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In this Editorial, we comment on a series of recent articles featured in the Special Issue
“Emerging Benefits of Vitamin B3 Derivatives on Aging, Health and Disease: From Basic
Research to Translational Applications” in Nutrients. These articles address the relevant
aspects of nicotinamide adenine dinucleotide (NAD+) depletion across a wide spectrum of
pathological conditions, including metabolic, neurological, and age-related disorders, as
well as the potential health benefits of NAD+-raising approaches.

Beyond the well-established role of NAD+ in redox reactions, this key molecule also
acts as an essential co-substrate for the activity of a wide range of regulatory proteins. Some
of these proteins are involved in modulating pivotal cellular processes that are fundamental
to cell physiology, such as NAD+-dependent histone deacetylases, also defined as sirtuins,
polyADP-ribose polymerases (PARPs), and cyclic ADP-ribose synthases, among others.

Accumulating evidence supports the notion that NAD+ metabolism is commonly
distorted in different pathophysiological scenarios and that its restoration might be con-
sidered a plausible therapeutic strategy to mitigate the progression of adverse outcomes
directly related to NAD+ deficient states [1,2]. Over the past decade, specific dietary
manipulations of NAD+ using natural forms of vitamin B3 [3]—namely nicotinic acid,
nicotinamide, nicotinamide mononucleotide, and nicotinamide riboside (NR)—have been
shown efficient in reversing detrimental outcomes of chronic metabolic/inflammatory
diseases and age-related disorders in animal models. Consequently, the development of
NAD+-increasing therapies stands as one of the most exciting challenges when it comes to
improving human health and lifespan [4–6]. However, translating the promising effects
that have been observed in experimental models into clinical benefits has only yielded
modest results. At least partly, the latter could be attributed to several factors, such as
the extent of NAD+ depletion, the efficacy of NAD+ repletion, or both, which could be
blunting the reversal of the adverse phenotype by the NAD+-raising approach, thereby
limiting data interpretation.

In contrast to the extent of NAD+ depletion, which is closely tied to the presence and
severity of specific disease states, the efficacy of NAD+ repletion may be more accurately
controlled. A notable example is NR, one of the widely studied NAD+ precursors. Due
to its unique characteristics, NR is especially more prone to degradation in the gastroin-
testinal tract. Extensive research has therefore focused on generating different forms of
this nicotinamide derivative, incorporating differences with various chemical groups into
its molecular backbone to overcome this limitation [7]. Despite this, NR bioavailability
for NAD+ synthesis in tissues also hinges on the activity of nicotinamide riboside ki-
nases. These enzymes are predominantly found in the liver and kidney but are poorly
expressed in other organs, potentially hampering the biological action of NR. In this con-
text, a derivative of NR-dihydronicotinamide riboside (NRH) has recently emerged as a
new NAD+ precursor [8,9], displaying a more potent NAD+ raising capacity than other
NAD+ precursors.
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In this context, Ciarlo E. et al. [10] published a contribution to NAD+ metabolism in
cultured hepatocytes by another molecular player, dihydronico-tinic acid riboside (NARH).
In their research, the authors demonstrated that NARH can also act as a NAD+ precursor.
Indeed, in combination with NR, this new NR derivative enhances the overproduction of
intracellular NAD+ in cultured hepatocytes and induces the synthesis of NRH. Although
further research is needed to understand the therapeutic potential of NAD+ precursor
combinations, including NARH and its clinical use, this kind of study opens new venues in
the investigation of the physiological impact of novel NAD+-raising therapies on global
NAD+ homeostasis.

Inflammation is one of the most common pathophysiological mechanisms that fre-
quently accompanies the course of metabolic, neurodegenerative, and age-related disorders.
In this Special Issue, Sharma C. et al. [11] extensively reviewed the favorable influence
of NR supplementation in different experimental settings. Notably, in their review, the
authors exhaustively described the anti-neuroinflammatory effect of NR in different animal
models and its positive influence on neurological disorders. Of particular interest was
the mechanism of action of NR-mediated protection against neuroinflammation, which
was elegantly dissected in a specific mouse model of neuroinflammation, the Gulf War
illness (GWI) mice. Interestingly, these mice present depleted brain NAD+ levels along
with neuroinflammation [12]. Conceivably, an increased abundance of proinflammatory
cytokines was detected in the brains of GWI mice, whereas NAD+ repletion by NR in
treated GWI mice abrogated neuroinflammation [12]. In contrast to other studies, the anti-
inflammatory effect of NR was, at least in part, explained by an induced deacetylation of the
NFκB isoform p65 (at amino acid residue K310), which is the nuclear and the active form of
this master regulator of inflammation. This finding coincides with another recent study
published in this Special Issue, which documented the efficacy of another NAD+ precursor
(nicotinamide) in ameliorating brain inflammation via NAD+-dependent deacetylation
mechanisms of the same NFκB isoform (p65) in a different mouse model of neuropathy,
i.e., diabetic neuropathy [13]. In this study, the favorable influence of nicotinamide on
brain inflammation was directly linked to concomitant NAD+ elevations in the brains of
nicotinamide-treated diabetic mice. Additionally, microglial activation was attenuated
upon nicotinamide administration. Together, these studies provide support for the strategy
of reversing neuroinflammation with NAD+ repletion therapy.

The burden of another severe syndrome caused by SARS-CoV-2 infection and asso-
ciated with acute respiratory syndrome has also been related to disturbances in NAD+
metabolism. Supporting this, NAD+ depletion is a common feature in certain viral infec-
tions [14,15]. Sharma C. et al. [11] also linked the NAD+ depletion in target SARS-CoV-2-
infected tissues to the overexpression of PARPs, a class of NAD+-consuming enzymes [16],
and the potential benefits of emerging NAD+-increasing approaches as relevant adjuvant
therapy to alleviate the severity of COVID-19. In this regard, clinical trials investigating the
impact of NAD+-replenishment-based therapies on COVID-19 manifestations are currently
underway. This therapy offers no side effects and is low-cost, and although new data from
these clinical trials are still awaited, current research suggests that it could be useful for
treating SARS-CoV-2 infection.

Beyond its role as a NAD+ precursor, Sharma C. et al. also mentioned that NR has
been proposed to potentially act as an inhibitor of SARS-CoV-2 RNA-dependent RNA
polymerase, a key enzyme in viral genome replication and gene transcription. In support
of this, it has been proposed that NR may exhibit antiviral activity due to its molecular
similarity to nucleoside inhibitors, which are a class of molecules that inhibit the activity of
the abovementioned polymerase. Together, this evidence might support the hypothesis
that NR’s efficacy against COVID-19 is directly influenced by either its NAD+-increasing
capability, structural similarity to nucleoside inhibitors, or both.

Furthermore, NAD+ precursors show promise in maintaining homeostasis in sys-
tems/organs beyond the nervous system, such as the gut barrier. In this regard, Niño-
Narvión J. et al. [17] produced an excellent comprehensive exploration of the contribution
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of vitamin B3 derivatives to gut health, developing the concept that there is a close rela-
tionship between NAD+ metabolome and gut inflammation. Despite the fact that current
evidence supports the notion that NAD+ deficiency enhances gut inflammation and that
this is frequently accompanied by concomitant changes in intestinal dysbiosis, emerg-
ing research suggests the positive influence of NAD+-increasing strategies on intestinal
microbiota composition; however, whether such favorable, NAD+-mediated changes in
intestinal microbiota could protect against gut inflammation and leakage has been so far
poorly explored. In this respect, Niño-Narvión J. et al. [17] launched and investigated the
hypothesis that administering NAD+ precursors could be beneficial in protecting the gut
against inflammation in various pathophysiological scenarios by modulating the intestinal
microbiota. Overall, these findings pave the way for future investigations.

In conclusion, the landscape of NAD+ precursors and their therapeutic potential
is rapidly unfolding. The collection of articles featured in this Special Issue provides a
comprehensive exploration of the critical role NAD+ plays in health and disease across a
range of different pathophysiological contexts. The intricate relationship between NAD+
deficiency and adverse outcomes, either metabolic or inflammatory, is thus becoming more
evident. In this context, the potential health benefits of NAD+-raising strategies, ranging
from countering inflammation, i.e., neuroinflammation, and mitigating the severity of
viral infections to influencing gut health, showcase the versatility of NAD+ restoration.
Accumulating experimental research has revealed NAD+-dependent sirtuin signaling
as being one of the main effectors of NAD+-increasing therapies. Nonetheless, while
experimental models have shown promise, translating these findings into clinical practice
poses challenges. Optimizing the efficacy of NAD+ repletion, particularly in the face of
varying degrees of depletion, remains a pivotal concern. However, advancements in the
development of novel NAD+ precursors and derivatives offer hope for more targeted and
effective interventions. In summary, the pursuit of NAD+-replenishment-based therapies
continues to shape the landscape of modern medicine. In this context, rigorous translational
and clinical research efforts are essential to bridge the gap between experimental promise
and clinical impact. By unraveling the intricacies of NAD+ metabolism and its relationship
to various health conditions, we move ever closer to realizing the potential of NAD+
precursors as powerful tools for enhancing human health and longevity.
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