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Abstract: Natural products serve as a valuable reservoir of anticancer agents. Chinese poplar propolis
(CP) has exhibited remarkable antitumor activities, yet its precise mechanisms of action remain
elusive. This study aims to elucidate the in vitro cytotoxic mechanisms of CP in human hepatocellular
carcinoma cells (HepG2) through comprehensive transcriptomic and metabolomic analyses. Our
evidence suggested that CP possesses a great potential to inhibit the proliferation of HepG2 cells by
targeting the glucose metabolism. Notably, CP exhibited a dose- and time-dependent reduction in
the viability of HepG2 cells. Transcriptome sequencing unveiled significant alterations in the cellular
metabolism, particularly within glucose metabolism pathways. CP effectively restrained glucose
consumption and lactic acid production. Moreover, the CP treatment led to a substantial decrease
in the mRNA expression levels of key glucose transporters (GLUT1 and GLUT3) and glycolytic
enzymes (LDHA, HK2, PKM2, and PFK). Correspondingly, CP suppressed some key protein levels.
Cellular metabolomic analysis demonstrated a marked reduction in intermediary products of glucose
metabolism, specifically fructose 1,6-bisphosphate and acetyl-CoA, following CP administration.
Finally, key compounds in CP were screened, and apigenin, pinobanksin, pinocembrin, and galangin
were identified as potential active agents against glycolysis. It indicates that the effectiveness of
propolis in inhibiting liver cancer is the result of the combined action of several components. These
findings underscore the potential therapeutic value of propolis in the treatment of liver cancer by
targeting glycolytic pathways.

Keywords: Chinese poplar propolis; hepatocellular carcinoma cells; cell metabolism; transcriptome
sequencing; metabolomics

1. Introduction

Malignant tumors pose a serious threat to human health, with liver cancer ranking
as the third most common cause of cancer-related deaths worldwide [1]. Infections with
the Hepatitis B and C viruses are major risk factors for the development of hepatocellular
carcinoma. Nonalcoholic steatohepatitis linked with chronic illnesses has become a more
prominent risk factor for liver cancer in the Western world in recent years [2]. Targeted
therapeutic drugs for liver cancer include sorafenib, regorafenib, sunitinib, erlotinib, gefi-
tinib, and bevacizumab. These drugs can target specific molecules or signaling pathways
in cancer cells to inhibit their growth, infiltration, and metastasis [3]. However, these
targeted chemotherapeutic drugs are highly toxic and prone to drug-resistant phenotypes.
Therefore, it is important to search for anticancer drugs in natural products and analyze
their mechanisms of action for cancer treatment.
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Propolis is a resinous substance collected by honeybees (Apis mellifera L.) by mixing
the exudates from plant resin [4]. The chemical composition of propolis is highly com-
plex and variable due to the raw materials that are collected by the honeybees. There are
different types of propolis around the world, including green Brazilian propolis (mainly
from Baccharis dracunculifolia), European propolis (Populus nigra L.), red Brazilian propolis
(Dalbergia ecastophyllum), Russian propolis (Betula verrucosa Ehrh), and Cuban and Venezue-
lan red propolis (Clusia spp.) [4]. More than 600 compositions have been identified from
different types of propolis [4,5]. Chinese propolis mainly belongs to the “Populus” propolis,
which predominantly contains phenolic acids and flavonoids [5]. Propolis has a broad
range of biological activities, such as antiviral, antibacterial, antioxidant, anti-inflammatory,
immunomodulatory, and antitumor activities, etc. [6–8]. The antitumor effects of propolis
have attracted increasing attention from researchers in recent years, with studies indi-
cating that Chinese propolis in particular has excellent antitumor activity; however, its
mechanisms of action are not yet fully understood [9–11].

Abnormal metabolism is a hallmark of cancer, and tumor cells are metabolically
reprogrammed to meet the energy and biomolecules required for malignant proliferation
and metastasis [12]. The Warburg effect has been demonstrated as a marker of energy
metabolism in several types of tumor cells [12–14]. Aerobic glycolysis in cells regulates
their metabolism to ensure an adequate supply of ATP, facilitating the adaptation of cells to
altered survival conditions and their rapid proliferation. This enhances the tolerance of
tumor cells to harsh conditions and increases their growth [13]. The glycolytic capacity of
cancer cells is 20–30 times higher than that of normal cells, and this high rate of glycolysis
leads to the rapid production of ATP, while lactate dehydrogenase (LDH) converts the
majority of the generated pyruvate into lactate in the cytoplasm [15]. These acidic products
change the tumor microenvironment, which is conducive to tumor invasion and infiltration,
as well as the inhibition of the activity and function of tumor immune effector cells [15].
Therefore, targeting the aerobic glycolysis of tumor cells can selectively inhibit tumor cell
proliferation and development.

Aerobic-glycolysis-related transport proteins and key enzymes are involved in cell
development. An increasing number of studies identified a significant upregulation of
the expression of glucose transporter proteins (GLUTs) in tumor cells, particularly GLUT1
and GLUT3 overexpression in a variety of solid tumors. When glucose crosses the cell
membrane into the cytoplasm, it undergoes phosphorylation to form glucose-6-phosphate,
which initiates glycolysis. The activity and protein expression levels of key glycolytic
enzymes, such as lactate dehydrogenase A (LDHA), hexokinase II (HK2), M2 pyruvate ki-
nase (PKM2), and phosphofructokinase (PFK), are significantly upregulated in cells [16,17].
The inhibition of GLUT and key glycolytic enzymes of the glucose metabolism by small-
molecule inhibitors or RNAi can slow the growth of many tumor cells [17]. Propolis has
excellent antitumor activity, but the effects of propolis on the cell metabolism, especially
glycolysis and gluconeogenesis in liver cancer cells, remain unknown.

In the present study, based on transcriptomics and cell metabolomics, we explored
these effects to further elucidate the antitumor mechanisms of propolis.

2. Materials and Methods
2.1. Chemicals and Reagents

Dulbecco’s modified Eagle medium (DMEM), fetal bovine serum (FBS), penicillin/
streptomycin (10,000 U/mL), and phosphate buffer solution (PBS) were purchased from
Gibco (Pittsburgh, PA, USA). The primer was synthesized by Sangon Biotechnology Co.,
Ltd. (Beijing, China). Primary antibodies against GAPDH and β-actin were obtained Santa
Cruz Biotechnology (Santa Cruz, CA, USA). Primary antibodies against LDHA, HK2, and
PKM2 were purchased from Cell Signaling Technology (Beverly, MA, USA). The protease
and phosphatase inhibitors were from ABclonal biotech (Shanghai, China). A CCK8 kit
was purchased from Dojindo Laboratories (Kumamoto, Japan), while the BCA protein
assay and SDS-PAGE gel configuration kits were from Beyotime Biotechnology (Shanghai,
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China). Ethanol absolute (≥99.5%) was purchased from Shanghai Macklin Biochemical
Co., Ltd. (Shanghai, China). Formic acid (88%), acetonitrile (99.95%), and methanol (99.9%)
were purchased from Fisher Chemical (Pittsburgh, PA, USA).

2.2. Preparation of the Chinese Poplar Propolis Ethanol Extract

Propolis was collected from Nanyang of Henan Province in North China in 2017
(voucher specimen no. CP17110702), and poplar (Populus spp.) was the main plant source.
The extraction method of propolis was consistent with one of our previous studies [9].
In brief, propolis was frozen, milled, and extracted using 99.5% ethanol (v/v), and then
subjected to ultrasonication at 40 ◦C for 3 h. The supernatant from three extractions
was combined, filtered, and concentrated under reduced pressure to a constant weight
and stored at −20 ◦C. The major chemical compositions of the Chinese poplar propolis
(CP) were analyzed using an ultra-high-performance liquid chromatography/quadrupole
time-of-flight mass spectrometry system in a negative ion mode.

2.3. UHPLC/Q-TOF-MS

The CP and cellular metabolite samples were analyzed using UHPLC/Q-TOF-MS
(6545, Agilent Technologies, Beijing, China). The UHPLC conditions were as follows: The
column was a ZORBAX Eclipse Plus C18 column (2.1 × 100 mm, 1.8 µm); the column
temperature was 30 ◦C. Mobile phase A was 0.1% formic acid in water and B was 0.1%
formic acid in acetonitrile; the flow rate was 0.3 mL/min. The injection volume was 2 µL,
and the gradient elution program was carried out according to the following procedure:
0 min/5% B, 2 min/5% B, 20 min/100% B, and 25 min/100% B with a postruntime of
5 min. Mass spectrometry was conducted using an electrospray ionization (ESI) ion source.
The samples were detected under positive/negative ion conditions, respectively. The
nebulizer voltage was 35 psi, the dry gas (N2) temperature was 325 ◦C, and the flow rate
was 10 L/min. The capillary voltage was 3500 V, the sheath gas temperature was 370 ◦C,
and the flow rate was 12 L/min. The fragmentor voltage was 135 V, and mass spectra were
obtained in a mass range of 100–1700 m/z [18].

Agilent Profinder 8.0 (Agilent Technologies, Beijing, China) was used to extract and
correct the peak area, mass number, and retention time of the original metabolomics data
(including primary and secondary mass spectrometry data), which were exported in .cef
format. The data in .cef format were then imported into Mass Profiler Professional 15.1
for statistical analysis. ID Browser10.0 (Agilent Technologies, Beijing, China) was used to
identify all compounds for subsequent metabolic pathway analysis. MetaboAnalyst 5.0
was used to import the names of potential cellular metabolites into an online system for
metabolite enrichment analysis.

2.4. Cell Culture

The human liver cancer cell line HepG2 was generously gifted from the Institute
of Apiculture, Chinese Academy of Agricultural Sciences. HepG2 cells were cultured in
DMEM supplemented with 10% (v/v) FBS, and the culture medium contained 100 µg/mL
of streptomycin and 100 U/mL of penicillin. The cells were cultured in a humidified
environment containing 5% CO2 at 37 ◦C. When the cells reached 70% confluence, they
were collected for subsequent experiments.

2.5. Cell Viability Assay

HepG2 cells were seeded into 96-well cell culture plates at a density of 5 × 104/mL.
When the cells became 70% confluent, they were treated with CP (25, 50, or 100 µg/mL) for
24 and 48 h, respectively. A CCK-8 kit was used to determine cell viability.

2.6. Quantitative Real-Time Reverse-Transcriptase Polymerase Chain Reaction

The total RNA of cells was extracted using TRIzol reagent (Invitrogen, CA, USA). A
Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) was
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used to determine the concentration of the extracted RNA. Then, 1000 ng of total RNA was
used as a template for cDNA synthesis, and a PrimeScript RT kit (TaKaRa, Dalian, China)
was used for the reverse transcription process. Fluorescent quantitative real-time PCR
(qRT-PCR) was performed using the QuantStudio™ 1 Real-Time fluorescent quantitative
PCR system (Applied Biosystems, Carlsbad, CA, USA) and TB Green® Premix Ex Taq™ II
kit (TaKaRa, Dalian, China) as instructed by the reagent vendor. The 2−∆∆Ct method was
used to analyze the data, normalized to the expression of the housekeeping gene (β-actin).
The primer design is shown in Table S1.

2.7. RNA Sequencing

Total messenger RNA (mRNA) was extracted from the propolis-treated or control
HepG2 cells. Total RNA samples with an RNA integrity number (RIN) > 7.0 and a 28S:18S
ratio ≥ 1.5, which were used for subsequent library preparation and sequencing, were
obtained from CapitalBio Technology (Beijing, China). High-throughput RNA sequencing
(RNA-seq) was performed using the Illumina NovaSeq sequencer (Illumina, San Diego,
CA). Sequencing quality was assessed using FastQC (v0.11.9) (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/, accessed on 26 October 2020) to filter out low-quality
data. Clean reads were then compared to the reference genome using Bowtie2 [19]. Us-
ing HISAT2 (v2.1.0) software, the processed reads from each sample were aligned to the
public reference genome. Transcript abundances were measured as fragments per kilo-
base of transcript per million fragments mapped (FPKM) using HTSeq [20]. The DESeq2
package was used to analyze the differentially expressed genes (DEGs) between groups.
The differential gene screening criterion was: |log2FC| ≥ 1 (FC: multiple of differen-
tial expression). Bioinformatics analysis was subsequently performed using oebiotech
(https://cloud.oebiotech.cn/, accessed on 29 May 2023). A p-value of 0.05 was chosen as
the cut-off criterion.

2.8. Measurement of Glucose Consumption and Lactate Production

After 24 and 48 h of CP intervention, the cell culture medium was collected, cen-
trifuged at 1000 rpm for 10 min, and the supernatant was taken. Lactate and glucose levels
in the culture medium were determined using a lactate test kit and a glucose test kit (Nan-
jing Jiancheng Bioengineering Institute, Nanjing, China) according to the manufacturer’s
instructions.

2.9. Western Blotting

Whole-cell lysates were prepared as previously described [9]. Briefly, the cells were
lysed with RIPA lysis solution (containing 1% protease inhibitor and 1% phosphatase
inhibitor) on ice for 30 min following two washes with ice-cold PBS, and then scraped
and centrifuged at 13,000 rpm for 8 min at 4 ◦C. Then, the supernatant was transferred
to a new centrifuge tube, and the protein concentration was determined using a BCA kit
(Beyotime Biotechnology, Shanghai, China). The protein was denatured by proportionally
adding 5 × SDS and heating it at 100 ◦C for 5 min. A total of 30 µg of protein was
electrophoresed using 8–12% sodium dodecyl sulfate-PAGE (SDS-PAGE) and transferred
onto polyvinylidene fluoride (PVDF) membranes. The membrane was blocked with 5%
skimmed milk powder for 1 h at 25 ◦C and then incubated with primary antibody overnight
at 4 ◦C. The membrane was washed three times with 1 × PBST to remove the unbound
primary antibody and incubated with a secondary antibody coupled with horseradish–
peroxidase (diluted to a ratio of 1:2000–10,000) for 1 h at 25 ◦C. After washing the membrane
two times with 1 × PBST, the membrane was incubated with ECL substrate and detected
using Amersham Image600 (General Electric, Norwalk, CT, USA).

2.10. Cellular Metabolite Extraction

The HepG2 cells were treated with 100 µg/mL of CP for 48 h when they were confluent
to 70% in the six-well plates, and the control group was replaced with fresh medium. The
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cell culture medium was discarded, and the plates were washed three times with prechilled
1 × PBS, then 1 mL of ice-cold 80% methanol (v/v) was added to each well on ice and
extracted at −80 ◦C for 1 h. The cells were scraped into the centrifuge tubes with a cell
scraper, and 1 mL of 80% methanol (v/v) was added to each well again to rinse and try
to transfer all cells; cells from three wells were combined into one centrifuge tube. The
experiment was repeated six times. The supernatant was centrifuged at 10,000 rpm for
30 min at 4 ◦C and blow-dried with nitrogen. The cellular extracts were redissolved with
80% methanol (v/v). After centrifugation at 15,000 rpm for 20 min at 4 ◦C, the supernatant
was added to the injection vial for UHPLC/Q-TOF-MS measurement. The quality control
(QC) process consisted of an equal amount of each sample and was used to check the
instrument stability and calibrate all samples [21].

2.11. Molecular Docking Analysis

We previously discovered that seven compounds, including apigenin, chrysin, galan-
gin, caffeic acid phenethyl ester (CAPE), caffeic acid benzyl ester, pinocembrin, and
pinobanksin, showed significant inhibitory activity on a number of cancer cells, including
HepG2, and hence picked these seven compounds for molecular docking [9,22]. Molecular
docking used the protein–small molecule automated docking software AutoDock vina
(v1.1.2); the more stable the conformation and the lower the binding energy, the higher
the likelihood of the interaction. In detail, the ligand structures of the seven components
of propolis were downloaded from the Pubchem database (https://pubchem.ncbi.nlm.
nih.gov/, accessed on 23 August 2023) and the three-dimensional structures of the target
proteins were downloaded from the RCSB-PDB database (https://www.rcsb.org/, accessed
on 23 August 2023). Then, water molecules were removed, hydrogen bonds were formed,
and excess ligands were eliminated from the proteins. Visualization of the results was
performed via PyMol [23–25].

2.12. Statistical Analysis

Data were subjected to one-way ANOVA using GraphPad Prism software (version
8.0) and IBM SPSS software (version 26.0). Each experiment was repeated at least three
times. Data are expressed as the mean ± S.E.M, with p < 0.05 representing a significant
difference. RNAseq data were analyzed and visualized using the online platform, oebiotech.
MetaboAnalyst 5.0 was used for visualization of the metabolomics data.

3. Results
3.1. Nontargeted UHPLC/Q-TOF-MS CP Analysis

The chemical composition of propolis is very complex and is strongly influenced by
geographical location and plant origin. In previous studies, we isolated and identified
11 chemical components of propolis [9]. In order to gain a detailed understanding of
the chemical composition of the CP used in the present study, we performed a composi-
tional analysis of the sample in negative ion mode using ultra-high-performance liquid
chromatography/Q-TOF-MS. Figure S1 shows the total ion current chromatogram (TIC).
Supplementary Table S1 lists the TOP 100 compounds in CP.

3.2. CP Inhibited the Cell Viability of HepG2 Cells

To investigate the inhibitory effect of CP on HepG2 cells, the HepG2 cells were treated
with different concentrations of CP (25, 50, or 100 µg/mL) for 24 and 48 h, followed
by the detection of cell viability using a CCK-8 kit. The cell viability of the HepG2 cells
significantly decreased in a dose- and time-dependent manner after CP treatment compared
to the control group (Figure 1A,B).

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org/
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Figure 1. The effects of Chinese poplar propolis (CP) on the viability of HepG2 cells. (A,B) Cytotoxic-
ity of CP (25, 50 and 100 µg/mL) in HepG2 cells at 24 and 48 h. (** p < 0.01 vs. control, n = 3.) Data
are means ± S.E.M.

3.3. Propolis Affected Metabolism-Related Transcriptome Alterations in HepG2 Cells

Transcriptome sequencing was used to detect the differentially expressed genes in
the propolis-treated cells. Additionally, the absolute value of logarithmic fold changes ≥ 1
and t-test p-values < 0.05 were taken as the thresholds for selecting DEGs. A total of
223 DEGs were upregulated and 477 DEGs were downregulated in the propolis-treated
group compared to the control group; the results are shown Figure 2A. This indicates that
the propolis-treated group was significantly different against the control group. These
genes may be the target genes regulated by CP in HepG2 cells.

To gain insights into the function of these significantly altered DEGs, GO enrichment
analysis was performed, especially at the biological process (BP), molecular function (MF),
and cellular component (CC) levels. As shown in Figure 2B, the three most representative
Gene Ontology (GO) terms in the CC domain were “cell”, “cell part”, and “intracellular.”
The top three GO terms in the MF domain were “binding”, “protein binding”, and “ion
binding”, while the five most enriched GO terms in the BP domain were “cellular process”,
“single-organism process”, “single-organism cellular process biological regulation”, and
“metabolic process”, suggesting that CP may affect the cellular metabolism of HepG2 cells.
The cellular metabolic process is related to cancer cell survival.

To further understand the biological functions of the DEGs affected by CP, a KEGG
pathway enrichment analysis was performed on the significantly altered DEGs. In Figure 2C,
CP mainly affected the “metabolic pathways”, “butanoate metabolism”, “glycine, serine,
and threonine metabolism” on HepG2. Interestingly, most of the enriched TOP30 pathways
were related to the cellular metabolism, such as the central carbon metabolism, amino acid
metabolism, and glycolysis. The results of the KEGG analysis are consistent with those of
the GO analysis. Moreover, glycolysis cross-talked several signaling pathways, such as
“butanoate metabolism”, the “PI3K–AKT signaling pathway”, and the “FoxO signaling
pathway” (Figure 2D). We previously found that propolis significantly downregulated the
protein expression levels of the PI3K–AKT signaling pathway in HepG2 cells [9]. Therefore,
the regulation of the HepG2 metabolic pathway, especially the glycolytic pathway, allowed
CP to exert an anticancer effect.
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Figure 2. Transcriptomic analysis of HepG2 cells after CP treatment. (A) Volcano plot of DEGs in
HepG2 for the propolis-treated and control groups. The x-axis and y-axis indicate log2 (fold change)
and −log10 (p-value) of DEGs in HepG2, respectively. The red color represents upregulated genes,
and the blue color represents downregulated genes. (B) GO pathway enrichment analysis of DEGs.
The 30 most significantly enriched GO terms in a complex of biological process, molecular function,
and cellular component branches are presented. (C) Scatter plots show the top 30 enriched KEGG
pathways of DEGs. The rich factor is the ratio of DEGs numbers to all gene numbers annotated in this
pathway term. A higher rich factor means a greater intensiveness. (D) KEGG network diagram. The
TOP30 pathways were screened to obtain 8 pathways interconnected via glycolysis/gluconeogenesis.

3.4. CP Suppressed Glucose Consumption and Lactate Production

Generally, normal cells ingest glucose and undergo glycolysis under anaerobic condi-
tions to produce lactate, but tumor cells also metabolize glucose under aerobic conditions
via the glycolysis pathway, which is known as the Warburg effect. Therefore, we inves-
tigated the effects of CP treatment on glucose uptake and lactate production. As shown
in Figure 3A,B, CP intervention significantly inhibited the glucose uptake (p < 0.01). In
particular, 100 µg/mL CP treatment for 48 h could reduce glucose uptake by more than
50%. CP also reduced lactate production to varying degrees (p < 0.01) and maintained an
inhibitory effect for 48 h (Figure 3C,D).
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3.5. CP Inhibited the mRNA Expression of Glucose Transporter Proteins GLUT1 and GLUT3

Glucose is a polar molecule that cannot directly cross cell membranes; therefore,
glucose transporters play an important role in glucose uptake in cells. The qRT-PCR results
show that CP significantly inhibited the gene levels of the glucose transporter proteins
GLUT1 and GLUT3 (Figure 4A,B).

3.6. CP Suppressed the Levels of Four Glycolytic Key Enzymes

Extracellular glucose enters the cell via GLUTs and undergoes phosphorylation to
form glucose-6-phosphate (G6P), initiating glycolysis. As shown in Figure 4C,E,F, CP
treatment for 36 h significantly reduced the mRNA levels of essential glycolytic enzymes,
such as HK2, PKM2, and LDHA. We also observed a significant inhibition of the protein
expression levels of these three key enzymes following CP treatment (Figure 5A–D). Since
the time of gene expression was unknown, no change in PFK gene expression was detected
after CP treatment for 36 h; therefore, after a 20 min CP intervention, we detected PFK
gene expression. CP treatment for 20 min significantly decreased the levels of PFK mRNA
expression (Figure 4D).
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PKM2 (E), and LDHA (F) were quantified using qRT-PCR and normalized to β-actin; the levels of
gene expression in the control group were set to 1. The data shown represent means ± SEMs values
from three independent experiments. Individual groups were compared using ANOVA (* p < 0.05,
** p < 0.01 compared with the control group, n = 3).
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3.7. Differential Cellular Metabolite Analysis

Based on gene and protein expression results, we hypothesized that CP could affect
changes in the metabolites of HepG2 cells. Therefore, we analyzed the metabolite changes
in CP-treated and control cells using a UPLC-Q-TOF-MS-based metabolomics approach
in negative/positive ion modes, respectively. The MetaboaAnalyst 5.0 (https://www.
metaboanalyst.ca/, accessed on 30 May 2023) online analysis platform for metabolic data
was used to compare the differentially metabolized compounds between the CP and control
groups. The overall distribution between samples was observed using unsupervised PCA.
After CP treatment, PCA showed a clear classification of the metabolite composition of
each group, with samples from the same group being clustered together. The PC1 variable
in PCA explained 50.4% of the variation in the original data in the negative mode. The
principal component variable PC1 in the positive mode could explain 25.1% of the variation
in the original data (Figure 6A,B), which showed significant differences between the control
and CP-treated groups, suggesting that CP causes significant changes in the metabolites
within cells. Volcano plots and cluster heatmaps were used to determine the differences
in the metabolic profiles between the different groups. CP had a noticeable effect on
cellular metabolites. Metabolites were effectively separated in the control and CP groups
(Figure 6C,D). The red areas in the cluster heatmaps indicate higher metabolite levels, while
the blue areas represent lower metabolite levels. As shown in the volcano plots, there were
more differential compounds between the CP-treated and control groups in the negative ion
mode than in the positive ion mode (Figure 6E,F). In the t-test, p < 0.05 and |log2FC| > 1
were considered as criteria for discovering biologically significant different metabolites.

3.8. Analysis of the Differential Metabolites Associated with Glycolysis

Based on the above criteria, the differential metabolites were screened and compared
to the KEGG database to obtain metabolic pathway classification profiles (Figure 7A), and
the three pathways with the highest enrichment were “citrate cycle (TCA cycle)”, “drug
metabolism—other enzymes”, and “glycolysis/gluconeogenesis”. This indicates that the

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
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significant changes in the metabolites after CP treatment were highly correlated with glu-
cose metabolism. In the glycolysis/gluconeogenesis metabolic pathway, the intermediate
metabolites changed significantly after CP treatment, as shown in Figure 7B. The content
of intermediate products, such as fructose 1,6-diphosphate (FBP) and acetyl-CoA, signifi-
cantly decreased, and 2-hydroxyethyl-ThPP and S-acetyldihydrolipoamide-E levels were
significantly upregulated (Figure 7C–F).
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3.9. Molecular Docking Simulation of the Effects of Primary Active Components of Propolis on
Glycolysis Key Enzymes

According to the molecular docking data (Table 1), the binding energies of all the
active components with proteins were less than −5 kcal·mol−1, indicating that the prin-
cipal active compounds of propolis have a high affinity for proteins and good binding
stability. GLUT1–apigenin, GLUT1–pinobanksin, GLUT3–pinocembrin, HK2–galangin,
HK2–pinobanksin, LDHA–apigenin, PFK–pinobanksin, and PKM2–galangin were the best
docking results of protein and propolis key active components, respectively. The main
active components of propolis bind to proteins primarily through hydrogen bonding and
hydrophobic interactions. Additionally, apigenin forms Π–Π stacking (T-type) and Π–Π
stacking (P-type) interactions with GLUT1; formation of Π–cation interactions between
pinobanksin and PFK; and galangin forms a Π–Π stacking (T-type) interaction with PKM2
(Table 2 and Figure 8).

Table 1. Docking binding energy of the main active components of propolis to protein molecules.

Protein
Targets

PDB
ID

Affinity/(kcal·mol−1)

Apigenin Chrysin Galangin Caffeic Acid
Phenethyl Ester

Caffeic Acid
Benzyl Ester Pinocembrin Pinobanksin

GLUT1 6THA −8.7 −8.6 −8.4 −8.5 −8.6 −8.6 −8.7
GLUT3 5C65 −6.2 −6.4 −6.4 −5.7 −6.0 −6.5 −6.4

HK2 2NZT −7.4 −7.7 −7.8 −7.5 −7.5 −7.6 −7.8
LDHA 4JNK −8.0 −7.6 −7.6 −7.0 −7.3 −7.6 −7.5

PFK 4XZ2 −7.4 −7.4 −7.6 −6.6 −6.9 −7.4 −7.7
PKM2 3GQY −7.1 −7.3 −7.4 −7.3 −7.2 −7.2 −7.2
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Figure 7. Effects of CP on metabolic pathways in HepG2 cells. (A) Analysis of metabolic path-
way associated with the propolis anticancer effect using an enrichment analysis with an online OE
Biotech. Bubble plots indicate the differential metabolic compound pathway enrichment analysis
in the control and propolis-treated groups of HepG2. (B) Summary of the changes in glycolysis
upon propolis treatment. Metabolites that decrease upon propolis treatment are indicated with blue
arrows. The increased metabolites after propolis treatment are indicated by red arrows. Changes
in identified metabolite biomarkers in response to the propolis treatment in the pathways of gly-
colysis/gluconeogenesis (C–F). Data for (C–F) are the means ± SEM of six replicates, * p < 0.05,
*** p < 0.001 (in comparison to the control group via Student’s t tests, n = 6).
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Table 2. Optimal results of molecular docking of the main active components of propolis with proteins.

Apigenin–
GLUT1

Pinobanksin–
GLUT1

Pinocembrin–
GLUT3 Galangin–HK2 Pinobanksin–

HK2 Apigenin–LDHA Pinobanksin–
PFK Galangin–PKM2

Affinity
(kcal/mol) −8.7 −8.7 −6.5 −7.8 −7.8 −8.0 −7.7 −7.4

Number of
hydrogen

interactions
4 - - 4 7 3 3 2

Amino acid
residues involved
in hydrogen bonds

Gln283, Asn288,
Trp412, Asn415 - -

Thr88,
Thr232,
Ser415,
Ser449

Asp84,
Thr88,

Asp209,
Thr232, Ser415,

Ser449

Gly96, Thr247 Thr538, Asn542,
Gln674 Ala388, Tyr390

Number of
hydrophobic
interactions

2 5 10 2 2 4 4 7

Amino acid
residues involved

in hydrophobic
interactions

Thr137, Trp412 Val83, Thr137,
Ile404, Ala405

Leu282, Val416,
Leu419, Phe420,
Ala423, Val431,
Ile434, Phe435,

Phe438

Asp209,
Lys418

Asp209,
Lys418

Val30, Arg98,
Val13, Leu164

Ala420, Tyr586,
Arg744

Phe26, Leu353,
Ile389, Tyr390,

Leu394

Number of Π
stacking 3 - - - - - - 1

Amino acid
residues involved

in Π stacking

Phe26 (T),
Trp412 (T),
Trp388 (P)

- - - - - - Phe26 (T)

Amino acid
residues involved

in Π–cation
interaction

- - - - - - Arg481 -
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target protein structure is shown in blue and the brown represents the small-molecule ligand.
(A) GLUT1–apigenin, (B) GLUT1–pinobanksin, (C) GLUT3–pinocembrin, (D) HK2–galangin,
(E) HK2–pinobanksin, (F) LDHA–apigenin, (G) PFK–pinobanksin, and (H) PKM2–galangin. Blue
line for hydrogen interactions, gray dashed line for hydrophobic interactions, light green dashed line
for Π–Π stacking (P-type), dark green dashed line for Π–Π stacking (T-type).

4. Discussion

The altered cell metabolism caused by cancer has made it a popular target for the devel-
opment of new therapies. Propolis has significant anticancer properties; flavonoids mainly
exert an antitumor effect [26–28], but whether propolis affects the tumor cell metabolism re-
mains unclear. Here, for the first time, we found that propolis interferes with the metabolism
in hepatocellular carcinoma cells, especially the glycolysis pathway, inhibiting the expres-
sion of glucose transporter proteins and key glycolysis enzymes, downregulating inter-
mediate metabolites, and ultimately inhibiting the malignant proliferation of liver cancer
cells.

Recent studies have demonstrated that propolis and its components have the ability
to inhibit various types of cancers, such as breast, colon, brain, skin, and blood cancers [29].
This study found that low doses of CP did not affect the viability and proliferation of HepG2
cells, but medium and high doses of CP showed a significant inhibitory effect. These results
are consistent with previous research where the cell proliferation of HCC-LM3 cells was
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significantly inhibited after the intervention of high doses of chrysin, the main component
of propolis [30].

Previous studies have shown that propolis can suppress the cell cycle, induce apopto-
sis, autophagy, and antiangiogenic activity, and modulate the tumor inflammatory microen-
vironment [31,32]. Additionally, propolis has been found to inhibit tumor cell proliferation
through various signal pathways, including MAPK, PI3K/AKT/mTOR, JAK-STAT, TLR4-
NF-κB, VEGF, and TGFβ [33]. However, these studies were not able to fully reveal the
antitumor mechanisms of propolis. Propolis is a complex with multiple efficacy compo-
nents, and its antitumor efficacy also reflects the characteristics of multiple pathways and
targets. In the field of human health, transcriptome sequencing is gaining traction as a
tool to identify therapeutic targets for diseases [34,35]. Transcriptome sequencing provides
a more comprehensive understanding of the antitumor efficacy of propolis by revealing
the genes and signaling pathways that propolis may regulate. A transcriptome analysis
revealed that CP treatment resulted in significant changes in the expression of 700 mRNAs
and exerted antihepatocarcinogenic effects, mainly by affecting ion binding and the cellular
metabolism, especially the glucose metabolism.

Mammalian cells require an active energy metabolism to survive. Glucose monosac-
charide enters the cell via the glucose transporter and initiates glycolysis as a significant
source of cellular energy [36]. Lactate, a product of glycolysis, promotes stromal degra-
dation, facilitates tumor metastasis, and evades immune surveillance [36]. Our results
show that CP treatment significantly inhibits the production of lactic acid for the cellular
consumption of glucose. This tentatively suggests that CP can inhibit aerobic glycolysis in
hepatocellular carcinoma cells, and a similar phenomenon was observed in Licochalcone A-
treated gastric cancer cells [37]. Next, we examined the effects of CP on GLUT1 and GLUT3
at transcriptional levels, showing that high concentrations of CP significantly inhibited the
gene expressions of GLUT1/3. Quercetin, as a competitive inhibitor of GLUT1-mediated
glucose uptake, is shown to have anticancer effects at elevated concentrations [38].

The development of HCC is highly correlated with the glucose metabolism. High
glucose levels can cause reactive oxygen species (ROS) to build up, and surplus ROS
can bind to DNA and cause the formation of HCC [39]. One-third of the genes involved
in the glucose metabolism are continuously dysregulated, which is linked to the poor
prognosis of HCC [40]. In normal cells, glycolysis converts one glucose molecule into two
pyruvate molecules and generates ATP. Depending on the oxygen supply, pyruvate is either
oxidized to carbon dioxide and water through the TCA cycle or, under anaerobic conditions,
pyruvate produces lactate [41]. In contrast, tumor cells preferentially undergo glycolysis to
produce lactate, even under aerobic conditions; this metabolic reprogramming is known as
the Warburg effect. To produce energy quickly in cancer cells, glycolysis is preferred over
the TCA cycle and oxidative phosphorylation (OXPHOS), and OXPHOS intermediates,
including ATP, citrate, and ROS, negatively control three irreversible steps of glycolysis [42].
Thus, minimal dependence on OXPHOS is well suited in tumor cells [43–45]. Our previous
studies show that tumor cells, including liver cancer cells treated with propolis, exhibit
significantly higher levels of ROS, which may also be one of the reasons why propolis
inhibits the glycolytic process [9]. The regulation of the key glycolytic enzymes in cancer
cells is another important factor of propolis inhibiting tumor cell proliferation. Glycolysis
is the first step of the glucose metabolism, consisting of ten enzymatic steps and three
irreversible catalyzed reactions. HK2, PFK, and PKM2 catalyze three irreversible processes
that are important regulatory points in the glycolytic process [46]. Enzyme activity can
be altered in a variety of ways, such as inhibition brought on by an excess of metabolites,
the phosphorylation of the enzyme, and transcription-induced changes in the enzyme
concentration [46]. HK2 is overexpressed in a variety of tumor cells, and studies have
shown that HK2 ablation delays lung and breast tumor progression [47], while HK2
silencing reinstates the flux of pyruvate to the TCA cycle and suppresses aerobic glycolysis,
contributing to tumor therapy [48]. Licochalcone A reduces the levels of Akt in two
different types of gastric cancer cells to inhibit HK2-mediated tumor glycolysis [37]. PFK
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has two isoforms, PFK1 and PFK2, both of which are post-translationally modified in
cancer cells [49]. The knockdown of PFK2 in breast cancer cells accumulates ROS to induce
apoptosis [50]. It has been demonstrated that PFK expression and activity are inhibited
by epigallocatechin-3-gallate in hepatocellular cancer cells [51]. PK has four isoforms—
PKM1, PKM2, PKL, and PKR. PKM2 is favored by tumor cells [52], making it a target for
antitumor treatment [53]. Lactate dehydrogenase (LDH) catalyzes a reversible reaction,
converting pyruvate into lactate, and the high-speed conversion of glucose to lactate results
in elevated GLUTs in glucose uptake [54,55]. LDHA is overexpressed in a variety of tumor
cells, and the silencing of RNAi causes apoptosis to occur in liver cancer due to increased
ROS production [56]. Wogonin treatment inhibits the action of LDHA in human gastric
cancer and lung adenocarcinoma cells [57]. Increased aerobic glycolysis is the hallmark of
tumors. This study shows that propolis can target the glucose metabolism by decreasing
the levels of glycolytic key enzymes, such as HK2, PFK, PKM2, and LDHA.

Among the multiple signaling pathways regulated by propolis, the modulation of
metabolic pathways is the most significant. Based on metabolomics, principal compo-
nent analysis plots showed a clear separation between sample points, suggesting that CP
treatment had a greater effect on the metabolism of HepG2 cells. Additionally, altered
tumor cell metabolism is a prominent feature of tumorigenesis and development [58]; thus,
propolis might target the tumor cell metabolism to inhibit liver cancer cell proliferation.
The results regarding cell metabolism further demonstrate that propolis modulates the
tumor cell metabolism, including the citrate cycle, glycolysis/gluconeogenesis, one carbon
metabolism, and the purine and pyrimidine metabolism. Under the intervention of CP, the
content of intermediate products of glycolysis, such as FBP and acetyl-CoA, significantly
decreased. In addition to the rapid production of ATP, intermediates of glycolysis are also
precursors for the synthesis of many biomolecules, such as amino acids and lipids [46].
Cell proliferation involves the de novo synthesis of many biomolecules, and acetyl-CoA
is a pivotal substance in the metabolism of energy substances in the body [59]. CP in-
tervention leads to a reduction in acetyl-CoA levels, thereby inhibiting the synthesis of
biomacromolecules, and thus cell proliferation.

The molecular docking results revealed that all seven propolis actives had a strong
binding capacity with key glycolysis enzymes, with apigenin, pinobanksin, pinocembrin,
and galangin being the best. Previous research found that all four flavonoids suppressed
HepG2 cell survival [9]. Apigenin has been demonstrated to decrease GLUT1, HK2, PKM2,
and LDHA production in tumor cells [60,61], and galangin has been shown to bind to
the PKM2 site [62]. Combining these four flavonoids with glycolysis may give us with a
fresh perspective on propolis’s antitumor activity, which can be examined further in future
studies. Thus, CP is a polyphenol mixture with a broad range of targets, and its antitumor
activity exceeds that of a single component, implying that propolis targets glycolysis for its
anticancer efficacy as a result of the combined action of several components.

5. Conclusions

The distinguishing features of the tumor cell metabolism include increased glucose
uptake and aerobic glycolysis, leading to the conversion of glucose into lactate. In our cur-
rent investigation, by utilizing transcriptomics and metabolomics, we found that propolis
has the potential to modulate the tumor cell metabolism, especially the glucose metabolism,
by suppressing glucose consumption, glucose transporter proteins, glycolytic key enzymes,
intermediate metabolites, and lactate production, ultimately resulting in inhibited cell
proliferation. This could be due to the combined activity of several propolis components.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nu15204329/s1, Table S1: Sequences of the primers for qRT-PCR; Table S2:
TOP 100 components in ethanol extract of propolis by HPLC-QTOF-MC; Figure S1. Total ion current
chromatogram (TIC) of the propolis extracts from the negative mode analyzed by UHPLC/Q-TOF-MS.
References [63–65] are cited in supplementary file.
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