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Abstract: In glucose-deprived conditions, ketone bodies are produced by the liver mitochondria,
through the catabolism of fatty acids, and are used peripherally, as an alternative energy source.
Ketones are produced in the body under normal conditions, including during pregnancy and the
neonatal period, when following a ketogenic diet (KD), fasting, or exercising. Additionally, ketone
synthesis is also augmented under pathological conditions, including cases of diabetic ketoacidosis
(DKA), alcoholism, and several metabolic disorders. Nonetheless, diet is the main regulator of total
body ketone concentrations. The KDs are mimicking the fasting state, altering the default metabolism
towards the use of ketones as the primary fuel source. Recently, KD has gained recognition as a
medical nutrition therapy for a plethora of metabolic conditions, including obesity and diabetes
mellitus (DM). The present review aims to discuss the role of ketones, KDs, ketonemia, and ketonuria
in DM, presenting all the available new evidence in a comprehensive manner.

Keywords: low-carbohydrate diet; low glycemic index; middle-chain triglycerides; carbohydrate
restriction; weight loss; obesity; prediabetes; β-hydroxybutyrate; acetoacetate

1. Introduction

Diabetes mellitus (DM) is a leading cause of morbidity, disability, and premature
mortality globally, multiplying the risk of developing cardiovascular disease (CVD) by 2 to
4 times [1–3]. The American Diabetes Association (ADA) classifies DM into four generic
types [4]. Type 1 DM (T1DM) is characterized by the destruction of the pancreatic β-cells by
an unknown autoimmune mechanism, usually resulting in absolute insulin deficiency [5],
and it also includes the latent autoimmune diabetes of adults (LADA). Type 2 DM (T2DM)
is hallmarked by a progressive loss of adequate insulin secretion from the β-cells as the
result of insulin resistance (IR) [6]. Special types of DM include those with monogenic
causes [neonatal diabetes and MODY (mature-onset diabetes of the young)], diseases of
the exocrine part of the pancreas (including cystic fibrosis, pancreatitis, etc.), drug- or
chemical-induced DM (e.g., use of glucocorticoids), as well as DM induced after surgical
operations (organ transplantation) [4]. Gestational DM (GDM) is the type diagnosed during
the second or third trimester of pregnancy, averting post-gestation [4,7,8]. It is the most
common complication of pregnancy and is associated with perinatal complications [8].

During the past decades, the global prevalence of T2DM and GDM has been increas-
ing [9], as a result of environmental and lifestyle changes [10]. The most common complica-
tions in DM include diabetic ketoacidosis (DKA) and microvascular and macrovascular
complications.

2. Ketones

In glucose-deprived conditions, ketone bodies are produced by the liver mitochondria
through the catabolism of fatty acids [11] (Figure 1). Ketones are energy-rich metabolites
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and consist of acetone, 3-β-hydroxybutyrate (3BHB), and acetoacetate (AcAc) [12]. Fatty
acids are used by the body as an alternative energy source and are oxidized to ketone bodies
under insufficient glucose availability or starvation conditions [13]. The liver is the main
organ producing ketone bodies, with fatty acids entering the mitochondria via carnitine
palmitoyltransferase (CPT-1) and participating in β-oxidation for the production of acetyl-
coenzyme A (acetyl-CoA) [14–16]. The produced ketone bodies are then transported
extrahepatically for further oxidation [13] and used peripherally as an alternative energy
source [11].
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The reference range of total ketone body concentrations in healthy adults has a circa-
dian rhythm and is approximately 100–250 µM [18]. However, in prolonged fasting and
other conditions, the concentration of ketone bodies can rise to ~1 mM or even 20 mM [18].
Ketones are produced in the body under normal conditions, including during pregnancy
and the neonatal period, when following a ketogenic diet (KD), fasting, or exercising [19].
Additionally, ketone synthesis is also augmented under pathological conditions, including
cases of hyperemesis gravidarum, DKA, alcoholism, and a variety of metabolic disorders.
Nonetheless, diet is the main regulator of total body ketone concentrations [12].

2.1. DKA-Induced Effects

It is widely known that DKA can cascade several adverse events and multiply the
risk of developing diabetic complications [20]. In elevated concentrations, ketones lead
to increased oxidative stress and inflammation and, through this mechanism, exert their
harmful effects throughout the body. Cardiomyocytes, erythrocytes, and endothelial cells
are the main cell types affected by oxidative stress [21]. Ketosis-induced oxidative stress
is mediated by upregulation of nicotinamide adenine dinucleotide phosphate (NADPH)
oxidases, activation of the mitogen-activated protein kinase (MAPK) pathway, and the
nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB). Vascular disease,
atherosclerosis, and liver damage are direct consequences of this condition [21]. Addition-
ally, elevated plasma ketone concentrations appear to be involved in reducing cell surface
insulin receptors, leading to increased IR [20].

2.2. Elevated Ketone Concentrations during Pregnancy

Animal studies suggest that during pregnancy, increased ketone concentrations may
induce harmful effects in the fetus and mother (Table 1) [22–29]. However, the exact patho-
physiological mechanism behind these actions has not been fully elucidated [19]. Animal
research has revealed alterations in embryonic organ growth following a maternal KD,
associated with organ dysfunction in postnatal life [22]. Even a 24 h exposure to elevated
ketone concentrations was shown to induce growth reduction and inhibition/delay of neu-
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ral tube closure, depending on the embryo’s age and the ketone concentrations [23,28,29].
Interestingly, embryos also show a high adaptation capacity, with the ability to recover mor-
phologically from the gross anatomical disturbance when elevated ketone concentrations
are corrected and the recovery period is of sufficient duration [24–26]. Nonetheless, several
histological alterations appear to remain in the affected tissues, without any adaptations
being apparent [25].

Table 1. In vitro and in vivo animal studies assessing possible effects of elevated ketone levels in
pregnant women.

Sample Intervention(s)/
Exposure(s) Results First

Author

Mouse embryos
of two distinct
stages (3–4 and

5–6 somites)

Racemic mixture of
DL-BHB at levels of 8, 16,

or 32 mM/L (24 h)

Growth reduction and inhibition/delay of neural tube closure were noted in the
cranial and/or caudal regions of exposed embryos. The effects were dose- and
age-dependent, with younger embryos being more affected, and higher doses

producing greater malformations. Cytoplasmic vacuoles in the neuroepithelium,
mesenchyme and ectoderm were noted, involving mitochondria undergone

high-amplitude swelling with matrix density loss and cristae.

Horton [23]

Early mouse
somite embryos

Culture for 4, 8, or 24 h in
the presence of 32 mM

DL-BHB and then culture
(24 h) in control serum

Treated embryos showed progressive mitochondrial alterations, starting at 4 h
with loss of matrix density, culminating at 24 h with high-amplitude swelling,
complete matrix density loss and cristae disappearance. These changes were

reversible following removal from BHB and culturing for 24 h in control serum.
The early somite embryos showed a limited capacity to oxidatively

metabolize BHB.

Horton [24]

Whole embryo
cultures

24 h culture in:
(i) ∆-BHB (48 mM), or

(ii) control medium

All embryos exhibited NTD and lower rates of glucose metabolism by the PPP
and Krebs cycle, compared to controls. The effect of the ∆-isomer on the Krebs

cycle may result from glucose intermediates replacement generated from
D-BHB metabolism.

Hunter [27]

Rat embryos at
9.5 days of
gestation

Cultured in vitro for
24/48 h, with/without

4 × 10(-2) M BHB for all,
or part of the culture

period

Embryos exposed to BHB for a complete 48 h culture were more affected than
those exposed for part of the culture and embryos were more vulnerable to BHB

during the first 1/2 of a 48 h culture than during the second 1/2. Embryos
cultured with BHB from 9.5 days of gestation for 24 h revealed some BHB effects

after 24 h in culture. Many abnormalities were embryonic retardations, with
embryos showing characteristics of normal, yet younger embryos.

Moore [29]

Early somite
stage mouse

embryos

Culture in:
(i) control serum (60 h)

(ii) serum with
32 mmol/L DL-BHB
(24 h), followed by

control serum
(36 h, recovery)

(iii) 32 mmol/L DL-BHB
serum (60 h)

Although neural tube closure occurred in the recovery arm, complete recovery
was limited to the ventral regions of the forebrain. The remainder of the

prosencephalon and the rhombencephalon failed to catch-up growth completely.
In these areas, cell numbers were approximately 70% of control values.

Although the gross anatomical disturbances produced by high ketone levels
may be compensated for, several histological alterations remain.

Shum [25]

Early somite
stage mouse

embryos

32 mM DL-BHB (24 h,
Period I), and then
transfer in control

medium (36 h maximum,
Period II)

At the end of Period I, all D,L,-BHB-exposed embryos were growth-retarded
with NTD regarding closure. At 36 h of Period II, cranial and caudal NTD of

embryos were reduced. These embryos also exhibited an excess in growth
velocity during recovery thus, at the end of Period II, total protein content was
comparable to control. Embryos who did not enter the control serum remained

growth-retarded and showed more cranial and caudal NTD.

Shum [26]

CD-1 mouse
embryos whose

mothers were fed
either an SD or

a KD

SD or KD, 30 days prior
to, as well as during

gestation

At E13.5 the average KD embryo was volumetrically larger, with a larger heart
but smaller brain, pharynx, hypothalamus, midbrain, cervical spinal cord and

pons, compared with the SD embryo. At E17.5, KD embryos were smaller, with
smaller hearts and thymuses, but with enlarged cervical spines, midbrains,

thalamus, and pons.

Sussman [22]

in vivo embryos
of control or

streptozotocin-
diabetic rats at

gestational
days 9–11

Cultured in a
whole-embryo culture

system for 48 h with high
concentration of

DM-related substrates
and metabolites

Cytoplasmic vacuoles were observed in the ectoderm of day-9 embryos and in
the neuroepithelium and blood cells of days-10–11 embryos of diabetic rats.
These were mitochondria undergoing large-amplitude swelling with matrix

density loss and disturbed cristae. No differences were noted in the brain, heart,
or liver of day-15 fetuses from normal and diabetic rats. Day-9 embryos

cultured in high concentrations of D-glucose, Pyr, BHB, and α-KIC for 48 h also
showed high-amplitude mitochondrial swelling in the neuroepithelium.

Yang [28]

α-KIC, α-ketoisocaproate; BHB, β-hydroxybutyrate; DM, diabetes mellitus; E13.5, embryonic days 13.5; E17.5,
embryonic days 17.5; KD, ketogenic diet; NTD, neural tube defects; PPP, pentose phosphate pathway; Pyr,
pyruvate; SD, standard diet.
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2.3. Mild Ketonemia

On the other hand, in mild ketonemia, when ketone concentrations do not exceed
a critical level, they seem to exert beneficial effects. Mild ketonemia is usually achieved
after fasting or when following a KD. At low concentrations, ketone bodies act as signaling
molecules and are involved in the post-translational modification of proteins. They regulate
oxidative stress and inflammation and, through this mechanism, improve metabolic profiles
and may extend a healthy lifespan. Due to these beneficial effects, they have become the
target of research for their possible involvement in the treatment of various disorders, such
as metabolic disorders, neurological and CVD disorders, and cancer [30].

3. Ketogenic Diets (KDs)

Since the time of Hippocrates, fasting has been traditionally used as a treatment for
a variety of conditions [31]. As a therapeutic regime, fasting is the ancestor of today’s
KD [31], with the latter mimicking the fasting state while altering the default metabolism
towards the use of fats as the primary fuel source, produced through the catabolism of
FFAs [32]. The first study of the use of fasting as a treatment was for epilepsy in 1911 by
two French physicians, Guelpa and Marie [33]. In more detail, the effect of starvation was
studied in 20 subjects (children and adults) suffering from epilepsy, and it was observed
that the seizures were less severe during the diet period [33]. In the year 1921, the first
observation was reported [34] that fasting is followed by the production of acetone and
beta-hydroxybutyric acid in healthy individuals. The same result was observed after
following a low-carbohydrate (CHO) diet (LCD), which was concomitantly high in fat
content, known as the KD [35]. Therefore, the replacement of fasting with the KD was
suggested, as they appeared to be equally effective, with the KD also having the ability
to be applied for longer periods of time compared to fasting [33], with the latter often
resulting in emaciation of the patients. Today, the KD is considered an effective therapeutic
regime for drug-resistant epilepsy, as recommended by the Cochrane Collaboration and
the National Institute of Healthcare and Excellence (NICE) [36,37]. In parallel, it has also
shown possible benefits in a variety of neurological conditions, including mild cognitive
impairment, cyclin-dependent kinase-like 5 (CDKL5) deficiency, pyruvate dehydrogenase
complex deficiency, Alzheimer’s and Parkinson’s disease [38–42], and many more, gaining
immense popularity.

3.1. Types of KDs

There is not one horizontal KD for all, but rather, various types of KDs exist based on
the macronutrient contribution to the total energy intake (TEI), with some being “stricter”
than the rest (Table 2). Overall, the KD reverses the typical dietary pyramid use of macronu-
trients, promoting a restrained CHO intake and a more liberal consumption of proteins
and fats.

Table 2. Distinct KD patterns.

KD Type Fat (% TEI) Protein (% TEI) CHO (% TEI)

Classical 90% 10% (protein + CHO)

MCT 75% (21–25% from LCT and
45–55% from MCT) 25% (protein + CHO)

Modified Atkins nearly 75% liberal intake 10–20 g/day

Low GI 60% 30% ≈10% (40–60 g/day
with a low GI <50)

CHO, carbohydrate; GI, glycemic index; KD, ketogenic diet; LCT, long-chain triglycerides; MCT, medium-chain
triglycerides; TEI, total energy intake.

The classic KD is a strict diet, mathematically calculated for each person, and closely
monitored [43]. It is high in lipids (90% of the TEI), but low in CHO and proteins. The
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medium-chain triglycerides (MCT) pattern is based on the fact that MCTs produce more
ketones/g compared to long-chain triglycerides (LCT), allowing for more generous intakes
of protein and CHO in the daily diet [44]. The MCT pattern was developed by Huttenlocher
and associates [44]. The modified Atkins diet is more freestyle, allowing for a free intake of
fat, protein, energy, and fluids, while limiting CHO intake. Finally, the low glycemic index
(GI) [45] pattern was first suggested by Pfeifer and Thiele [46] following observations that
adhering to the classic KD induced stability in the blood glucose levels, which was related
to the mechanistic effects of the diet. It allows for some (10% of the TEI) CHO content based
on low-GI [45] choices.

3.2. Advantages of the KD

The KD has recently emerged as an effective medical nutrition therapy (MNT) for
overweight and obesity [47–49]. According to an umbrella systematic review [48], high-
quality evidence supports the reduction in triglyceride concentrations, and moderate-
quality evidence vouches for reductions in body weight, respiratory exchange ratio (RER),
glycosylated hemoglobin (HbA1c), and increased total cholesterol levels. Furthermore,
N-of-1 studies suggest that patients with overweight and obesity show preference for the
KD over the typical hypocaloric diets [50].

As for other CVD risk factors often associated with overweight and T2DM, meta-
analyses suggest that the KD also confers improvements in systolic and diastolic blood
pressure [51] and does not appear to negatively affect kidney health, as indicated by stable
blood–urea–nitrogen (BUN) and creatinine levels. Furthermore, the reduction in IR is
closely linked to improved inflammatory status [52].

Nonetheless, the beneficial effects of KDs extend beyond their cardiovascular aspects.
Research in mice has shown increased brown adipose tissue (BAT) levels following a
KD [53], as a result of elevated ketone esters concentrations [54]. In fact, it is the greater
postprandial lipid levels associated with the diet that increase the peroxisome proliferator-
activated receptor α and γ transcription factors [55], initiating the transcription of uncou-
pling protein 1 and improving BAT differentiation [54]. In parallel, the thermogenic activity
of the BAT is also increased [56].

Furthermore, the KDs have been shown to have appetite-suppressant effects, which
may act as an important asset for improving adherence to low-energy diets and weight
loss [57]. According to a systematic review [58], individuals adhering to energy-restricted
KDs are less hungry and have a reduced desire to eat. The added clinical benefit of a KD is
in preventing increases in appetite, irrespective of weight loss, as ketosis appears to provide
a plausible anorexigenic mechanism [58], via the release of cholecystokinin (CCK), while
reducing orexigenic signals [59].

Last, but not least, new research suggests circadian synchronicity following a KD
and beneficial effects on sleep through the enhancement of slow-wave sleep and the
rejuvenation of circadian programming [60].

3.3. Disadvantages of the KD

Despite its therapeutic potential, we still lack longitudinal data regarding the long-term
effects of the KD. As a result, several researchers have highlighted the potential negative
effects of long-term KD adherence regarding the primary and secondary prevention of
CVD [61], based on the traditional atherogenic model. Recently, a large apparently healthy
community-based cohort [62] associated elevated ketone bodies with a greater rate of CVD
and mortality. Nonetheless, several studies have shown favorable results in the overall
cardiometabolic profile of patients adhering to the KD, including weight loss, triglyceride
levels, and high-density lipoprotein (HDL) cholesterol concentrations, as discussed in
detail later. According to the National Lipid Association Nutrition and Lifestyle Task
Force [63], the KD may confer advantages related to appetite suppression and a reduction
in the concentrations of triglycerides and the required diabetes medication; however, it also
demonstrates mixed effects on low-density lipoprotein (LDL) cholesterol levels. Moreover,
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we should also consider that the KD is the standard-of-care diet therapy for cystic fibrosis,
followed by all patients, and no evidence of increased CVD risk has been shown to exist
in this population [64]. Furthermore, a randomized controlled trial (RCT) [65] comparing
the KD to a low-fat diet (both hypocaloric) among adult volunteers with overweight and
hyperlipidemia motivated to lose weight for 6 months revealed that at the end of treatment,
the KD changed the composition of LDL subclasses by increasing the proportion of large-
sized buoyant LDL (with cardioprotective effects) and decreasing small-sized dense LDL
(the primary cause of atherogenesis in the arterial intima). According to the American Heart
Association [66], the KD has been shown to improve cardiovascular risk factors, including
body weight, blood glucose, triglycerides, and HDL concentrations, when followed for
a duration of 6 months. Nonetheless, it consists of a restrictive dietary pattern, raising
concerns about nutrient adequacy [66].

Theoretically, another postulated limitation of the KDs is the low micronutrient con-
tent [67], posing a threat to the development of nutrient deficiencies. However, aside from
thiamin deficiency, as most people on a KD tend to receive oral nutrient supplements (ONS)
for micronutrients, no deficiencies have been noted in the literature thus far.

When initiating a KD, many individuals report “keto flu” symptoms, characterized
by fatigue, headache, constipation, etc. [66]. These symptoms may act as deterrents to
continuing the diet; however, they tend to improve over time as the body adapts to the
alternative energy substrate [66]. Finally, the lack of food choices has also been noted, often
leading to gradual non-adherence [66,68,69].

4. KDs for DM

Until the year 2019, the “healthy” diet for people with DM was a horizontal diet with
ample CHO intake (50–55% of the TEI), adequate protein (15% of the TEI), and low fat
(30–35% of the TEI). However, the 2019 consensus report published by the ADA [70] on
MNT for adults with DM/prediabetes was a critical point in DM management, forming a
paradigm shift in evidence-based dietetic practice.

Although the low-CHO diet (LCD) was first suggested as a treatment regime by
Banting as early as 1864 [71], it was not until Dr Noakes was cleared for misconduct in 2016
that it started gaining awareness. Timothy Noakes, a professor in South Africa and patient
with DM himself, was accused of misconduct for recommending adherence to a low-CHO
eating pattern through social media. During the following years, a trial was conducted
by the Health Professions Council of South Africa, during which scientific evidence was
presented and appraised, and a plethora of scientists provided their opinion on the subject.
This initiated the “diet wars”, with many scientists questioning the scientific rigor behind
the nutrition guidelines, highlighting the need for an appraisal of the evidence and the
formulation of more robust recommendations [72,73]. The increased scientific interest
resulted in the production of several systematic reviews aiming to assess the efficacy of
LCD in DM management [74,75].

4.1. The KD for T1DM

Before the discovery of insulin in 1920, the only treatment option for patients with
T1DM was the LCD, with the CHO content of the diet restricted below 10 g/day [71]. After
the introduction of insulin in the treatment of T1DM, the landscape changed dramatically,
but diet remained an important contributor to the self-management of DM. The optimal
treatment for T1DM is the combination of insulin with a healthy diet, aimed at limiting
the consumption of CHO, since it is known that CHO is the main cause of postprandial
hyperglycemia [76].

Table 3 details the existing primary research on the KD in patients with a T1DM
diagnosis. Overall, it seems that when advice on following an LCD is given to patients
with T1DM [77], better glycemic control is achieved by using less insulin each day (Table 3).
Another study included 11 patients with T1DM and studied the effects of adhering to a KD
(<55 g of CHO), indicating improvements in glycemic regulation and glycemic variability.
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However, these patients developed dyslipidemia and an increased risk for hypoglycemic
events [78].

Table 3. Studies implementing KD patterns in adult patients with T1DM.

First Author Design Participants Intervention(s) Duration Results

Krebs [77] RCT N = 10 patients

(i) typical CHO
counting course

(ii) same course +
advice on

following an LCD
(75 g/day)

12 weeks

The CHO-restricted arm showed
reductions in HbA1c and insulin

use and non-significant
reductions in BW. No changes in
BP, creatinine or lipid levels were

noted, and all outcomes in the
CHO-counting arm remained

unchanged. No change was noted
in the glycemic variability.

Leow [78] Observational
cohort N = 11 patients KD (<55 g

CHO/day) 2.6 ± 3.3 years

KD resulted in excellent HbA1c
levels and low glycemic

variability, but may also be
associated with dyslipidemia and

a high incidence of
hypoglycemic episodes.

Ranjan [79] OL cross-over
RCT N = 10 adults on IP

(i) isocaloric HCD
(≥250 g/d)

(ii) isocaloric LCD
(≤50 g/d)

1 week each
intervention

Diet adherence was high and
glucose levels were similar in

both diets. The LCD resulted in
more time with glucose between
3.9 and 10.0 mmol/L, less time
with values ≤ 3.9 mmol/L, and
less glucose variability than the

HCD. CV markers were
unaffected, but glucagon, FFA,

and ketone concentrations were
higher post-LCD.

Schmidt [80] OL cross-over
RCT

N = 14 patients with
sensor-augmented

IPs

(i) LCD < 100 g
CHO/d)

(ii) HCD > 250 g
CHO/d)

12 weeks each
intervention

Time spent in the range
3.9–10.0 mmol/L did not differ,
but time at <3.9 mmol/L and

glycemic variability were lower at
LCD. No severe hypoglycemia

events were recorded. LCD
induced a BW loss

(2.0 ± 2.1 kg) and HCD a BW gain
(2.6 ± 1.8 kg), but no other CV

risk factors were affected.

Nolan [81] Case study

N = 1 cyclist who
successfully

undertook a 4011
km cycle across

Australia

VLCD 20 days

Remarkable glycemic stability
was noted, with 80.4% of time

spent at 3.9–10 mmol/L.
Interstitial glucose was

<3 mmol/L for 2.1% of this time,
and only one episode of

hypoglycemia was recorded.

BP, blood pressure; BW, body weight; CHO, carbohydrate; CV, cardiovascular; FFAs, free fatty acids; HbA1c,
glycosylated hemoglobin; HCD, high-carbohydrate diet; IP, insulin pump; KD, ketogenic diet; LCD, low carbohy-
drate diet; OL, open-label; RCT, randomized controlled trial; T1DM, type 1 diabetes mellitus; VLCD, very low
carbohydrate diet.

Some researchers argue that good compliance with the KD is difficult to achieve in
T1DM, suggesting that patients often tend to give up after 1–2 years of implementation due
to intolerance and difficulty in choosing foods [82]. Overall, the studies implementing a KD
pattern in patients with T1DM, although somehow underpowered, reveal improvements
regarding the HbA1c levels, the glycemic variability, and the use of insulin [77–80]. As
for children, it has been suggested that children applying such strict diets may present
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developmental deficits, fatigue, and a long-term increased CVD risk [83]. However, growth
is rather dependent on the amount of protein consumed and not the result of low CHO
intake. Thus, more research is required to evaluate the effects of well-designed KDs on
providing adequate protein intake in children with T1DM.

In addition to the involvement of diet in the treatment of T1DM, the literature has
also referred to the involvement of diet in the pathogenesis of the disease. The normal
functioning of the intestine is due to the delicate balance of the intestinal microbiota and the
immunity of its mucosa. It has been found that when this balance is disturbed, various au-
toimmune diseases can develop, such as T1DM [84,85]. The intestinal microbiota normally
includes Clostridia, microorganisms that produce butyrate and have immunomodulating
functions. Butyrate has been shown to exert a protective effect on the development of
pancreatic β-cell autoimmunity, and patients with T1DM have been found to have a low
number of Clostridia [86–88]. It is widely known that the intestinal microbiome is influenced
by dietary habits [85]. For example, a diet high in fat and salt intake, which is common
in western countries, can induce IgA responses in the gut microbiome and lead to the
production of autoantibodies [85]. On the other hand, there is also evidence in the literature
that a high-fat diet, both in mice and in humans, is associated with a protective role against
the development of autoimmunity due to a reduction in Bacteroidetes and an increase in
Firmicutes [76]. In general, the gut microbiome influences autoimmunity, but the way has
not yet been fully elucidated, and it is still unclear whether a KD and an LCD can confer
prevention from the development of autoimmunity and delay the onset of T1DM.

4.2. The KD for T2DM

T2DM is the direct epiphenomenon of overweight and obesity and is initiated as a
prediabetic state, hallmarked by IR. As part of the comprehensive treatment of T2DM with
obesity, MNT aims to improve insulin sensitivity and reduce body weight. The current
ADA guidelines recommend a reduction in total CHO intake in adults with T2DM, LCD,
or very-LCD (VLCD) who fail to meet glycemic targets. However, no recommendations
have been suggested for the “ideal” proportion of CHOs or fat to the TEI [70].

Today, numerous meta-analyses have shown efficacy of the KD in reducing body
weight and other obesity indices (BMI and waist circumference) [47,51,89–94], improving
HbA1c levels, and improving blood lipid profiles [47,51,89–95] (Table 4). The reduction in
glucose-lowering medications has also been noted by many meta-analyses [75,89,91,93],
with some scientists vouching that pharmacotherapy can not only be significantly reduced
but even completely withdrawn [96], as shown by studies reporting DM remission (defined
as HbA1c < 6.5%) post-adherence to a KD [93,97]. According to Goldberg [93], patients
adhering to an LCD for a period of 6 months may experience DM remission without
adverse consequences. Moreover, greater CHO restriction is associated with an enhanced
glucose-lowering effect [75].

In an early meta-analysis, Snorgaard and colleagues [75] suggested that the positive
effects of the KD only last for approximately a year, with HbA1c being similar between
control and KD thereafter. As with T1DM, low adherence was one of the issues reported
by trialists [91], with low adherence to the strict dietary regime being one [89]. In fact, the
more strict regime followed at VLCDs appears to be less effective than the less restrictive
LCDs for improving body weight as a result of lower diet adherence [93].
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Table 4. Systematic reviews assessing the effect of KDs in T2DM/prediabetes.

First Author Included Studies Results

Choi [47] 14 RCTs

The effects of KD on glycemic control were greater relative to those of LFD for
patients with T2DM, indicated by lower HbA1c and HOMA, while comparable
effects were observed for nondiabetic patients. KDs led to substantial BW loss,

irrespective of patients’ DM status at baseline and improved lipid profiles in terms
of lower TG and greater HDL for patients with DM. KDs were more effective in

improving metabolic parameters associated with glycemic, BW and lipid control in
patients with overweight/obesity, and especially preexisting DM, as compared

to LFDs.

Goldenberg [93] 23 RCTs

At 6 months, LCDs achieved higher rates of diabetes remission compared with
control diets. Large clinically important improvements were seen in BW loss, TG,
and insulin sensitivity at 6 months, though they were diminished at 12 months.

VLCDs were less effective than less restrictive LCDs for BW loss at 6 months, but
this was explained by diet adherence.

Luo [94] 21 RCTs

LCD exerted a greater impact on CV risk factors in overweight/obese patients with
T2DM, with lower FPG and HbA1c levels. LCD reduced BMI, BW, and WC in

overweight/obese patients with T2DM. Also, adherence to KDs improved lipid
profiles with TG concentrations being lowered and HDL noting an upward trend.

Parry-Strong [95] 8 RCTs of ≥6 months
duration

A VLCD/KD may cause reductions in HbA1c and TG levels in patients with
pre-diabetes/T2DM, but evidence of an advantage over other strategies

remains limited.

Rafiullah [91] 8 RCTs

Compared with control diets, the VLCD resulted in a greater decrease in HbA1c and
BW loss after 3 and 6 months. The VLCD was not better than a control diet after

12 months. It was superior in decreasing TG, increasing HDL and reducing the use
of antidiabetic drugs for up to 12 months.

Snorgaard [75] 10 RCTs

In the first year of intervention, LCD was followed reduced HbA1c more compared
with HCD. The greater the CHO restriction, the greater the glucose-lowering effect.
At 1 year or later however, HbA1c was similar between the 2 diet arms. The effect of

the 2 diets on BMI/BW, LDL, QoL, and attrition rate was similar
throughout interventions.

Tinguely [89] 14 CTs

KD improves HbA1c at 3 weeks, and the effect persists for at least a year, a result
associated with a reduction in glucose-lowering medications. Additionally, the

short-term observed BW loss is maintained with a long-term diet. Adequate support
(psychological counseling, enhancing positive affectivity, reinforcing mindful eating)

is required to achieve benefits and ensure adherence.

Yuan [90] 13 RCTs Post-KD, the levels of fasting glucose, HbA1c, total cholesterol, LDL and TG
decreased, but HDL increased. In addition, BW, WC, and BMI also decreased.

Zaki [92] 15 RCTs and
observational studies

An LCD induced a greater reduction in the HbA1c than other diets. A decrease in
HbA1c and BW was recorded when the KD was consumed compared to the

control diets.

Zhou [51] 8 RCTs
The KD reduced BW, WC, HbA1c and TG, and increased HDL levels. The KD may

be an effective dietary intervention for BW, glycemia and lipid profiles in
overweight with T2DM.

BMI, body mass index; BW, body weight; CT, clinical trial; CV, cardiovascular; DM, diabetes mellitus; FPG, fasting
plasma glucose; HbA1c, glycosylated hemoglobin; HCD, high carbohydrate diet; HDL, high-density lipoprotein;
HOMA, homeostatic model assessment index; KD, ketogenic diet; LDL, low-density lipoprotein; LFD, low-fat
diet; QoL, quality of life; RCT, randomized controlled trial; T2DM, type 2 diabetes mellitus; TG, triglycerides;
VLCD, very low carbohydrate diet; WC, waist circumference.

5. Assessing the Concentration of Ketone Bodies

In the human body, ketone bodies can be quantified in the capillary blood, serum,
and urine. Urine sticks used to measure ketones qualitatively and semi-quantitatively
determine AcAc and acetone. They cannot, however, identify β-hydroxybutyrate (BHB).
The urine sticks are impregnated with a nitroprusside reagent, which reacts with AcAc and
acetone and, in this way, determines their existence or not. Because during DKA, AcAc
is converted to hydroxybutyrate, AcAc levels are reduced, and its concentration in urine
is also reduced. As a result, the assessment of urine ketone levels during DKA can often
be misleading, underestimating the severity of acidosis. Furthermore, since urine is not
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expelled from the bladder immediately and may be retained for some time, measuring
urine ketones is not always representative of what is happening simultaneously in the
body and cannot determine the changes that occur in real time. In addition, the patient
is not always ready to give a urine sample, especially in cases of ketosis characterized by
dehydration. When capillary BHB and urinary ketone testing were compared, the first
was shown to have high sensitivity, specificity, positive predictive value, and negative
predictive value in identifying DKA [98]. As a result, the assessment of ketones in the urine
is not the most preferred method when an immediate result is required [98]. Moreover, in
patients with T1DM point of care (POC), blood ketone monitors have been shown to exert
benefits in reducing assessment time, the duration of the admission, and the time until
recovery from DKA [98,99]. Table 5 details all of the technology used to assess ketone body
levels and diagnose DKA.

Table 5. Technology used to assess ketone bodies levels and diagnose DKA *.

Assay Ketones
Assessed

Cut-Off Used
(If Any)

Sensitivity
(%)

Specificity
(%)

Target
Population Reference

Breath HS-SPME/
GC-MS Acetone 3.9 ppm 94.7 54.2 Adults with

T1DM [100]

Saliva Enzymatic
sensor strip BHB NR NR NR NR [101]

Capillary
blood

Dry chemistry BHB >3 mmol/L
100 89 Adults [102]

90.4 100 Children with
T1DM [103]

Urine
Semiquantitative

assay AcAc ≥2+
89.9 52.7 T2DM [104]

84.9 86.5 Children with
T1DM [103]

AcAc, acetoacetate; BHB, β-hydroxybutyrate; DKA, diabetic ketoacidosis; GC-MS, gas chromatography-mass
spectrometry; HS-SPME, headspace solid-phase microextraction; MEM, manual enzymatic method; NR, not
reported; ppm, part per million; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus; * the gold
standard is plasma MEM.

For all these reasons, the assessment of blood ketone levels is preferred since it is
considered more reliable. Recently, the validity and reliability of measuring ketone bodies,
and specifically BHB in capillary blood as bedside testing, have begun to be supported. This
method seems to provide reliable results and has the advantage of immediate assessment
and intervention. The approved POC ketone meters assess capillary blood ketone using
dry-chemistry methodology, and they have been compared with reference enzymatic
spectrophotometric assays and found to be valid [105].

A recent prospective study [106] included 171 patients with hyperglycemia
(>11 mmol/L) and capillary blood ketone > 0.1 mmol/L presented at the emergency
department. Urine, serum, and capillary ketones were measured in all patients. Some of
the patients were diagnosed with ketoacidosis, and some with ketonemia alone. Capillary
blood ketone concentrations showed greater sensitivity and specificity for the diagnosis of
DKA compared with the level of urine ketone bodies. Akin capillary and serum ketone
concentrations were noted [106]. In conclusion, it was shown that measuring ketones in
capillary blood could be a good alternative to serum ketones assessment, and is certainly
superior to measuring ketones in the urine [106].

In addition to blood and urine, breath acetone concentration is another non-invasive
measure of ketosis [107]. The method relies on headspace solid-phase microextraction
and gas chromatography-mass spectrometry (HS-SPME/GC-MS), with breath acetone
concentrations varying between 1 and 1250 ppm in a healthy non-fasting state and DKA,
respectively [108]. When compared to capillary blood glucose and ketone levels (BHB
and AcAc), strong relationships were observed [107] in patients with T2DM. Furthermore,
when tested on patients with T1DM, the breath ketone analyzer showed good sensitivity
and low specificity to detect ketosis in adults but not in children [100] (Table 5).
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Recently, the use of saliva enzymatic sensor strips has also been proposed as an
alternative non-invasive method for detecting DKA and assessing ketone levels for lifestyle
factors; however, no research has yet evaluated this method [101].

5.1. Ketonemia and Ketonuria in T1DM

In patients with T1DM, elevated glucose concentrations lead to higher circulating
ketone levels and are associated with complications. There is a difference, however, between
the ketogenesis induced by fasting, or KD, and the ketogenesis induced by uncontrolled
DM [109]. During fasting or when adhering to a KD, the increased production of ketone
bodies is intended to function as an alternative source of energy. On the contrary, the
production of ketones caused by uncontrolled DM is the result of dysregulated metabolism
and a lack of insulin and is not intended to function as an energy source [110]. Insulin
contributes to the clearance of ketone bodies, and its deficiency leads to reduced clearance.
Additionally, in patients with DM, the activity of BHB dehydrogenase is also reduced, a
fact that also leads to an increase in the total concentration of ketones in the body [20].

Insulin inhibits lipolysis and increases the utilization of ketone bodies from peripheral
tissues. Insulin also inhibits hormone-sensitive lipase (HSL) activity, which releases FFAs
into the circulation. In T1DM, where insulin deficiency is apparent, an increase in lipolysis
is observed [111]. Thus, in insulin deficiency, glucagon prevails, activating carnitine
acyltransferase (CAT1), by which the FFAs are transferred from the circulation to the
mitochondria of the liver cells. Then, the oxidation of FFAs takes place, and acetyl-CoA
is produced [112]. Acetyl-CoA is used for the synthesis of ketone bodies (AcAc and
BHB) [113].

DKA is the most frequent complication in T1DM, characterized by hyperglycemia,
acidosis, and ketosis [114]. When the levels of counter-regulatory hormones are increased,
the activation of HSL in the adipose tissue leads to increased triglyceride catabolism and
the production of non-esterified fatty acids and glycerol. Glycerol is used as a substrate for
gluconeogenesis, and fatty acids are oxidized to ketone bodies in the liver. In parallel, the
increased concentration of glucagon leads to higher carnitine concentrations and decreased
hepatic malonyl CoA in the liver, which stimulates CAT1, a key enzyme in the ketogenesis
process, resulting in increased ketone body concentration. Moreover, in DKA, reduced
ketone body clearance is observed due to insulin deficiency and decreased peripheral glu-
cose utilization. DKA manifests quickly, and its clinical signs include polyuria, polydipsia,
vomiting, abdominal pain, dehydration, weakness, tachycardia, kussmaul respiration, and,
in severe cases, altered mental status [115].

5.2. Ketonemia and Ketonuria in T2DM

T2DM is a metabolic disease and is mainly characterized by IR and the coexistence
of partial β-cell dysfunction. The incidence of the disease has increased rapidly in the last
decades worldwide due to the increase in obesity and the sedentary lifestyle [116]. It has
been estimated that in 2019, 463 million adults suffered from T2DM [117].

During the day, there is variation in the concentration of ketone bodies in the human
body. Usually, ketone concentrations increase around midnight and in the morning hours
(after fasting) and tend to decrease during the day after consuming CHO-rich meals. In
parallel, as the age of patients increases, the ketone levels tend to decrease, in particular
during the pre-dinner state [118].

5.3. Ketonemia and Ketonuria in Ketosis-Prone DM (KPDM)

Although in the past, a strict classification between different types of DM existed, it
has since been observed that atypical forms occur more frequently. More specifically, a new
subtype of DM has been observed characterized by DKA in patients lacking the typical
phenotype of autoimmune T1DM [119]. This syndrome is characterized as “ketosis-prone
DM” (KPDM) [120]. The first cases of KPDM were described in the 1960s in Africa, and
generally, non-Caucasian individuals without a T1DM diagnosis are more prone to this
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type of DM [121]. It was observed that patients who presented with ketosis and required
insulin therapy over time experienced remission of DM and were able to be released from
insulin therapy, something that does not happen in patients with T1DM [122]. An increase
in the records of such heterogeneous incidents followed in many nationalities. Great
heterogeneity was observed among the described cases, so in the early 2000s, an attempt
was made to classify them into subcategories, aiming to better understand and manage
this distinct condition. The classification was based on the presence of islet autoantibodies
and β-cell function reserves. As a result, a systematic classification of KPDM into four
subcategories was established in 2003 using the Aβ classification system [123], as detailed
in Table 6.

Table 6. KPDM subtypes according to the Aβ classification system [123].

(i) A+β-KPDM: Characterized by the presence of islet autoantibodies and
absence of β cell function

(ii) A+β+KPDM: Characterized by the presence of islet autoantibodies with
preserved β cell functional reserve

(iii) A-β-KPDM: Characterized by absence of islet autoantibodies with
absence of β cell function

(iv) A-β+KPDM: Characterized by absence of islet autoantibodies with
preserved β cell functional reserve

KPDM, ketosis-prone diabetes mellitus.

The most common form of KPDM is the A-β+KPDM, affecting about 50% of KPDM
cases, followed by the types A-β-KPDM and A+β-KPDM at a prevalence ratio of 20% each,
while the rarest form is the A+β+, which only affects 10% of cases [123].

Patients with KPDM and absence of β-cell function, A+β- and A-β- are diagnosed with
DM early on, at a young age. They usually have a low body weight, and their treatment
requires the administration of insulin. In the vast majority of patients, when there is loss
of β-cell function and patients have been classified in the β-subcategory, the condition
is considered irreversible, but in very few cases, at a rate of <1%, some improvement
in β-cell function may be observed. The A+β- subgroup essentially corresponds to the
autoimmune T1DM [123]. Subgroups A-β- and A+β- have similar phenotypes, and their
notable difference is the presence or absence of islet autoantibodies. Patients who retain
some functionality in the β cell, i.e., A-β+ form, have clinical features similar to T2DM but
present with DKA. After the treatment of DKA, β-cell functionality remains and improves
over time, and as a result, insulin dependence recedes for most of these patients within 4 to
8 months, and they achieve good glycemic control on oral medications for the following
4 years, at the very least. About half of these patients manage to maintain adequate β

cell function for many years, and they achieve satisfactory glycemic control only on oral
antidiabetic tablets. The other half, however, rapidly loses β-cell functionality and, after a
short period on oral antidiabetic tablets, returns to insulin dependence again. It appears
that patients diagnosed with DKA triggered by a stressful event have a worse prognosis
and are more likely to be insulin dependent than those diagnosed with unprovoked DKA.
The unprovoked A-β+ subgroup is characterized by late onset, presents more often in
men with increased body weight, DKA at the initial diagnosis of diabetes, and the absence
of islet autoantigens. In contrast, the provoked A-β+ subgroup presents in both males
and females with a history of T2DM [124]. Patients with the A+β+ form of the disease
share similar clinical features as those with T2DM, but also exhibit islet autoimmunity
and usually present DKA at the diagnosis of diabetes. And in this form, about half of the
patients will rapidly lose β-cell function and become insulin-dependent, while the other
half have a better prognosis with prolonged preserved β-cell function and are insulin-
independent [125].

With regard to the management of these patients post-diagnosis, the initial approach
involves inpatient management of DKA with intravenous fluids and insulin. Subsequently,
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these patients are discharged from the hospital with instructions for subcutaneous insulin
use and recommendations for the follow-up examination [126].

5.4. Ketonemia and Ketonuria in GDM

During pregnancy, many changes occur in the mother’s body, aiming to accommodate
the developing fetus. Early pregnancy is characterized by anabolic processes, while late
pregnancy is a catabolic phase [127]. In the second and third trimesters, an increase
in lipolysis is observed, which leads to the production of FFAs, which are used as an
energy source for the mother, while the fetus uses mostly glucose. As a result, during
pregnancy, there is increased ketogenesis. Cases of ketoacidosis have been reported, even
among healthy pregnant women, during periods of starvation. Moreover, women with
GDM have been shown to have a higher ketone metabolism than those without GDM
and are thus more prone to the development of ketonemia [19,128]. This may be the
result of impaired pancreatic β-cell function, restricting insulin secretion while impairing
glucose tolerance [129]. For this reason, women with GDM are encouraged to restrict their
CHO intake and divide the intake of CHO throughout the day in order to achieve better
glycemic regulation [130,131]. Nonetheless, this can often result in the development of
ketonuria. Ketonuria is also observed in women with GDM, especially after fasting, and
is correlated with elevated blood BHB concentrations [130]. However, it should be noted
that, at the moment, we have not yet defined the level at which CHO restriction leads to
increased ketone levels [132]. Few studies have assessed the effect of CHO restriction on
the concentration of ketones in women with GDM (Table 7).

Table 7. Primary studies evaluating the effect of CHO restriction in the concentration of ketones, in
women with GDM.

First Author Participants Design Interventions Results

Major [133]

n = 21 women with
GDM on an LCD

(CHO < 42% of TEI)
n = 21 women with

GDM on HCD
(CHO > 45% of TEI)

CC N/A

Reductions in postprandial glucose values were observed and fewer
subjects required insulin for glycemia in the LCD arm. The

incidence of LGA infants, cesarean deliveries for cephalopelvic
disproportion and macrosomia were lower in the LCD arm. Urinary
ketones were only identified in 2 women, both following an LCD,
clearing their urinary ketones when CHO intake was increased.

Mijatovic [134] N = 46 women
with GDM RCT

(i) modest LCD
(∼135 g of CHO/day)

for 6 weeks
(ii) routine care

(∼200 g of CHO/day)
for 6 weeks

No detectable differences were apparent in blood ketones between
LCD (mean intake of 165 g of CHO/day) and routine care arm,
although CHO and TEI were lower in the intervention arm. No

differences were noted regarding birth weight, rate of LGA infants,
% fat mass, or FFM between groups. A modest LCD does not result

in increased fasting BHB levels.

Potter [135]

n = 7 non-diabetic
women (A)

n = 7 women with
mild GDM at

diagnosis (B), and
n = 7 women with

mild GDM
post-treatment with

a 150 g CHO
diet (C)

CC N/A

Glucose levels were indifferent between groups. Ketone body levels
were elevated in the GDM group prior to treatment (B) and rose

higher after treatment with the 150 g CHO diet (C). Lactate levels
were reduced when on the restricted CHO diet.

Tsirou [136] N = 43 women
with GDM CT

(i) VLED (175 g of
CHO/day)

(ii) VLED + exercise
(175 g of CHO/day)

(iii) LED (175 g of
CHO/day)

(iv) LED + exercise
(175 g of CHO/day)

GWG was lower in the VLED and higher in the LED arms. No
differences were noted in the type of delivery, birth weight,

composite score, prematurity, depression, RQ, Apgar score, MUAC,
or insulin use. Most infants (88.4%) were AGA, born at a gestational
age of 37–42 weeks (95.3%). Only 9.3% of the mothers experienced

delivery complications, with the majority being at the
VLED + exercise arm. The composite score was low (range 0–2.5) for
all, indicating a “risk-free” pregnancy outcome. No differences were

noted in the urine ketone levels between groups.

AGA, appropriate-for-gestational age; BHB, β-hydroxybutyrate; CC, case control; CHO, carbohydrate; CT,
clinical trial; FFM, fat-free mass; GDM, gestational diabetes mellitus; GWG, gestational weight gain; HCD, high-
carbohydrate diet; LCD, low-carbohydrate diet; LED, low-energy diet (1800 kcal/day); LGA, large-for-gestational
age; MUAC, middle-upper arm circumference; N/A, not applicable; RCT, randomized controlled trial; RQ,
respiratory quotient; TEI, total energy intake; VLED, very low-energy diet (1800 kcal/day).



Nutrients 2023, 15, 4383 14 of 22

It appears that some women exhibit urinary ketones [136] even when consuming
the threshold value of 175 g/day suggested by the scientific authorities [131,137]. On the
other hand, in the study conducted by Mijatovic [134], a mean intake of 165 g of CHO/day
was not associated with detectable urinary ketone levels in women with GDM. Similarly,
Potter and associates [135] failed to reveal differences in the urinary ketone levels between
women with GDM on an LCD compared to untreated ones. Based on these findings, several
scientists are advocating for lowering the dietary CHO threshold for managing GDM [138],
whereas others are suggesting considering the placental CHO needs and increasing the
threshold to 220 g of CHO/day [139].

Of note, aside from the duration of pregnancy, ketosis is also observed during labor
as a residue of the increased physical stress and is linked with a greater likelihood of
augmentation of labor, forceps-assisted delivery, and postpartum hemorrhage. Ketonuria
has been related to prolonged labor duration [140].

It has been proven that ketone bodies cross the placenta. Recently, a radioisotope-
labeled BHB was administered to pregnant rats, and within 5 min, it was detected in the
fetus’ plasma [141]. During the third trimester, increased plasma 3HB has been associ-
ated with impaired neuropsychological development in the offspring [142]. Animal and
in vitro studies [19] have revealed that ketone body levels are influencing cardiomyocyte
glucose uptake [143], embryonic brain structural development [144], as well as tubular cell
growth [145]. In an early study, ketonuria during pregnancy was associated with reduced
intellectual status of the offspring at the age of 5 years, and reduced birth weight was
also related to impaired intellectual status at the ages of 3 and 5 years [146]. However, no
other data have verified this observation [147]. In parallel, data linking hyperketonemia
or hyperketonuria with perinatal adverse events remain limited, and we are also lacking
recommendations to manage such cases. As a result, the management of pregnant women
with hyperketonemia/hyperketonuria has not been determined.

5.5. Ketone Bodies and Antidiabetic Medication

The main antidiabetic medications that have been linked to an increase in ketone body
concentrations are sodium-glucose transport protein 2 (SGLT-2) inhibitors. These drugs
exert their actions on the kidneys, where they increase the reabsorption of ketone bodies,
and they also act on the pancreas, where they stimulate the secretion of glucagon from
α-cells, resulting in an increase in ketone production and a simultaneous decrease in insulin
production [148]. As a result, the use of CHO decreases and lipolysis is amplified, leading
to a further increase in the production of ketones in the liver [149]. This increase in ketone
body concentrations among patients on SGLT-2 inhibitor therapy can rarely even lead to
DKA, even when normal blood glucose concentrations are recorded [150]. Moreover, a
recent study indicated that the co-administration of pioglitazone with SGLT-2 inhibitors
may independently increase blood ketone body concentration [151].

On the other hand, liraglutide appears to exert an inhibitory effect on ketogenesis. In
a recent trial [152], 26 patients with uncontrolled T1DM were randomized to liraglutide
injections or placebo, respectively, after fasting, and it was shown that liraglutide did
not induce any increments in ketone body concentrations in contrast to placebo. The
action of liraglutide in the suppression of ketogenesis seems to be attributed mainly to the
reduction in glucagon, but it is possible that liraglutide also exerts a direct action in the
hepatocytes [152].

Regarding metformin, the data in the literature are conflicting. On the one hand, met-
formin seems to act antagonistically on BHB, tampering down the inflammation propelled
by the increased BHB concentrations [153]. On the other hand, metformin also seems to
increase the oxidation of fatty acids, and animal studies revealed an increase in ketone
body concentration following the administration of metformin [154].

Last but not least, insulin is a well-studied drug, and it is widely known that its
deficiency causes ketogenesis, while insulin administration reduces the concentrations of
plasma ketone bodies [155]. However, it is worth noting that by administering insulin,
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initially, an increase in urine ketone levels is observed, and during the initial phase of
recovery from DKA, BHB is converted to AcAc, which is the main ketone body assessed in
the urine [156].

6. Conclusions

In conclusion, it seems that ketone bodies are involved in both the diagnosis and the
lifestyle treatment of DM types, as well as in the diagnosis of DM complications. Early
ketone detection using POC technologies can aid in the early diagnosis of DKA. Regarding
the assessment of ketones in the blood and urine of patients with DM, more research is
required to interpret the results and use this knowledge for the benefit of the patients.
Specific medications have been shown to interact with ketones, altering the physiological
response. Last but not least, although the KD appears to be a promising new addition to
the MNT regimes for managing DM, further research is warranted to support its adoption.
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HCD High-carbohydrate diet
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LFD low-fat diet
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MAPK Mitogen-activated protein kinase
MCT Medium-chain triglycerides
MEM Manual enzymatic method
MNT Medical nutrition therapy
MODY Mature-onset diabetes of the young
MUAC Middle-upper arm circumference
N/A Not applicable
NADPH Nicotinamide adenine dinucleotide phosphate
NICE National Institute of Healthcare and Excellence
NF-κB Nuclear factor kappa-light-chain enhancer of activated B cells
NTD Neural tube defects
NR Not reported
OL Open label
ONS Oral nutrient supplements
POC Point of care
PPP pentose phosphate pathway
Pyr Pyruvate
QoL Quality of life
RCT Randomized controlled trial
RQ Respiratory quotient
SD Standard diet
SGLT-2 Sodium-glucose transport protein 2
T1DM Type 1 diabetes mellitus
T2DM Type 2 diabetes mellitus
TEI Total energy intake
TG Triglycerides
VLCD Very low carbohydrate diet
VLED Very low-energy diet
WC Waist circumference
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