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Abstract: Schizophrenia, a severe mental illness affecting about 1% of the population, manifests
during young adulthood, leading to abnormal mental function and behavior. Its multifactorial etiol-
ogy involves genetic factors, experiences of adversity, infection, and gene–environment interactions.
Emerging research indicates that maternal infection or stress during pregnancy may also increase
schizophrenia risk in offspring. Recent research on the gut–brain axis highlights the gut micro-
biome’s potential influence on central nervous system (CNS) function and mental health, including
schizophrenia. The gut microbiota, located in the digestive system, has a significant role to play in
human physiology, affecting immune system development, vitamin synthesis, and protection against
pathogenic bacteria. Disruptions to the gut microbiota, caused by diet, medication use, environmen-
tal pollutants, and stress, may lead to imbalances with far-reaching effects on CNS function and
mental health. Of interest are short-chain fatty acids (SCFAs), metabolic byproducts produced by gut
microbes during fermentation. SCFAs can cross the blood–brain barrier, influencing CNS activity,
including microglia and cytokine modulation. The dysregulation of neurotransmitters produced by
gut microbes may contribute to CNS disorders, including schizophrenia. This review explores the
potential relationship between SCFAs, the gut microbiome, and schizophrenia. Our aim is to deepen
the understanding of the gut–brain axis in schizophrenia and to elucidate its implications for future
research and therapeutic approaches.
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1. Introduction

Schizophrenia is a severe psychiatric condition that results in a combination of
hallucinations, delusions, and profoundly chaotic cognitive processes and behavior [1].
Schizophrenia is a multifactorial disease; its etiology involves a combination of genetic
factors, as well as experiences of adversity, infection, and interactions between environ-
mental and genetic influences [2–7] (Figure 1). The quantity of individuals diagnosed with
schizophrenia witnessed a 65% surge in 2019 compared to the figures from 1990 [8]. Notably,
there exists compelling evidence that 85% of individuals diagnosed with schizophrenia
experienced childhood trauma [9].

Over the past few decades, the relationship between the gut, microbiota, and the brain
has been a subject of significant attention. Extensive experimental evidence highlights the
substantial influence that the microbiota can have on both gut and brain functions [10,11].
Communication between the gut and brain occurs in both directions, primarily through
various pathways [12]. Recent studies on the gut–brain axis have provided insights into
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the possible impact of the gut microbiome on the functioning of the central nervous system
(CNS) and on mental health conditions such as schizophrenia [13].

The gut microbiota, a diverse community of microorganisms residing in the gastroin-
testinal tract, plays a crucial role in human physiology and pathology, affecting various
biological functions like the maturation of the immune system, the synthesis of essential
vitamins, and protection against pathogenic bacteria [14–16]. During early life, microbial
colonization begins before birth, with delivery mode and environmental factors influencing
the composition of the gut microbiota [17–20]. Disruptions to the gut microbiota, caused
by changes in diet, medication use, environmental pollutants, and stress, may lead to
imbalances that could have far-reaching effects on CNS function and mental health [21,22].

Especially noteworthy within the context of schizophrenia are short-chain fatty acids
(SCFAs), which are metabolic byproducts produced by gut microbes during the fermentation
process [23–25]. SCFAs have been found to cross the blood–brain barrier and can influence
CNS activity, including the modulation of microglia activity and cytokine production [26].
Dysregulation of neurotransmitters like glutamate, γ-aminobutyric acid (GABA), dopamine,
and serotonin, produced by gut microbes or their precursor molecules, may also contribute
to CNS disorders, including schizophrenia [27–35].

The objective of this review is to investigate and elucidate the possible connection
involving SCFAs, the gut microbiome, and schizophrenia. By synthesizing the existing
literature on this topic, our goal is to deepen our comprehension of the gut–brain axis in
schizophrenia and its implications for future research and therapeutic strategies.
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Figure 1. Various factors that can trigger schizophrenia.

2. Navigating Schizophrenia
2.1. Schizophrenia: Characteristics, Co-Occurring Disorders, and Prodromal Phase

Schizophrenia impacts approximately 1% of the population, usually manifesting dur-
ing early adulthood, and persisting throughout an individual’s life, with a higher risk
observed in males [36,37]. Positive symptoms of schizophrenia include delusions, halluci-
nations, and disordered thinking, while negative symptoms involve a loss of motivation
and emotional expression [38,39]. It is essential to emphasize that not all individuals with
schizophrenia are involved in criminal activities. However, in some cases, delusions, hal-
lucinations, or difficulties in social interactions may lead to such acts [40]. Additionally,
many individuals with schizophrenia experience co-occurring mental disorders, such as
depression and anxiety disorders [41]. Regrettably, the lifetime prevalence of suicide among
individuals with schizophrenia is approximately 10% [40]. Impaired cognitive function is a
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significant feature of schizophrenia [42], and an ongoing debate exists about the nature and
progression of cognitive deficits throughout the course of the disorder [43]. Furthermore,
schizophrenia often occurs after a prodromal phase, which includes attenuated positive
symptoms, mood symptoms, and cognitive deficits [44]. However, these prodromal symp-
toms are often underestimated by both the individuals experiencing them and society,
leading to a lack of recognition that they may serve as potential warning signs [45].

2.2. Understanding Schizophrenia: Multifaceted Insights
2.2.1. Etiology of Schizophrenia: Genetic and Environmental Factors

Schizophrenia is closely correlated with genetic factors, particularly involving specific
chromosomal regions such as 22q11–13, 6p, 13q, 8p, and 1q21–22, which have been linked
to its pathogenesis [2,3]. However, genetic studies have encountered difficulties because the
genes implicated often lack consistent associations and are challenging to reproduce [46].
Even though schizophrenia has a high heritability, about 60% of all schizophrenia patients
do not have a familial history of the condition [47]. Childhood trauma experiences have
shown a strong association with schizophrenia, especially in individuals who are genetically
vulnerable. Moreover, adverse childhood experiences can impact the development of psy-
chiatric disorders in general [48]. Reports suggest that individuals who faced adversity dur-
ing childhood have a 2.78 times higher likelihood of developing psychosis than those who
did not experience such adversity [4]. Moreover, repeated exposure to urbanization-related
factors during the developmental period could increase the risk of schizophrenia [49]. Fur-
thermore, there is a connection between a history of autoimmune diseases and childhood
infections and an elevated risk of developing schizophrenia [5,6]. Maternal genital or re-
productive infections have been found to elevate the risk of schizophrenia in offspring [50].
Furthermore, stress or infection during pregnancy, along with maternal malnutrition, can
affect fetal brain development and increase the likelihood of schizophrenia [51].

Indeed, exposure to infectious pathogens and inflammatory stimuli profoundly im-
pacts the brain and behavior [52]. For instance, animal studies show that infection with
Toxoplasma gondii alters behavior and affects the functioning of neurotransmitters, while
in humans, Toxoplasma gondii infection is associated with symptoms similar to those
observed in patients with schizophrenia [53]. Notably, in patients with schizophrenia,
CD8 T cells, which are vital for facilitating long-lasting immunity, have been found to
be downregulated [54]. Toxoplasma gondii infection induces the production of various cy-
tokines by microglia, astrocytes, and neurons [55]. Additionally, it increases dopamine
release, the amount of which correlates with the number of infected cells [56]. Apart from
Toxoplasma gondii, schizophrenia has also been linked to other infections likencluding the mod-
ulation of microglia activity and cytokine Chlamydophila psittaci, Chlamydophila pneumoniae,
Human Herpesvirus 2, Borna Disease Virus, and Human Endogenous Retrovirus W. [57]. Notably,
a study found that Toxoplasma gondii infection affected the gut microbiome of mice [58],
highlighting the intricate interplay between environmental and genetic factors in the devel-
opment of disorders, emphasizing the significance of considering multiple factors in the
pathogenesis of schizophrenia [7].

2.2.2. Neural Connectivity and Brain Abnormalities in Schizophrenia

Schizophrenia is associated with deficits in neural connectivity, that are associated
with multiple brain development processes, such as myelination, synaptic pruning, and the
development of inhibitory neural networks. Synaptic pruning is a critical process during
brain development in which connections between neurons, known as synapses, are modi-
fied and optimized. Myelination involves the formation of a protective layer called myelin
around nerve fibers or axons. Additionally, the physiological maturation of inhibitory
neural networks is essential for proper brain function [39,59,60]. During adolescence, the
brain undergoes a reorganization of cortical connections through synaptic pruning. Ex-
cessive or insufficient pruning during this period can contribute to the development of
schizophrenia [61]. The brain consists of gray matter, including nerve cell bodies, dendrites,
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local axon branching, glial cells, and blood vessels, as well as white matter, composed
mostly of long-distance axon bundles [62]. Throughout development and maturation, the
brain experiences changes in both gray and white matter. Disruptions in these changes
can lead to difficulties in maintaining proper coordination between different brain regions,
potentially contributing to schizophrenia [63]. In healthy individuals, the gray matter-
to-white matter ratio tends to decrease with age, whereas in patients with schizophrenia,
the white matter volume does not increase. Instead, the gray matter-to-white matter ratio
increases with age [64]. Patients with schizophrenia also exhibit a significant decrease
in white matter compared to healthy subjects, particularly in regions such as the frontal
corona radiata (nerve fiber bundles in the frontal lobe) and corpus callosum (a structure
connecting the two brain hemispheres) [65]. Furthermore, a consistent reduction in gray
matter has been observed in patients with chronic schizophrenia compared to individuals
without the condition, regardless of whether they received treatment or not [66].

2.2.3. Neurotransmitters and Their Role in Schizophrenia

Neurotransmitters are naturally occurring chemicals that facilitate communication be-
tween neurons throughout the body and play a vital role in regulating various physiological
processes [67]. They are released at the synapse, which is the gap between the presynaptic
and postsynaptic membranes. After their release, neurotransmitters can either be broken
down by enzymes or reabsorbed into the presynaptic neuron’s terminal through reuptake
mechanisms for recycling. When neurotransmitters attach to receptors on the postsynaptic
membrane, ligand-gated ion channels can either open (causing an excitatory response) or
close (resulting in an inhibitory response). This process regulates the passage of Ca2+, Na+,
K+, and Cl− ions [68].

Dopamine is a neurotransmitter involved in regulating motor functions, sensory per-
ception, and reward signaling in the mammalian brain [69]. In patients with schizophrenia,
there is subcortical dopamine dysfunction, characterized by elevated dopamine function
in the presynaptic region of the associative striatum. Furthermore, individuals with an
increased risk of developing schizophrenia demonstrate comparable presynaptic dopamine
irregularities in the associative striatum [27].

Norepinephrine, produced in the locus coeruleus, plays a role in various functions in the
CNS, including arousal, attention, motivation, reward, learning, and memory regulation [70,71].
Dysregulation in the locus coeruleus–norepinephrine system, caused by stress or genetic
vulnerability, is associated with the cognitive symptoms of schizophrenia [28]. Additionally,
when administered with alpha-methyl-tyrosine, an inhibitor of the initial enzyme in the
catecholamine (dopamine, norepinephrine, and epinephrine) synthesis pathway, it has been
shown to decrease symptoms of schizophrenia [72].

Glutamate, an excitatory neurotransmitter, has a vital function in facilitating ner-
vous system plasticity and is capable of causing cell death through a process called
“excitotoxicity”. It also plays a significant role in memory storage [73]. The enzyme
glutamine synthetase, which is expressed in brain astrocytes, can convert glutamate into
glutamine, and from glutamine, phosphate-activated glutaminase in glutamatergic neurons
can convert it back to glutamate [74]. NMDA glutamate receptors are heteromeric ion
channels that are activated by the binding of D-serine/glycine and glutamate. They are
controlled by astrocytes and are crucial for synaptic plasticity, learning, and memory. The
glutamate hypothesis suggests that a deficiency in NMDA glutamate receptors may lead
to symptoms of schizophrenia [29,75–77]. Dysfunctions such as NMDAR deficiency can
result in pyramidal neuron hyperactivity and increased presynaptic glutamate release,
contributing to the development of schizophrenia [30]. Furthermore, elevated levels of
glutamine were detected in individuals with schizophrenia, possibly as a result of increased
presynaptic release of glutamate caused by NMDAR dysfunction [31]. Additionally, the
excitatory amino acid transporters (EAATs) bind to and absorb glutamate. Decreased
expression of EAAT1 and EAAT2 was observed in an elderly group with schizophrenia [78],
and EAAT1 knockout mice exhibited positive symptoms of schizophrenia [79].
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Moreover, excess serotonin induced by stress in the anterior cingulate cortex and
the dorsolateral prefrontal cortex is associated with schizophrenia [32]. Serotonin is a
neurotransmitter that regulates neuropsychological processes and neural activity and also
influences gastrointestinal functions, such as intestinal motility, bladder control, and cardio-
vascular function [80]. Tryptophan, the only precursor from which serotonin is synthesized,
is crucial not just for emotional regulation, sleep, appetite, and pain but also for the func-
tioning of the colon’s muscles and intestinal secretions [81]. In the context of the kynurenine
pathway, which is responsible for the degradation of tryptophan, the average tryptophan
catabolism index and kynurenine/tryptophan ratio showed significantly elevated levels of
expression in the prefrontal cortex of the group of patients with schizophrenia [82].

Histamine is a neurotransmitter that plays a significant role in immune response,
inflammation, wakefulness, appetite control, and cognition, and it is involved in various
CNS disorders, including schizophrenia [33,83]. The central histamine activity was detected
to be heightened in patients with chronic schizophrenia, and the lack of the histamine
receptor gene resulted in the manifestation of negative symptoms of schizophrenia [84–86].

GABA is an inhibitory neurotransmitter, and aside from schizophrenia, conditions
such as anxiety and mood disorders are linked to reduced GABA levels [87]. Postmortem
examinations of schizophrenia patients have revealed deficiencies in GABA, indicating a
potential contribution to the pathophysiology of schizophrenia [34].

2.2.4. Autonomic Nervous System and Hormonal Factors in Schizophrenia

The autonomic nervous system (ANS) has a vital role in controlling the homeostasis
of various bodily functions, including heart rate, respiratory rate, and digestive function.
Studies have indicated that ANS function is slower in patients with schizophrenia compared
to healthy individuals [88]. Additionally, patients with schizophrenia exhibit suppressed
heart rate variability (HRV), and this reduction in HRV has been shown to negatively impact
cognitive function in schizophrenia [89]. In the hypothalamic–pituitary–adrenal (HPA) axis,
the pituitary gland releases adrenocorticotropic hormone (ACTH), which then triggers the
production and release of glucocorticoids in the adrenal cortex [90]. Glucocorticoids are
essential for normal brain development, and any disturbances in their levels, whether they
are suppressed or elevated, can have harmful effects on brain development [91,92]. As a
result, it has been hypothesized that elevated levels of glucocorticoids may contribute to
the development of schizophrenia [93].

2.2.5. Immune System Dysregulation and Cytokine Abnormalities in Schizophrenia

Schizophrenia is linked to compromised immune system functioning, and individuals
with schizophrenia have displayed abnormal cytokine levels [94]. Cytokines play a crucial
role in regulating cell development, growth, survival, and differentiation through autocrine
or peripheral secretion pathways [95]. Systemic inflammation has the ability to penetrate the
blood–brain barrier (BBB) and trigger neuroinflammation. Peripheral cytokines generated
by inflammation can also influence mood and cognitive function with conditions such
as aging and obesity having potential impacts on mood and cognitive processes [96,97].
Peripheral cytokines can signal to neurons, astrocytes (which regulate the formation and
development of neural circuits in the CNS), and microglia (playing important roles in
inflammatory processes and brain development, plasticity, and cognition) [98–101]. These
cytokine signals are involved in processes like neurogenesis, synapse formation, and
plasticity [102]. Increased levels of IL-8, IL-1 beta, and IL-6 in the cerebrospinal fluid have
been observed in patients with Schizophrenia Spectrum Disorders (SSDs) in comparison
to those without the condition, with IL-6 being higher in SSD patients than in those with
chronic schizophrenia [103]. Moreover, decreased the volume of cortical gray matter in
individuals with schizophrenia was found to be more pronounced in those with high
expression of inflammatory cytokines [104]. Chemokines, a subset of cytokines with
chemotactic properties, also have neuroimmunomodulatory effects. Among patients with
schizophrenia, higher levels of chemokines have been reported, especially in elderly and
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chronic patients [105,106]. Additionally, enhancers activated in the B-lymphocyte lineage,
which is a tissue with important acquired immune functions, have been found to be
associated with schizophrenia [107].

2.2.6. The Role of Astrocytes and Microglia in Schizophrenia: Neurodevelopmental and
Neuroinflammatory Perspectives

Astrocytes and microglia have the ability to promote inflammation or reduce it, de-
pending on the type of injury or damage they encounter [108]. After a central nervous
system injury, astrocytes and microglia become active. Their classification as neurotoxic
(A1/M1) or neuroprotective (A2/M2) depends on their activation. Recent research in-
dicates that both astrocytes and microglia can exhibit varying levels of activation and
different phenotypes depending on the circumstances [109]. Furthermore, both astrocytes
and microglia engage in phagocytic activities, which involve the removal of nerve debris
from damaged tissues [110].

Astrocytes, as CNS tissue cells, have a vital role in the development of neural circuits
and synaptic activity [99,111]. In the healthy brain, astrocytes have a crucial role in regulat-
ing the brain’s environment, providing energy sources to neurons, overseeing synaptic activ-
ity, and managing the balance of fluid, ions, pH levels, and neurotransmitters [112]. When
there is neuroinflammation, it leads to the formation of type A1 reactive astrocytes, while in
the case of ischemia, type A2 reactive astrocytes are generated. These two types of reactive
astrocytes have distinct functions and responses in the brain [113]. Selectively removing
astrocytes or altering their numbers can lead to cognitive dysfunction [114]. In individuals
with schizophrenia, there are modifications in the density and structure of astrocytes, along
with shifts in the expression of several proteins, including glial fibrillary acidic proteins,
aquaporin 4, S100β, Glutaminase, thrombospondin-1, and EAAT2 [115–118]. Furthermore,
delayed differentiation and abnormal cell forms have been linked to schizophrenia [119].

Microglia, another type of CNS tissue cell, also play a critical role in CNS diseases [26].
Microglia are brain cells that serve as the primary immune regulators within the central ner-
vous system. They contribute to the preservation of functional neural networks, promote
the survival and differentiation of oligodendrocytes, and initiate programmed cell death
in neurons and neural progenitors, perform immune surveillance, mediate inflammatory
responses, and protect against unwanted substances [120]. Microglia can switch between
an M1 pro-inflammatory phenotype and an M2 anti-inflammatory phenotype in reaction
to alterations in their local environment [121]. They contribute to neural circuit plasticity
by regulating synaptic structure and function, particularly involving glutamatergic and
GABAergic neurotransmission [122,123]. Microglia can be activated by stress and may
impair working memory [124]. “Priming” is the term used to describe the activation and
multiplication of microglia in response to neurodegeneration and the buildup of abnor-
mally misfolded proteins. This priming heightens microglia’s sensitivity to subsequent
inflammatory triggers, potentially leading to an excessive inflammatory response [125].

In neuropsychiatric disorders, exposure to traumatic experiences during adolescence
in offspring with prenatal experiences can increase vulnerability to stress and raise the
risk of neuropsychiatric disorders [126]. Active microglia have been detected in patients
with schizophrenia as well [127]. The development and activation of microglia can also
be impacted by the gut microbiome [10]. Germ-free mice exhibit an immature microglial
innate immune response [128].

2.2.7. Neurotrophic Factors and Schizophrenia: The Role of BDNF

Neurotrophic factors, comprising neurotrophins and neuropeptides, are protein
molecules released to control the viability, growth, and normal activities of neurons in
both the central and peripheral nervous systems. They have a pivotal function in normal
neural activity and are also implicated in responses to trauma, ischemia, and neuroinflam-
matory reactions [129]. Among these factors, BDNF (Brain-Derived Neurotrophic Factor),
a neurotrophin, plays a central role in governing synaptic plasticity and the generation
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of new neurons in the brain [130]. Variations in neurotrophins, such as BDNF, have been
associated with schizophrenia and are believed to be part of the molecular mechanism
underlying cognitive dysfunction during neurodevelopmental changes [131]. Individuals
with schizophrenia typically exhibit reduced blood levels of BDNF [132]. Furthermore, lev-
els of BDNF have been observed to be reduced in the cortex and hippocampus of germ-free
rodents [133]. In rats, the gut microbiome has the potential to impact the expression of
brain BDNF through the involvement of gut hormones [134].

3. Exploring the Gut Microbiota and Its Multifaceted Impacts
3.1. The Gut Microbiota: Impacts on Human Physiology, Immune Function, and Brain Health

The microbiota resides in various regions of the body, including the skin, conjunc-
tiva, oral cavity, airway, vagina, and gastrointestinal tract [135]. Among them, the gut
microbiota is a multifaceted and constantly changing community of microorganisms that
engage with both the surroundings and the human body [136]. The predominant bacte-
rial phyla inhabiting the intestine consist mainly of Firmicutes, which include species like
Lactobacillus, Clostridium, and Enterococcus, as well as Bacteroidetes, encompassing species
like Bacteroides. In addition, smaller quantities of Actinobacteria (including Bifidobacteria),
Proteobacteria (such as Escherichia coli), Fusobacteria, Verrucomicrobia, and Cyanobacteria are
also present [137–140]. Approximately 1014 bacteria reside in the human gut, exceeding the
number of human cells by a factor of 10 and possessing more than 100 times the amount of
genomic content compared to human genomic DNA [141].

The gut microbiota has a crucial function in human physiology and disease, aiding
in the formation of gastric mucus and promoting enzymatic activity within the mucous
lining to support the digestive system [14]. Some bacteria in the gut microbiota serve
protective functions against pathogenic bacteria, acting as a barrier and defending against
toxins [15]. Additionally, they contribute to immune system development, synthesize essen-
tial vitamins [16]. Moreover, the gut microbiota influences epithelial cell proliferation [142]
and insulin resistance [143], fundamentally impacting immune and metabolic functions,
and contributing to the regulation of central nervous system homeostasis [144]. Certain
miRNAs, which are responsible for regulating gene expression by triggering gene silencing
or inhibiting translation, possess the capability to penetrate bacterial cells and regulate their
growth and gene expression. Moreover, the gut microbiota can also impact the intestinal
expression of miRNAs [145]. Studies have shown that bacterial peptidoglycan derived
from the gut microbiota can travel to the brain and activate specific pattern recognition
receptors (PRRs) within the innate immune system [146].

3.2. Early-Life Microbiota: Influences of Birth Mode and Health on Neonatal Gut Microbiota

Microbiota are already present in the placenta, amniotic fluid, and umbilical cord,
indicating that microbial colonization begins even before birth [17–19]. However, the
neonatal gut microbiota closely resemble the microbiota encountered during childbirth,
and the mode of delivery significantly influences the composition of the neonatal gut
microbiota [20]. Babies delivered vaginally are colonized by bacteria from the maternal
feces and vaginal tract, whereas babies born via caesarean section acquire different bacteria
from healthcare workers, the surrounding environment, and medical equipment [147].
Embryologically, infants delivered by caesarean section and those born through natural
childbirth show variations in their early-life microbiota, and those with compromised
health often have a less diverse microbial population [148].

3.3. Influences on Gut Microbiota Composition: Diet, Health, Medications, and Aging

The process of gut microbiota colonization undergoes changes based on variations in
diet or health conditions [21]. In other words, the intestinal microflora balance is influenced
by multiple external factors, including dietary habits, medication usage, environmental pol-
lutants, and stress [22] (Figure 2). Healthy dietary components like a healthful plant-based
diet, vegetables, and magnesium are associated with lower levels of pro-inflammatory
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bacteria, such as E. coli and Clostridium innocuum, while showing a positive correlation with
beneficial anaerobic bacteria like F. prausnitzii and Agathobaculum butyriciproducens [149].
On the contrary, evidence suggests that the consumption of animal-based foods leads to
an elevation in the population of bile-tolerant microorganisms (such as Alistipes, Bilophila,
and Bacteroides). Additionally, the genes within these bacteria responsible for encoding mi-
crobial bile salt hydrolase, a key enzyme for secondary bile acid production, show notably
increased activity when included in an animal-based diet [150]. Substantial rises in bile
acids and their metabolites found in fecal matter could have played a role in the disrup-
tion of the gut microbiota and may have consequences for the risk of colon cancer [151].
Interestingly, it has been noted that a high intake of saturated fats from animal sources can
lead to an elevated presence of Biophila wadsworthia, a member of the Desulfovibrionaceae
family known for triggering acute inflammation through taurine respiration, resulting in
the production of hydrogen sulfide. Conversely, when mice were fed unsaturated fats, such
as polyunsaturated fats, there was a notable increase in the abundance of beneficial bacteria
like Lactobacillus, known for its probiotic properties, and Akkermansia muciniphila, a species
thriving in nutrient-rich environments [152]. A high-fat diet (HFD) induces an imbalance
in the gut microbiota and inhibits the metabolism of butyrate, one of the SCFAs produced
by the gut microbiota [153]. Furthermore, prolonged deficiency in dietary fiber can result
in enduring changes in the composition of the gut microbiome, consequently affecting the
development and progression of various diseases [154]. The administration of antibiotics
can significantly reduce the richness and diversity of the gut microbiota, leading to reduced
levels of serotonin, tryptophan hydroxylase 1, and secondary bile acids in antibiotic-treated
rats [155]. The gut microbiota is maintained in a balanced state through enteroendocrine
signals and immune responses. When this balance is disrupted, an intestinal bacterial
imbalance, also known as “dysbiosis”, occurs, characterized by an increase in specific
gut bacteria and elevated enterotoxin levels [156]. This imbalance is associated with an
abnormal immune response, leading to the production of inflammatory cytokines [157].
Disruptions in the gut microbiota like these can increase susceptibility to disease [158].
Moreover, the gut microbiota undergoes changes with aging, and there is a significant
difference in the microbiota composition between young and elderly adults [159]. A study
revealed that certain bacterial species in the aging microbiota promote inflammation when
the gut microbiota of an older mouse are transferred to a germ-free young mouse [160].
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3.4. Intestinal Epithelial Cells and the Microbiota–Gut–Brain Axis: Implications for Immune
Function, CNS Disorders, and Overall Health

The gut microbiota play a vital role in regulating brain function and behavior through
the “microbiota-gut-brain” (MGB) axis [13] (Figure 3). The interaction between the gut and
the brain is a two-way one and primarily takes place through several routes, which include
the ANS, specifically the enteric nervous system (ENS) and vagus nerve (VN), the HPA
axis, the neuroendocrine system, the immune system, and metabolic pathways [12].
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The ANS governs involuntary physiological functions such as heart rate, blood pres-
sure, respiration, and digestion. It comprises the sympathetic nervous system (SNS),
parasympathetic nervous system (PNS), and ENS [161]. Activation of the SNS triggers the
“fight or flight” response, leading to increased heart rate and blood pressure, inhibition of
glycogenolysis, and reduced gastrointestinal peristalsis. In contrast, activation of the PNS
induces the “rest and digest” response, resulting in a lower heart rate and blood pressure
and the resumption of gastrointestinal peristalsis and digestion [162]. The ENS regulates
most of the intestinal functions to maintain a healthy microbiota [163]. Neurotransmitters
and molecules produce signals that are conveyed to the brain via afferent VN fibers associ-
ated with the parasympathetic nervous system (PNS). In turn, the brain sends signals to the
enterochromaffin cells (ECCs) and enteroendocrine cells (EECs) within the gut wall, which
subsequently engage with the mucosal immune system through efferent VN fibers [164].
Stimulating the VN fortifies the intestinal barrier, lessens inflammation in the peripheral
system and restrains the release of pro-inflammatory cytokines [165]. The HPA axis is a
physiological stress system responsible for producing glucocorticoids [166]. Glucocorti-
coids have the potential to impact the brain and behavior, with chronic exposure to high
levels associated with depression, while low levels are found among patients with post-
traumatic stress disorder [92]. Stress, regulated via the HPA axis, can have consequences
on the makeup of the gut microbiota and vice versa [167].

Intestinal epithelial cells (IEC) create a physical barrier separating the intestinal lumen
from immune cells, and they fulfill diverse immunological roles. They generate and re-
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spond to different cytokines, as well as express molecules that interact with lymphocytes,
and have pattern-recognition receptors in their composition [168]. Studies comparing the
brains of animals that are colonized (specific pathogen-free, SPF) and those that are germ-
free (GF) have shown a significant downregulation of genes related to microglia, indicating
that the gut microbiota are crucial for microglia maturation and normalization [128]. The
structural elements of bacteria engage with the immune system through Toll-like receptors
(TLRs), and gut microbes can activate these receptors as well [169]. In the CNS, astrocytes,
microglia, and oligodendrocytes express TLRs, which play roles in innate immunity, CNS
autoimmunity, neurodegeneration, and tissue damage [170,171]. Activation of TLRs can
induce pro- and anti-inflammatory cytokines [172]. As a result, disruptions or irregularities
in the gut–brain axis can result in CNS disorders [173], affecting not only intestinal inflam-
mation, chronic abdominal pain syndrome, and eating disorders, but also neurological
conditions including Alzheimer’s disease, Parkinson’s disease, autism spectrum disorder,
epilepsy, and major depressive disorder [13,35]. In pivotal studies, male germ-free mice
exhibited higher stress responses than normal control rats [133]. Germ-free mice also
exhibited heightened neuroendocrine reactions to stress, altered levels of neurotrophins in
the hippocampus and amygdala, decreased anxiety and nonspatial memory, and altered
brain monoamine neurotransmitter levels [174].

3.5. Gut Microbiota Metabolites and Their Impact on CNS Function: Focus on Short-Chain
Fatty Acids

The gut microbiota interacts with the CNS not only to regulate food digestion, im-
mune function, and enteroendocrine signal transmission but also through the produc-
tion of various metabolites, including substances like bile acids, SCFAs, glutamate, nore-
pinephrine, dopamine, GABA, serotonin, and histamine [175]. Among these metabolites,
SCFAs have a notable role to play and are generated through the fermentation process
of the gut microbiota [25]. SCFAs can pass through the blood–brain barrier (BBB) and
engage with microglia, exerting wide-ranging effects on CNS function [26]. SCFAs found
in the gut include acetate (C2), propionate (C3), and butyrate (C4) acids, valeric acid
(C5), caproic acid (C6), among others, with hydrocarbon tails containing one to six car-
bon atoms [128,176]. Various bacteria produce different SCFAs. Acetate is generated by
bacteria such as Bifidobacterium bifidum, Bifidobacterium infantis, and Bifidobacterium breve.
Propionate undergoes three distinct conversions by bacteria. Certain types of bacteria,
like Prevotella and Veillonella, are responsible for converting it into a specific compound
called succinic acid. The acrylate pathway is utilized by certain bacterial groups, such as
Coprococcus, while the propanediol-dependent metabolic pathway is utilized by bacteria like
Roseburia inulinivorans and Blautia species. Butyrate is produced by bacteria from the
Lachnospiraceae and Ruminococcaceae families [177]. These SCFAs activate G protein-coupled
receptors (GPCRs), regulating immune responses, anti-inflammatory processes, reactive
oxygen species (ROS) induction, and cellular processes [178].

Butyric acid, one of the SCFAs, especially exerts notable influences on the generation
of various factors, including BDNF, which promotes the synthesis of neurotransmitters
in the CNS through the VN [168]. Additionally, butyric acid, along with acetic acid and
propionic acid, has been demonstrated to reduce the expression of genes in the hypothala-
mus involved in stress signaling, leading to improved behaviors related to stress reactivity
and anxiety when administered to mice [179]. Acetate, another SCFA, alters the levels
of neurotransmitters like glutamine, glutamate, and GABA in the hypothalamus and
increases the expression of neuropeptides associated with anorexia [180]. Furthermore, SC-
FAs have a wide range of impacts on the immune system. When the ratio of butyric acid to
caproic acid increases, the levels of regulatory T lymphocytes rise, while pro-inflammatory
T lymphocytes decrease, promoting immune homeostasis [181]. For instance, sodium bu-
tyrate inhibits histone acetylation, a process that plays a vital function in aging and memory
decline [182]. The gut microbiota also affects the production of serotonin in the colon by
influencing intra-intestinal chromaffin cells through the action of SCFAs [183].
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SCFAs have been associated with several mental disorders. For example, patients with
neuropathy show decreased levels of serotonin, GABA, and dopamine, as well as reduced
levels of butyrate, propionate, and acetate [184]. Additionally, the composition of the gut
microbiota and SCFA levels differ when comparing individuals with autism to healthy
controls. Transplanting the gut microbiota from autistic mice into healthy mice not only
leads to autism-like behavior but also results in lower levels of acetate and butyrate and
higher levels of valeric acid in the recipient mice [185].

The gut microbiota has a significant role to play in producing and consuming SCFAs
and mammalian neurotransmitters, influencing both the CNS and the ENS [186]. However,
specific neurotransmitters like GABA, dopamine, glutamate, and serotonin cannot cross
the blood–brain barrier directly. Instead, their precursors, which originate from tyrosine
and tryptophan, are transported through the blood–brain barrier and then transformed
into neurotransmitters within the brain [35]. Of these precursors, tryptophan is predom-
inantly absorbed by the intestine and metabolized by the gut microbiota through three
downstream pathways: the 5-hydroxytryptamine pathway, the kynurenine pathway, and
the indole pathway [187]. These metabolic pathways produce aryl hydrocarbon receptor
(AHR) agonists, which have the ability to limit inflammation in the CNS by influencing
astrocytes [188]. Moreover, the absorption of tryptophan in the intestine has regulatory
effects on the serotonin and glutamate systems [82].

4. Gut Microbiota Dysbiosis in Schizophrenia and Related Disorders

When comparing the metabolic processes involving glucose and lipids of SCFA-producing
bacteria and gut microbiota in schizophrenia patients to healthy individuals, SCFA-producing
bacteria were less abundant, and the gut microbiota showed abnormal glucose and lipid
metabolism [189]. In the comparison between schizophrenia patients and healthy controls,
researchers noted a higher abundance of anaerobic bacteria and oral cavity-associated bacteria
in the intestines of the patients than in the healthy controls. Remarkably, when researchers
transplanted Streptococcus vestibularis, an oral bacterium, into mice, it led to the development
of schizophrenia-like behavior [190]. Out of the 27 cytokines examined, which included
Eotaxin, IL-1β, IL-4, IL-6, IL-8, MIP-1a, and TNF-α, 7 cytokines exhibited significant el-
evations in schizophrenia patients when compared to healthy individuals. Conversely,
in the control group, seven other cytokines, such as IFN-γ, IL-9, IL-1ra, IL-13, MCP-1,
MIP-1b, and RANTES, notably decreased in schizophrenia patients. It was noted that
schizophrenia patients displayed a negative correlation between the reduced levels of
Faecalibacterium, Roseburia, and Butyricicoccus, which play a role in butyrate production,
and the aforementioned increased cytokines, while showing a positive correlation with the
decreased cytokines mentioned earlier [191]. The changes in the gut microbiota result in
the hypoactivity of N-methyl-D-aspartate (NMDA) and brain-derived neurotrophic factor
(BDNF)/glial-cell derived neurotrophic factor (GDNF) receptors, which regulate brain
plasticity, in schizophrenia patients [131,192]. When investigating the connection between
the gut microbiota and schizophrenia, researchers compared samples from schizophrenia
patients with those from healthy controls. They observed reduced gut microbiota diversity
in schizophrenia patients, with 23 operational taxonomic units (OTUs) out of 77 showing
increased abundance in the patient group compared to healthy controls. Additionally,
when mice were subjected to fecal transplants from individuals with schizophrenia, their
neurotransmitter levels in the hippocampus were affected, resulting in reduced levels of
glutamate and increased levels of glutamine and GABA [193]. Glutamate plays a cru-
cial role in synaptic plasticity. However, dysfunction in glutamate neurotransmission,
particularly disruptions in the signaling of ionotropic glutamate receptors (iGluRs), is
associated with schizophrenia and other neurological disorders [194]. Notably, butyrate
was also noted for its neuroprotective properties in animal models of Parkinson’s disease,
where it reversed reductions in histone acetylation associated with the disease [195,196],
and patients with schizophrenia showed a dysregulation of histone deacetylase [196].
Further insights emerged when researchers compared the fecal composition of inpatient
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schizophrenia patients, distinguishing between those with aggression (ScZ-Ag) and those
without (NScZ-Ag). Within the ScZ-Ag group, Prevotella increased, while Bacteroides,
Bifidobacterium, Faecalibacterium, Blautia, Collinsella, and Eubacterium_coprostanoligenes de-
creased. Furthermore, the ScZ-Ag group showed significantly lower levels of acetic acid,
propanoic acid, butyric acid, isobutyric acid, isovaleric acid, and isohexanoic acid in their
stool compared to the NScZ-Ag group [197]. Moreover, notable changes in the serum con-
centration of butyric acid were detected in individuals with schizophrenia. Initially, these
levels were similar to those in healthy controls, but they increased after treatment [198].
Among the SCFAs produced by gut microbes, valeric acid was found to protect brain
cells from excitotoxicity and cell death, while caproic acid, another SCFA, was shown to
influence cognitive function, with its levels found to be lower in schizophrenia patients
compared to healthy controls [24,199]. In individuals with schizophrenia, the concentra-
tion of isovaleric acid was notably elevated compared to healthy controls. Notably, a
strong inverse relationship was observed between higher isovaleric acid levels and reduced
RBANS scores for both immediate and delayed memory in schizophrenia patients [200]. In
patients with schizophrenia, a significant negative correlation was found between the ratio
of acetic acid to propionic acid and the sub-scores of working memory and reasoning on
the MCCB. This aligns with existing research indicating a connection between SCFA and
neurocognitive dysfunction [201].

5. Conclusions

In this review, our primary objective was to explore and shed light on the potential
relationship between schizophrenia, the gut microbiota, the gut–brain axis, and SCFAs.
We investigated whether SCFA, a metabolite produced by the gut microbiota, might be
associated with schizophrenia. Our findings suggest that SCFAs can traverse the blood–
brain barrier (BBB) and influence CNS activity, including the modulation of microglia
activity and cytokine production. Specifically, butyrate appears to impact epigenetic
processes, leading to increased histone acetylation.

It is essential to note that there has been limited research into how the gut microbiota
influences mental health, particularly in the context of schizophrenia. Most studies have
lacked large-scale human clinical trials, and the considerable variability in gut microbiota
composition and SCFA production among individuals makes it challenging to establish
a clear association with schizophrenia. Additionally, the precise mechanism through
which SCFA influences schizophrenia remains unclear, necessitating further research before
considering therapeutic applications.

Despite these limitations, our findings hold promise for potential future developments.
As the realm of research on the gut–brain axis and its impact on mental health continues
to grow, these studies may serve as potential indicators for identifying and predicting of
schizophrenia. Additionally, additional progress in this field could result in the creation
of innovative treatment approaches that target the gut microbiota for the management
of schizophrenia.

In conclusion, while our review highlights the potential link between SCFA, the gut
microbiota, and schizophrenia, it is crucial to acknowledge the current limitations and
the need for further research. As the scientific community delves deeper into this field,
an improved comprehension of the gut–brain axis in schizophrenia could offer valuable
insights into diagnosis, treatment, and patient outcomes.
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