
decreased level of FOXP3 lymphocytes caused by propolis administration in the early stage
of CRC formation could promote the increased level of CD4+ TILs to maintain gut immunity.
As reported earlier by Terzic et al., CRC is enriched with abundant bacteria in the gut while
malignancies in other tissues are in an almost sterile microenvironment [63]. These gut
bacteria can infiltrate the tumor through the necrosis or ulceration of the colon surface
to trigger inflammatory responses [64,65]. Xu et al. speculated that FOXP3 lymphocytes
can suppress the inflammatory and immune responses caused by bacterial invasion, and
thus may have a potentially anti-CRC effect [65]. However, this inference may be applied
in advanced CRC stages with an erosive mucosa layer and invasive muscularis mucosa.
In this study, the intact muscularis mucosa in mice was detected after inducing CRC
with DMH/DSS for a month. This implies that the gut bacteria-induced inflammatory or
immune response may not be obvious here, and that the immune suppression by FOXP3
lymphocytes at other advanced stage CRCs was not critical for the initial CRC formation.

Death rates for CRC have risen worldwide. Therefore, early detection and treatment
are very important for preventive CRC medicine [66]. CRC is preventable at the very
early precursor stage if the tumor cells are promptly suppressed as soon as they appear
in the colon. Natural treatments that are harmless are now needed more than ever for the
prevention of CRC [67]. As reported by Forma and Bryś, propolis and its components affect
the tumor microenvironment and decrease the multidrug resistance of cancer cells [17].
Overall, and also given our current results, propolis can be considered as a nutritional
supplement to improve human health [68].

In conclusion, propolis—a natural substance—could change the characteristics of
CRC cells and improve the body’s immunity when CRC is in its early stages. Propolis
potentially prevented CRC progression by increasing the levels of CD3+ and CD4+ TILs
and reducing the levels of FOXP3 lymphocytes in the tumor microenvironment in early
stage CRC. Moreover, our study indicates a promising role for propolis in complementary
medicine, and it could be used as a food additive to prevent CRC progression. At the
same time, studying the pathogenesis of carcinogen-induced CRC in mouse models has the
advantage of being rapid and reproducible. However, it is difficult to compare different
models with each other and directly apply our current results to the more complex human
CRC [69,70]. These are limitations to this study that should be noted. First, the present
study has not completely elucidated the precise mechanism by which propolis improves
the gut immunity in the tumor microenvironment in CRC. Second, we only used a single
brand of propolis, and the biological activity of propolis depends on its particular extraction
techniques [71]. Third, the anticancer efficacy, adverse events, and toxicity of propolis must
be evaluated through more immune confirmation and human trials. Taken together, a
better understanding of the relationship between propolis and its anti-CRC effects should
be clarified by further investigations.
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