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Abstract: Low 25-Hydroxyvitamin D (25(OH)D) in preterm infants is a risk factor for bronchopul-
monary dysplasia (BPD), but increased supplementation failed to demonstrate a beneficial effect
on BPD. In neonatal animal models, deficiency and excessive vitamin D exposure have been as-
sociated with increased mortality and histological alterations in the lung evocative of BPD. Our
hypothesis is that 25(OH)D levels ≥ 120 nmol/L are also a risk factor for BPD or death. This retro-
spective single-center cohort study included only infants born at <31 weeks gestational age without
major malformations with at least a determination of 25(OH)D at <36 weeks corrected age and
no determination <50 nmol/L. Routine 25(OH)D determination was performed at 1 month and
monthly thereafter. A total of 175 infants were included. Infants with BPD or who died had a signifi-
cantly lower term and weight, but a similar frequency of 25(OH)D ≥ 120 nmol/L (50.5% vs. 43.9%,
p = 0.53). The logistic regression identified weight (OR 0.997, 95% CI [0.995–0.998]) and term (OR 0.737,
95% CI [0.551–0.975]) as significantly associated with BPD or death; the occurrence of excessive
25(OH)D was not significantly associated (OR 1.029, 95% CI [0.503–2.093]). The present study did not
demonstrate any significant association between excessive 25(OH)D after one month of age and BPD
or death.

Keywords: vitamin D; premature infants; bronchopulmonary dysplasia; low-birthweight infant;
very-low-birthweight infant

1. Introduction

Bronchopulmonary dysplasia (BPD) is a frequent and sometimes severe complication
of premature infants with long-term consequences [1]. Vitamin D is implicated in lung
development, as demonstrated by multiple animal studies in rodents [2], and supplementa-
tion with low doses of native vitamin D in rodent pups exposed to hyperoxia is reported to
attenuate the histological and some biochemical markers of BPD [3]. Low concentrations of
25-Hydroxyvitamin D (25(OH)D) at birth and at one month of age have been associated
with increased risk of BPD as demonstrated by a meta-analysis [4] and a study adjusting for
the factors known to be associated with BPD [5]. Furthermore, low 25(OH)D at one month
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of age has also been associated with increased risk of bronchopulmonary dysplasia [6].
However, studies investigating high-dose supplementation (compared with low-dose)
failed to demonstrate any significant effect on the frequency of BPD [7,8] but have found
high 25(OH)D concentrations in the groups exposed to high doses [8–10]. The data on the
consequence of vitamin D excess in this population (except for the risk of nephrocalcinosis
and/or hypercalcemia) are sparse [11]. In rodents receiving vitamin D in excess during
gestation and lactation, pups had an abnormal lung histology; there was a greater mean
linear intercept, a greater total respiratory system resistance, and a lower basal proliferation
of their lung mesenchymal stem cells with a lower adipogenic and a greater myogenic
potential [12,13]. Furthermore, in a model of bronchopulmonary dysplasia, neonatal pups
exposed to oxygen receiving high doses of 1,25-di-Hydroxyvitamin D (1,25(OH)2D) from
the first day of life exhibited higher mortality and an altered lung histology (increased
mean linear intercept, a decreased angiogenesis, and increased proinflammatory factors)
when compared with animals receiving low doses [14]. Recent studies have demonstrated
a high frequency of excessive levels of 25(OH)D in preterm infants with supplementation
recommended at that time [15–17]. Our hypothesis was that these excessive 25(OH)D levels
in very and extremely preterm infants may be deleterious to pulmonary development and
may therefore be implicated in the pathogenesis of BPD. The primary objective of this study
was, therefore, to determine whether excessive 25(OH)D levels are an independent risk
factor for BPD or death.

2. Materials and Methods

In this retrospective cohort study, all infants born at <31 weeks gestational age between
January 2018 and December 2019 were eligible for inclusion if they were hospitalized before
3 days of life and for at least 10 days in the neonatal intensive care unit (NICU) in the Hos-
pital Femme Mere Enfant, Bron, France, and presented no major congenital malformation.
They were included if they had at least a 25(OH) D determination at <36 weeks corrected
age. They were excluded if they presented at least a 25(OH)D determination <50 nmol/L.

In this NICU, preterm infants receiving parenteral nutrition were supplemented with
Cernevit (Baxter, Guyancourt, France) in an amount of 1/4 vial daily (containing 55 IU
cholecalciferol). When parenteral nutrition was stopped, infants with a weight below 1 kg
received Sterogyl (DB pharma, La Varenne-St-Hilaire, France) in an amount of 3 drops
daily (1200 IU ergocalciferol) while infants above 1 kg received Uvesterol ADEC (Crinex,
Montrouge, France) in an amount of 0.3 mL daily (containing 1000 IU ergocalciferol). These
supplementations were following or slightly above the European Society of Paediatric
Gastroenterology, Hepatology and Nutrition’s recommendations at that time of 800–1000 IU
daily during enteral nutrition and more than 30 IU during parenteral nutrition [18,19]. A
routine determination of 25(OH)D was recommended in our unit at one month of age and
monthly thereafter until discharge with a protocol for adaptation of the dose (Figure 1).
The objective was to maintain 25(OH)D ≥ 50 and < 120 nmol/L.
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The main outcome was BPD or death at 36 weeks corrected age. BPD was defined as
the need for supplemental oxygen or respiratory support to maintain a saturation equal
to or above 90% at 36 weeks corrected age with radiological evidence of parenchymal
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lung disease [20]. In the description of the population, it was classified into three grades
according to Jobe et al. [21].

The main early predictive factors of BPD reported in recent studies were collected [22–25]:
multiple gestations, antenatal corticosteroids, spontaneous delivery, gestational age at birth,
birthweight, Apgar at 5 min (in categories 8 to 10, 4 to 7, 0 to 3), sex, respiratory support during
the first 24 h (classified in 3 groups—mild FiO2 < 30% and noninvasive ventilation, moderate
FiO2 < 30% and mechanical ventilation, severe FiO2 ≥ 30% and mechanical ventilation—as
proposed by Baud et al. [22]), and breastfeeding defined as receiving any mother’s milk.
Ethnic origin was not available; however, Baud et al. excluded it from their final predictive
model in a French population [22].

“Small for gestational age” was defined as a weight below the tenth percentile accord-
ing to the Fenton curves [26]. Enterocolitis was considered present if a grade of 2 or above
was observed.

Data were extracted from electronic medical charts (IntelliSpace Critical Care and Anes-
thesia prescription software, Philips, Suresne, France) and completed with the discharge
letter when infants were transferred to another hospital or another unit.

The number of subjects was calculated based on the unpublished results of a pilot
study [27]. Based on the results of the multiple logistic regression simulation taking into
account confounding parameters (term, spontaneous birth, and sex) and excessive 25(OH)D
concentration, the number of infants necessary to find an OR of 2.8 for BPD and a 25(OH)D
concentration association was 176, with a power of 80% and an alpha risk of 0.05.

The quantitative variables were described using the mean and standard deviation (SD),
and qualitative variables using the number of patients and frequency (%) of each modality.

Patients were stratified according to the maximal 25(OH)D concentration between
1 month of life and 36 weeks corrected age (excessive [any determination ≥ 120 nmol/L] [28]
or normal [all determinations ≥50 to <120 nmol/L]). Patients with BPD or who died at
36 weeks corrected age were compared with other patients using the Wilcoxon or chi-
squared tests, as appropriate. The analysis of the association between BPD and excessive
25(OH)D concentration was investigated using a logistic regression model constructed
using backward stepwise selection.

25(OH)D concentration was measured using a chemiluminescent microparticle im-
munoassay with an Isys analyzer (Immunodiagnostic Systems, Pouilly-en-Auxois, France).

This study was approved by the institutional review board (Comité Scientifique et
Éthique) of the Hospices Civils de Lyon on 18 January 2023 (number 23_076). It also
received the approval of the national data protection commission (Commission Nationale
de l’Informatique et des Libertés; number 23_5076). According to French law, parental
informed consent was not necessary, but all parents were informed and could refuse the
participation of their infant.

This study is registered in ClinicalTrials.gov/study/NCT05944055 (accessed on 17
July 2023).

3. Results
3.1. Population
3.1.1. Study Flow-Chart

The study flow-chart is presented in Figure 2.

3.1.2. Description of the Population

A total of 175 infants were included, of which 81 (46.3%) had at least one
25(OH)D ≥ 120 nmol/L, and for the remaining 94 (53.7%) 25(OH)D was always between
50 and 120 nmol/L. The obstetrical characteristics of the included population and according
to 25(OH)D concentration are described in Table 1.

ClinicalTrials.gov/study/NCT05944055
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Table 1. Main obstetrical characteristics of the studied population.

Pregnancy Characteristics * Excessive 25(OH)D
N = 81

Normal 25(OH)D
N = 94

Total
N = 175

Parity

1 29 (35.8%) 40 (42.6%) 69 (39.4%)
2 25 (30.9%) 31 (33.0%) 56 (32.0%)
3 19 (23.5%) 14 (14.9%) 33 (18.9%)
≥4 8 (9.9%) 8 (8.5%) 16 (9.1%)

Unknown 0 (0.0%) 1 (1.1%) 1 (0.6%)

Multiple pregnancy 30 (37.5%) 25 (26.6%) 56 (32.0%)

Any hypertension during pregnancy 19 (23.5%) 21 (22.3%) 40 (22.9%)

Preterm premature rupture of membranes 26 (32.1%) 27 (28.7%) 53 (30.3%)

Any diabetes during pregnancy 8 (9.9%) 13 (13.8%) 21 (12.0%)

Histological chorioamnionitis 21 (25.9%) 13 (13.8%) 34 (19.4%)
Unavailable 0 (0%) 3 (3.2%) 3 (1.7%)

Clinical chorioamnionitis 11 (13.6%) 7 (7.4%) 18 (10.3%)
Unknown 1/1.2%) 3 (3.2%) 4 (2.3%)

Any antenatal corticosteroids 76 (93.8%) 83 (88.3%) 159 (90.9%)

* Data were available for all infants except if specified.

The main neonatal characteristics of the included population and according to 25(OH)D
concentration are presented in Table 2.
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Table 2. Main neonatal characteristics of the studied population.

Neonatal Characteristics * N (%), Except if Specified Excessive
25(OH)D N = 81

Normal 25(OH)D
N = 94

Total
N = 175

Birth season

Summer 19 (23.5%) 32 (34.0%) 51 (29.1%)
Fall 20 (24.7%) 26 (27.7%) 46 (26.3%)

Winter 21 (25.9%) 18 (19.1%) 39 (22.3%)
Spring 21 (25.9%) 18 (19.1%) 39 (22.3%)

Sex Male 39 (48.1%) 51 (54.3%) 90 (51.4%)

Term (weeks) Mean (SD) 27.58 (1.84) 27.88 (1.56) 27.74 (1.70)

Weight (g) Mean (SD) 938 (272) 998 (305) 970 (291)

Height (cm) Mean (SD) 35.05 (3.11) 35.15 (3.98) 35.11 (3.60)

Head circumference (cm) Mean (SD) 24.83 (2.19) 25.44 (2.72) 25.16 (2,50)

Small for gestational age ** 14 (17.3%) 17 (18.1%) 31 (17.7%)

Apgar at 5 min
8–10 55 (67.9%) 52 (55.3%) 107 (61.1%)
4–7 21 (25.9%) 37 (39.4%) 58 (33.1%)
0–3 4 (4.9%) 4 (4.3%) 8 (4.6%)

Not available 1 (1.2%) 1 (1.1%) 2 (1.1%)

Maximum ventilation
during the first 24 h

FiO2 < 30% and noninvasive ventilation 7 (8.6%) 6 (6.4%) 13 (7.4%)
Assisted ventilation and FiO2 < 30% 0 (0.0%) 1 (1.1%) 1 (0.6%)
Assisted ventilation or FiO2≥ 30% 74 (91.4%) 87 (92.6%) 161 (92.0%)

Parenteral nutrition (days) Median 14 13 14
Interquartile range 7–23 7–20 7–21

Enteral feeding
Maternal or donor milk 17 (21.0%) 19 (20.2%) 36 (20.6%)

Mixed 50 (61.7%) 49 (52.1%) 99 (56.6%)
Formula or donor milk 14 (17.3%) 26 (27.7%) 40 (22.9%)

Any mother’s milk given 66 (81.5%) 68 (72.3%) 134 (76.6%)

First determination of 25(OH)D (nmol/L) Mean (SD) 139.4 (43.1) 86.1 (19.6) 110.8 (42.1)

Corrected age at first 25(OH)D determination Mean (SD) 32.4 (1.9) 32.5 (1.5) 32.4 (1.7)

Second determination of 25(OH)D (nmol/L) 25 (30.9%) 20 (21.3%) 45 (25.7%)
Mean (SD) 144.40 (29.58) 85.20 (17.76) 118.1 (38.7)

Corrected age at second determination of
25(OH)D Mean (SD) 34.2 (1.2) 34.2 (1.5) 34.2 (1.3)

* Data were available for all infants except if specified. ** Weight below the tenth percentile according to Fenton
curves [26]. SD: standard deviation.

3.2. Outcomes

The main outcomes of the cohort according to 25(OH)D concentration are presented
in Table 3.

3.3. Analysis

Univariate analysis found that term (BPD or death: median 26.50, interquartile range
(25.57–27.79) vs. no BPD or death: median 28.29 interquartile range (27.36–29.43), p < 0.001)
and weight (BPD or death: median 775 g, interquartile range (635–892) vs. no BPD or death:
median 1050 g, interquartile range (900–1232), p < 0.001) were significantly different between
infants with BPD or death and those without. The occurrence of 25(OH)D ≥ 120 nmol/L
(50.0% vs. 43.9%, p = 0.53) was not significantly different between the two groups (with
BPD or death and without). Multiple pregnancy, Apgar score, sex, any mother’s milk given,
spontaneous birth, and maximum ventilation during the first 24 h of life were not significantly
different between groups. The results of the multivariable analysis are presented in Table 4
with the full saturated model and the final model. In the final model, term (OR 0.737,
95% CI [0.551–0.975], p = 0.035) and weight (OR 0.997, 95% CI [0.995–0.998], p = 0.001) were
significantly associated with BPD or death; there was no significant association with any
25(OH)D determination ≥120 nmol/L (OR 1.029, 95% CI [0.503–2.093], p = 0.936).
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Table 3. Main outcomes of the studied population.

Outcomes * N (%), Except if
Specified

Excessive 25(OH)D
N = 81

Normal 25(OH)D
N = 94

Total
N = 175

Intraventricular hemorrhage

1 6 (7.4%) 11 (11.7%) 17 (9.7%)
2 2 (2.5%) 4 (4.3%) 6 (3.4%)
3 1 (1.2%) 1 (1.1%)

4 (4.3%) 2 (1.1%)
4 3 (3.7%) 4 (4.3%) 7 (4.0%)

Cystic periventricular
leukomalacia 0 (0.0%) 5 (5.3%) 5 (2.9%)

Retinopathy of prematurity
1 9 (11.1%) 15 (16.0%) 24 (13.7%)
2 18 (22.2%) 14 (14.9%) 32 (18.3%)
3 7 (8.6%) 5 (5.3%) 12 (6.9%)

Unknown 9 (11.1%) 13 (13.8%) 22 (12.6%)

PDA requiring treatment 22 (27.2%) 30 (31.9%) 52 (29.7%)

Enterocolitis grade ≥ 2 2 0 (0.0%) 1 (1.1%) 1 (0.6%)
3 0 (0.0%) 2 (2.1%) 2 (1.1%)

Number of sepsis events
1 23 (28.4%) 19 (20.2%) 42 (24.0%)
2 4 (4.9%) 5 (5.3%) 9 (5.1%)
3 1 (1.2%) 1 (1.1%) 2 (1.1%)

BPD grade
No BPD 18 (22.8%) 22 (23.9%) 40 (23.4%)

Mild 29 (36.7%) 38 (41.3%) 67 (39.2%)
Moderate 24 (30.4%) 31 (33.7%) 55 (32.2%)

Severe 8 (10.1%) 1 (1.1%) 9 (5.3%)

Moderate or severe BPD or death 34 (42.0%) 34 (36.2%) 68 (38.9%)

Moderate or severe BPD 32 (39.5%) 32 (34.0%) 64 (36.6%)

Death before 36 weeks corrected age 2 (2.5%) 2 (2.1%) 4 (2.3%)

* Data were available for all infants except if specified. BPD: bronchopulmonary dysplasia; PDA: persistent
ductus arteriosus.

Table 4. Multivariable analysis to evaluate the risk of bronchopulmonary dysplasia or death taking
into account the classically described factors and the occurrence of a 25(OH)D ≥ 120 nmol/L.

Variables OR 95% CI * p-Value

Full model

Any 25(OH)D determination ≥ 120 nmol/L 1.011 0.475–2.145 0.977
Weight (g) 0.997 0.994–0.999 0.019

Term (weeks) 0.661 0.436–0.989 0.046
Multiple pregnancy 1.881 0.855–4.248 0.120

Sex, female 0.530 0.242–1.134 0.106
Maximal ventilation during the first 24 h 0.838 0.210–3.743 0.806

Any mother’s milk administrated 1.237 0.520–3.011 0.634

Apgar at 5 min
8–10 1.000
4–7 0.912 0.402–2.041 0.823
0–3 0.795 0.147–4.108 0.782

Spontaneous birth 0.631 0.223–1.770 0.381

Final model

Any 25(OH)D determination ≥ 120 nmol/L 1.029 0.503–2.093 0.936
Weight (g) 0.997 0.995–0.998 0.001

Term (weeks) 0.737 0.551–0.975 0.035

* 95% CI: 95% confidence interval.

A post hoc analysis was performed to evaluate whether the occurrence of a 25(OH)D
above 150 nmol/L was associated with the occurrence of BPD or death. Again, only term (OR
0.736, 95% CI [0.551–0.971], p = 0.033) and weight (OR 0.997, 95% CI [0.995–0.999], p = 0.001)
were significantly associated; there was no significant effect of 25(OH)D > 150 nmol/L (OR
1.291, 95% CI [0.558–2.982], p = 0.548).
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4. Discussion

As reported herein, a high frequency of excessive 25(OH)D levels with high enteral
intakes of vitamin D has been reported [15–17] and the recommendations from the Euro-
pean Society of Paediatric Gastroenterology, Hepatology and Nutrition have been updated
with a decreased recommended intake during enteral nutrition (400–700 IU daily) and an
increased recommended intake during parenteral nutrition [29,30].

Unlike the results obtained in an animal model [12–14], the present study did not find
that excessive 25(OH)D concentration was a risk factor for BPD or death. This result may
be related to the temporality of the excessive concentration, as in animal studies native
vitamin D was administrated throughout the gestation period [12,13] or 1,25(OH)2D was
administrated immediately at birth [14]. With such early administration, the lungs are more
immature and their development may be severely impaired. We chose to study 25(OH)D
at the first month because the frequency of excessive concentrations at birth in preterm
infants is very low [31–33]. In France, Courbebaisse et al. reported that in the general
population of newborns, 93% of cord blood concentrations were below 75 nmol/L [34],
and Papalia et al. reported that in infants born below 29 weeks gestational age, 74% had
a cord blood concentration ≤75 nmol/L [35]. In France, the current recommendation for
vitamin D supplementation during pregnancy is to administer 100,000 IU once during the
seventh month of pregnancy. This recommendation was followed in 88% of the pregnant
patients in a recent large cohort study [34] and may explain these results. Furthermore,
the vitamin D intake during parenteral nutrition was low herein (55 IU daily), and the
median duration of parenteral nutrition was 14 days. Taking into account these aspects
and the results of the study reported by Fort et al. (who described the increase in 25(OH)D
in preterm infants receiving 200, 400, and 1000 IU daily) [9], we estimated that the risk of
early excessive concentration was low in the study population.

The upper limit of normal 25(OH)D was established in accordance with the current rec-
ommendation of the European Society for Paediatric Nephrology for infants with chronic
kidney disease [28,36] and recent French and European recommendations for preterm
infants [29,37]. It was justified by an increase in mortality with higher concentrations in
the general population [38,39]. This threshold is reinforced by the results of a case series
study that identified 16 preterm infants referred to nephrology clinics for symptomatic
hypervitaminosis D with 25(OH)D concentrations between 119 and 350 nmol/L [11]. In
two previous studies, higher concentrations were associated with a high frequency of
hypercalciuria [15,16]. However, it remains possible that the effect of excessive 25(OH)D
concentration on lung development necessitates concentrations above 120 nmol/L, al-
though the results of the post hoc analysis with concentrations above 150 nmol/L do not
support this hypothesis.

The next factor that could explain the discrepancy between the results observed in the
animal model reported by Chen et al. [14] and the present study is that in this animal study
the active form of vitamin D, namely 1,25(OH)2D, was used, whereas native vitamin D was
used herein, according to clinical practice. Using 1,25(OH)2D, the physiological regulation
of the production of 1,25(OH)2D is circumvented, even though the limiting factor of this
synthesis as classically described is the availability of 25(OH)D in preterm infants [40],
but the regulation in extremely and very preterm infants and in particular the function of
the C3 epimers are still not fully elucidated [41,42]. The results of the studies reported by
Wang et al. and Mandell et al. in rodent pups exposed to hyperoxia receiving native
vitamin D demonstrated improved lung histology but 25(OH)D was measured at low and
normal levels, not allowing conclusions on supraphysiological doses [3,43]. However, the
results reported by Yurt et al. and Sakurai et al. using supraphysiological doses of native
vitamin D during rat gestation demonstrated deleterious consequences on the lung with
high doses even without oxygen exposure [12,13].

The main limitation of this study is the absence of determination of 25(OH)D at birth;
some infants from both groups may have experienced an early deficiency in 25(OH)D,
which is a recognized risk factor for BPD [4,6], and they may not be equally distributed be-
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tween groups, decreasing the difference between groups for the primary outcome. Despite
this limitation, these results are important because they show that in the absence of an early
determination of 25(OHD), a 25(OH)D concentration above 120 nmol/L before 36 weeks
corrected age is not a significant risk factor for BPD or death. In addition, there does not
seem to be a great difference in terms of morbidity according to 25(OH)D concentration
herein, although this was not formally tested to avoid multiplicity of comparisons. Another
limitation is the retrospective nature of this study. Some variables such as ethnicity which
are known to interfere with vitamin D metabolism [8] and BPD frequency [44] were not
available, and the risk of bias was increased.

Further studies are necessary to determine the appropriate modalities of administra-
tion of native vitamin D in extremely and very preterm infants as it is a modifiable factor
that could impact the risk of BPD [4,6] and the risk of sepsis [45–48], two essential factors
for the future of premature infants, but also nephrological and bone-related outcomes. The
prevention of vitamin D deficiency at birth and the effectiveness of treatment with native
vitamin D in infants with depleted and normal levels at birth should be evaluated with a
careful monitoring of respiratory and infectious outcomes. Retrospective studies may give
us clues (indication and dosage regimen) for further randomized control trials.
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