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Abstract: In the world, migraine is one of the most common causes of disability in adults. To
date, there is no a single cause for this disorder, but rather a set of physio-pathogenic triggers in
combination with a genetic predisposition. Among the factors related to migraine onset, a crucial
role seems to be played by gut dysbiosis. In fact, it has been demonstrated how the intestine is
able to modulate the central nervous system activities, through the gut–brain axis, and how gut
dysbiosis can influence neurological pathologies, including migraine attacks. In this context, in
addition to conventional pharmacological treatments for migraine, attention has been paid to an
adjuvant therapeutic strategy based on different nutritional approaches and lifestyle changes able to
positively modulate the gut microbiota composition. In fact, the restoration of the balance between
the different gut bacterial species, the reconstruction of the gut barrier integrity, and the control of the
release of gut-derived inflammatory neuropeptides, obtained through specific nutritional patterns
and lifestyle changes, represent a possible beneficial additive therapy for many migraine subtypes.
Herein, this review explores the bi-directional correlation between migraine and the main chronic
non-communicable diseases, such as diabetes mellitus, arterial hypertension, obesity, cancer, and
chronic kidney diseases, whose link is represented by gut dysbiosis.

Keywords: migraine; chronic non-communicable diseases; gut microbiota; nutritional approaches;
lifestyle changes

1. Introduction

Migraine is a complex neurological disorder that triggers a particular type of headache,
characterized by unilateral, pulsating, and moderate–severe pain, which generally worsens
with physical activity and is associated with other symptoms, such as nausea, vomiting, and
photophonophobia [1]. With an estimated global prevalence of 14.7% [2], the World Health
Organization (WHO) listed migraine among the top ten causes of disabilities worldwide [3];
it is in first place if we consider people younger than 50 years old [4]. Women are 3–4 times
more affected than men and show more disabling and drug-resistant, attacks and this
consequently provokes a great socio-economic burden [5–7]. About 3% of the patients,
suffering from episodic migraine, evolves every year towards a more complex clinical
picture of chronic migraine. In this latter condition, patients should suffer a monthly
migraine of about 15 or more days, in the last three months [8].

The main trigger factors of this migraine progression are hormonal pathways, psy-
chological syndromes, drugs assumption, environmental factors, and nutritional habits
(Figure 1).
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In women, migraine can be linked to the fluctuations in sexual reproductive hormones.
In fact, decreased estrogens in the late luteal phase of the menstrual cycle lead to an
increased permeability of blood vessels to prostaglandins, becoming a migraine trigger [9].
On the contrary, elevated estrogen levels are associated with more frequent pain attacks,
especially with aura [10]. For this reason and for a higher stroke risk, associated with aura,
the use of oral contraceptives is still restricted by the current guidelines in those women
affected by this headache subtype [11]. The most frequently experienced psychological
factors associated with this pathological condition are (i) anxiety, which seems to have a
shared genetic basis with a migraine [12,13]; (ii) depression [12,14], characterized by a low
availability of 5-hydroxytryptamine (5-HT), an increased sensitivity of trigeminovascular
pathways [15], the hypofunction of the dopaminergic system [14], a down-regulation of
the GABAergic system, and decreased estrogen levels; (iii) stress [16], namely, previous
and recurrent stressful events that have been shown to be correlated with migraine onset
and its chronicization [17]; and (iv) an excessive fear of migraine attacks, which refers
to the fear of a headache occurring and that can worsen the disease course [18]. Even
the use of some psychoactive drugs can be an important provoking agent for migraine
generation, including nitroderivates, histamine, reserpine, hydralazine, and ranitidine, as
well as cocaine and marijuana [19–23].

Notably, the overuse of analgesic or other abortive pain medications (i.e., triptans) is
the major clinical factor of a migraine worsening, inducing a particular condition, known
as “medication overuse headache” [24]. Among the environmental factors that can lead
to the migraine development are high altitudes, changes in the atmospheric pressure,
temperature, light and precipitation, humidity, air pollution, and sensory stimuli, such as
olfactory and visual ones [25]. Impaired sleep patterns can also promote migraine attacks,
particularly in young adults [26]. Other important migraine triggers are nutritional habits
and certain foods, including fasting, caffeine, natural sweeteners (such as aspartame),
nitrites of preserved meats, biogenic monoamines of alcohol, chocolate and dairy products
(such as cheese and yogurt), and monosodium glutamate [25].

Migraine is frequently associated with chronic non-communicable diseases (CNCDs),
such as diabetes mellitus (DM), arterial hypertension (AH), obesity, and cancer and chronic



Nutrients 2023, 15, 4327 3 of 23

kidney disease (CKD). Moreover, CNCDs are themselves both the cause and consequence
of a negative change in the gut microbiota composition, called “dysbiosis” [27–29].

In this regard, in addition to pharmacological treatments, a new adjuvant therapeutic
strategy able to counteract migraine can be represented by different nutritional approaches
able to modulate the gut microbiota composition and gut–brain axis [30].

The term “microbiota” means a very wide community consisting of bacteria, viruses,
fungi, Archea, and unicellular eukaryotes. The term “microbiome”, instead, indicates a set
of genetic patrimonies of microorganisms, which constitute it [31].

The microbial component and its genetic patrimonies are affected by lifestyle, dietetic
habits, and other external factors, such as the environment. Therefore, the gut microbiota is
a dynamic system that is in constant evolution [32] and is also composed by the vascular
gut barrier [33]. The latter is a fundamental coating system able to control epithelium
permeability and the passage of potentially pathogenic molecules and bacteria into the
bloodstream [34,35]. Therefore, the microbiota can be defined as a “meta-organ”, namely,
it is a structure that anatomically is not a part of the organism; however, it accompanies
human phylogenetic evolution [36,37].

The aim of this narrative review is to analyze the possible correlation between mi-
graine and gut microbiota dysbiosis and the possible relationship between migraine and
CNCDs. Moreover, we examine the possible nutritional approaches and lifestyle changes
able to positively modulate gut microbiota composition, reducing migraine frequency
and intensity.

2. Materials and Methods

In order to achieve the review’s aim, a literature search was conducted using three
databases (PubMed, Scopus, and Cochrane Library), until August 2023. The search was
limited to peer-reviewed journals, written in the English language, and the search terms
were “migraine” in combination with “gut microbiota”, AND “chronic degenerative non
communicable diseases”, AND “diabetes mellitus”, AND “Arterial Hypertension”, AND
“obesity”, AND “cancer”, AND “chronic kidney disease”, AND “Mediterranean Diet”,
AND “Ketogenic Diet”, AND “probiotics”, AND “physical exercises”, AND “vitamins”,
AND “iron”, AND “polyphenols”, AND “electrolytes”, AND “histamine”.

3. The Gut Microbiota Physiological Composition

The first studies related to the discovery of the microbiota date back to the beginning
of the twentieth century, when a student of Pasteur, Elie Metchnikov [38] explored the
theme of symbiotic bacteria in organisms, unlike Pasteur who focused his attention mainly
on pathogenic ones. Metchinikov described the beneficial effects of lactic ferments on the
bacterial flora and health host [38]. Subsequent studies have pointed out the presence
of these bacteria that are involved in the absorption of nutrients as well as in immune
system modulation [39,40]. In the 1990s, for the first time, the “gut–brain axis” was
highlighted, namely, how the microbiota exerted a physiological role in the maintenance of
host health [41].

The human microbiota is characterized by a high bacterial density, with a metagenome
that in the adult is 150-times larger than the overall human genetic pattern [42]. It is an
ecosystem composed by a set of ecological niches in close contact with the intestinal mucosa,
forming an area of 250–400 m2 [37]. A more precise view of the complexity of the gut
microbiota has been made in recent years, thanks to the metagenomic data.

Although there is a wide variety of symbiotic microorganisms, among the 160 species
present in the human intestine, of which at least 57 are common to all individuals, the
most widespread microbial phyla are only 4: Bacteroides, Firmicutes, Actinobacteri, and
Proteobacteria. The first two are present in a higher quantity; in fact, they constitute about
90% of the human gut microbiota [43,44].

The microbiota is an extremely heterogeneous and complex system, strongly modu-
lated by external factors (Figure 2).
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The composition of the gut microbiota changes in relation to age. In fact, recent studies
reported that the microbiota begins to colonize the intestinal tract during intrauterine
life [45,46]. In this regard, it has been demonstrated that placental microbiota can influence,
during pregnancy, correct fetal growth and development [47]. The maintenance of a correct
placental eubiosis is influenced by the nutritional habits of the mother during pregnancy. In
particular, a diet rich in fats may induce the placental dysbiosis that has been associated with
a high risk of developing metabolic syndrome in adults [48]. Moreover, placenta dysbiosis
can damage the maternal hypothalamic–pituitary–adrenal (HPA) axis and can influence
the circulating levels of 5-HT, inducing possible damage to fetal neuronal development [49].
In a child’s gastrointestinal (GI) tract, Bifidobacteria are the most abundant bacteria [50]. In
adulthood, the bacterial composition appears to be greater both in terms of the number of
microorganisms and the diversification of the taxa (called α-diversity). The gut microbiota
α-diversity reflects the variability of species within the human intestine. Recent studies
have highlighted how it is directly related to host health and how a poor α-diversity is
associated with various CNCDs [51,52]. The gut microbiota changes that are observed
in relation to age are mainly due to the switch from a liquid to a solid diet [53]. This
switch causes the enrichment of bacterial flora, especially the families of Lachnospiraceae and
Ruminococcaceae [43]. Throughout life, dietary habits influence the composition of the gut
microbiota. Scientific studies have reported that bacteria belonging to the genus Clostrid-
ium (the main producers of butyrate, a short-chain fatty acid—SCFA) are more present
in subjects following a Mediterranean diet (MD), while the subjects that follow a Western
diet show fewer bacteria responsible for the degradation of fibers, such as Prevotella and
Succinivibrio [54,55]. In the elderly, gut microbiota composition is less variable due to the
reduction in food variety in the diet and the reduction in fiber intake, which results in
a decrease in Firmicutes, (among these, the Clostridium cluster XIVa and Feacalibacterium
prausnitzii are involved in saccharolytic fermentation), and in an increase in Proteobacte-
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ria [56]. This induces the reduced availability of SCFAs that, in turn, contributes to the
aging and increased activity of proteolytic fermentation [57]. This phenomenon induces
an enhanced production of gut-derived toxins, such as trimethylamine N-oxide (TMAO),
p-cresyl sulfate (p-CS), indoxyl sulfate (IS), and indole-3 acetic acid (IAA). Moreover, an
increase in proteolytic fermentation triggers low-grade chronic systemic inflammation, a
factor related to the onset and progression of CNCDs and sarcopenia [27,58,59].

Other factors that influence the gut microbiota’s qualitative and quantitative composi-
tions are (i) gestational age; (ii) antibiotic therapy, mostly in the perinatal period; (iii) mode
of childbirth (vaginal or cesarean); (iv) type of feeding (breast feeding, artificial or mixed,
composition and timing of complementary feeding); (v) pre-pregnancy body mass index
(BMI); and maternal body weight increase during pregnancy [60,61].

(i) Gestational age. An interesting study analyzed the gut microbiota’s possible differences
in full-term and in pre-term deliveries. Full-term infants are characterized by a
greater abundance of Bacteroides, while pre-term infants show a greater abundance of
Lactobacillus [62].

(ii) Antibiotic therapy, especially in the perinatal period. Antibiotics, especially broad-spectrum
ones, qualitatively and quantitatively alter the gut microbiota’s composition [63]. Stud-
ies conducted on mice suggested complex mechanisms (endocrine and neurocrine)
involved in the signaling between gut microbiota and the brain, which were induced
by an excessive use of antibiotics, especially in children [64]. In fact, an excessive
use of antibiotics promotes the gut colonization of Clostridium difficile [65], an oppor-
tunistic pathogen that can cause diarrhea, specifically in the case of the simultaneous
intake of drugs that reduce the gut microbiota α-diversity [66,67].

(iii) Mode of childbirth. It has been shown that the microbiota of natural births is dominated
by bacterial genera, such as Bacteroides (Bacteroidetes), bifidobacteria (Actinobatte-
ria), lactobacilli (Firmicutes), and enterobacteria (Proteobacteria). On the contrary,
the microbial pattern of Caesarean births is instead characterized by a qualitative–
quantitative alteration in the gut microbiota’s composition [68]. Additionally, Cae-
sarean births lack the Bacteroides species until 18 months of age, due to non-exposure
to the maternal vaginal microbiota [69].

(iv) Type of feeding. The α-diversity appears to be lower in breastfed infants compared to
formula-fed infants, and the gut microbiota composition shows differences. Bifidobac-
terium and Bacteroides are more abundant in breastfed infants, while Streptococcus
and Enterococcus are more abundant in formula-fed infants [70].

(v) Pre-pregnancy BMI and maternal body weight gain during pregnancy. A recent study
pointed out the differences in maternal gut microbiota composition based on pre-
pregnancy weight and gestational weight gain. In fact, overweight/obese moth-
ers, before pregnancy, are characterized by the presence of some taxa, such as the
Christensenellaceae family and the genera Lachnospira, Parabacteroides, Bifidobacterium,
and Blautia. Moreover, overweight or obese women before pregnancy show less
α-diversity compared to non-overweight/non-obese women. This gut microbiota
maternal pattern seems to not be related to the global differences in the infant gut
microbiota within the first two years of life [71].

Recent studies demonstrated that physical activity is also able to modulate the gut
microbiota, in terms of the composition and function [72]. On the contrary, physical
inactivity has been repeatedly associated with alterations in the bacterial composition
of the gut microbiota [73,74]. In particular, as described in the following paragraph,
physical exercise is able to improve the body’s composition, positively modulating the
gut microbiota pattern and stimulating SCFAs production [75]. Nevertheless, the benefits
obtained during a period of continuous physical activity are lost if you return to a sedentary
condition [76].

Furthermore, as previously described, CNCDs are, at the same time, both the cause
and consequence of gut microbiota dysbiosis [32,77]. For example, in CKD patients, there is
an alteration in gut permeability, which allows the passage of bacteria and bacterial material



Nutrients 2023, 15, 4327 6 of 23

from the gut to the bloodstream. This phenomenon induces a chronic inflammatory state
that exacerbates CKD itself. In CKD patients, an accumulation and increased production of
gut-derived toxins can be observed (such as IS, TMAO, and p-CS, IAA). These toxins are
associated with an increase in cardiovascular (CV) risk [27].

4. Migraine and Gut Dysbiosis

In recent decades, the literature demonstrates that the gut microbiota is involved in
central nervous system (CNS) activities [78]. Over time, several studies have investigated
and defined some of the mechanisms through which the brain is able to connect itself to
the gut, defining the “gut–brain axis” [79].

The importance of this axis has been mainly highlighted in the studies that evaluated
the causes underlying neurodegenerative and psychiatric diseases and neurodevelop-
ment [80,81]. In particular, the CNS can influence the gut environment impacting on
some intestinal functions, such as the regulation of gut movements, excretions, and the
immune system [82]. The interaction between the intestine and brain is confirmed by a gut
microbiota modification, which can impact on the CNS’s different functions [64,83].

The brain communicates with the intestine through numerous “roads” [64], such
as (i) the immune system; (ii) SCFAs; (iii) the autonomic nervous system (vagal nerve);
(iv) tryptophan metabolism, the precursor of the neurotransmitter serotonin; (v) neuro-
transmitters; (vi) gastric peptides produced by specialized endocrine cells, whose release is
influenced by the microbiota itself; and (vii) the HPA axis [30,84].

Therefore, the intestine can be considered as the “second brain”, as it produces a series
of neurotransmitters, such as serotonin and histamine [85]. Several studies demonstrated
that low levels of cerebral serotonin were strongly associated with migraine. In particular,
migraineurs have higher levels of cerebral serotonin during an acute pain attack compared
with the periods between attacks [86,87]. In this regard, a symptomatic migraine-specific
class of drugs commonly used in the clinical practice are triptans, serotonin-receptor
agonists that can “recreate” an optimal brain neurotransmitter concentration by reducing
the inflammation and, consequentially, the pain. Unfortunately, these medications are
characterized by several side effects, such as cardiovascular dysfunction, GI disorders,
muscle aches, drowsiness, tingling, and dermatological disorders [88].

Moreover, it was demonstrated that chronic headache patients presented higher his-
tamine concentrations than healthy subjects, either during or between migraine attacks [89].
Previous studies have focused on the effects of antihistamines in the pain treatment behind
the proven histamine’s role as a potent migraine trigger. However, this evidence is of
a poor quality and often limited by frequent undesirable adverse events (i.e., excessive
somnolence). Although there are positive reports about histamine H3-receptor agonists
(H3Rs) that seem to effectively inhibit the histamine release in the CNS, they are not very
credible because they are based on subtherapeutic analgesic dosages [90,91].

As previously described, nausea and vomiting are symptoms commonly associated
with migraine. Moreover, patients with frequent migraine attacks often present GI symp-
toms, such as reflux, diarrhea, and constipation [92]. Starting from this observation, Camara-
Lemarroy et al. highlighted the relationship between migraine and GI disorders [93]. This
statement is strengthened by the fact that inflammatory bowel disease patients often suffer
from migraine [94]. Gut dysbiosis seems to play a key role in the pathogenesis of migraine,
since this intestinal alteration seems to induce an increased production of gut-derived in-
flammatory cytokines that can modulate the HPA axis [95]. Furthermore, these gut-derived
inflammatory cytokines, in turn, appear to be involved in the modulation of vagus nerve
activity, which, among other functions, innervates the intestinal free fatty acid-receptor
3. This receptor seems to be involved in the metabolic pathway of SCFAs [96]. Therefore,
the mechanisms underlying the interaction between the gut microbiota and migraine are
supported by several studies that highlight the direct and indirect evidence [97]. The former
includes the fact that gut dysbiosis, associated with an impaired production of SCFAs,
induces the release of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α.
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The latter, in animal models, seems to regulate migraine-like pain [98]. The second ones
are deduced from the scientific studies that suggest that nutritional approaches, use of
probiotics, and stimulation of the vagus nerve can represent new therapeutic strategies
for migraine, based on gut microbiota modulation [99–101]. Therefore, it is evident that
there is a correlation between the gut microbiota and migraine. In fact, numerous studies
both conducted on animal models and clinical trials highlighted a gut microbiota alteration
in migraine patients compared to the healthy subjects. In this regard, it is important to
understand whether the possible comorbidities (such as CNCDs) inducing dysbiosis can
be a trigger for migraine and, at the same time, whether specific nutritional approaches or
lifestyle changes can represent a valid and innovative adjuvant therapy for the treatment
of migraine.

5. Migraine and Its Correlation with Chronic Non-Communicable Diseases

The bi-directional correlation between migraine and the main CNCDs is already
described in the literature, even if the mechanisms underlying this correlation are not fully
clarified. A possible link between these pathological conditions could be represented by
gut microbiota alteration, that is, by a condition known as dysbiosis. In fact, as widely
described in the previous paragraphs, gut microbiota dysbiosis appears to represent both
an important trigger for the onset of migraine and for its chronic development and, in
turn, seems to be induced by the migraine itself. This relationship is possible thanks to
the gut–brain axis, which allows the communication between the two organs. At the same
time, an alteration in the gut microbiota has been broadly described in the literature in
CNCDs patients. In fact, gut dysbiosis can be involved both in CNCDs progression and
in chronic migraine onset in CNCDs patients (Figure 3). In this context, lifestyle changes
and healthy nutritional approaches, capable of restoring gut eubiosis, can represent a valid
adjuvant therapy to simultaneously improve the symptoms and the clinical evolution of
the migraine and, consequently, the CNCDs’ clinical course.
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5.1. Diabetes Mellitus and Migraine

The correlation between DM and migraine is currently controversial [102]. Some
epidemiological studies suggest that migraine can be considered a non-traditional risk
factor for DM onset and progression [103,104]. In fact, a study demonstrated that migraine
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attacks in DM patients may be related to the episodes of hypoglycemia that these patients
often manifest. Moreover, it was supposed that a possible treatment able to counteract mi-
graine episodes was optimal glycemic control with a contextual reduction in hypoglycemic
episodes [102].

Moreover, at the same time, the insulin resistance that characterizes type-2 diabetes
mellitus patients has been associated with migraine development. In particular, insulin
resistance seems capable of significantly prolonging migraine attacks, but not their sever-
ity [105]. A possible explanation for this last correlation could be that insulin resistance,
at the brain level, can lead to an impaired release of neurotransmitters. Moreover, insulin
resistance and high blood glucose levels can cause a systemic inflammatory response
that spreads to the peripheral and central nervous systems, inducing the neuroinflam-
mation phenomenon [106,107]. In turn, neuroinflammation can damage the blood–brain
barrier [108].

On the contrary, other studies showed an inverse correlation between these two patho-
logical conditions, considering type-1 DM a protective factor against migraine. Although
the exact mechanisms that underline this indirect relationship have not yet been sufficiently
elucidated, it has been proposed that similarities in the genetic and biochemical pathways
and in lifestyle could account for this [109–111]. To corroborate this observation, a recent
epidemiological study conducted on over 70,000 French women highlighted a lower risk
of developing type-2 DM in women with migraine compared to those without a migraine
history [112].

5.2. Arterial Hypertension and Migraine

AH and headaches have been linked to each other in the medical literature [113].
In fact, it is well known how a hypertensive crisis, namely, a sudden increase in blood
pressure, can occur with abrupt headaches [114]. Migraine and AH may share common
mechanisms, such as endothelial dysfunction (ED), a deficiency of autonomic CV regulation,
and renin–angiotensin–aldosterone system (RAAS) involvement [114]. Preventive anti-
migraine effects were described for several antihypertensive drugs, such as beta-blockers,
angiotensin-converting enzyme inhibitors, and angiotensin II-receptor blockers [115]. ED
may be both one of the factors that increase the cerebrovascular and CV risks in migraine
subjects and a determinant cause of AH development [116]. Nitric oxide (NO) plays a
pivotal role in the pathogenesis of migraine; in fact, it is involved in the regulation of
cerebral and extra-cerebral cranial blood flows and artery size. In migraineurs, the arteries
are hypersensitive to NO, and it has been hypothesized that this phenomenon is one of the
main triggers of migraine attacks [117].

Moreover, the RAAS can be another factor responsible for the clinical correlation
between migraine and AH [118]. This might explain why some angiotensin-converting
enzyme inhibitors and angiotensin II-receptor blockers are effective in preventing migraine,
regardless of the presence of AH [119]. Notably, the presence of AH in a migraine patient
increases the CV risk [120].

5.3. Obesity and Migraine

The WHO defines obesity as a condition characterized by an excessive presence of
adipose tissue in the human body that induces a significant increase in CV mortality and
morbidity in both sexes [121]. Obesity is commonly considered a consequence of excessive
calorie intake, compared to energy expenditure, and the decrease in physical activity, very
common habits in Western societies [122].

The clinical evidence shows that obesity can intensify the risk of episodic and chronic
migraine and that the body weight reduction in obese subjects can decrease the intensity,
frequency, and duration of migraine attacks [123].

The link between obesity and headaches is attributed to shared pathophysiological
features [124]. For example, obese adult subjects showed increased calcitonin gene-related
peptide (CGRP) plasma levels, which were also elevated in migraine patients [125]. Fur-
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thermore, an increase in proinflammatory cytokines, such as interleukin (IL)-6 and TNF-α,
was reported in obese individuals and in the acute headache phase [126].

5.4. Cancer and Migraine

For most cancer types, there is no evidence to support a link between increased
oncological risks in migraineurs [127], except for tumors of a neurological origin of which
migraine can often represent the onset symptom. In contrast, a lower prevalence of GI
cancers in migraine subjects has been described, compared to those without migraine [128].

Moreover, cancer patients may present an amplified risk of developing migraine. It is
very important to recognize migraine causes in order to treat them promptly and exclude
the presence of secondary headache causes (i.e., brain metastasis) [129]. Migraine induces a
negative impact on the quality of life of cancer patients and, showing a very broad etiology,
makes its diagnosis difficult [130]. For cancer patients, any change in pharmacological
treatments, including chemotherapy, can trigger headaches [131].

5.5. CKD and Migraine

Several epidemiological studies have highlighted a direct correlation between CKD
and migraine onset, even if the mechanisms underlying this correlation remain partially
known. A study conducted by Wang et al. evaluated CKD incidence in a group of
subjects with normal renal functions suffering from chronic migraine, compared to a group
of subjects without migraine. The authors showed that CKD incidence was higher in
subjects suffering from chronic migraine than in the control group. In particular, male
gender, age, and nonsteroidal anti-inflammatory drugs (NSAIDs) abuse appeared to be
independent risk factors for CKD onset [132]. This correlation seemed to be associated
with ED secondary to a migraine, which would increase the risk of developing CKD [133].
Other factors that can lead to CKD onset in chronic migraine patients are blood pressure
fluctuations and coexisting comorbidities [134]. A study evaluated the possible genetic
link between the two pathological conditions; although, no overall genetic correlation was
found, four specific genomic regions were identified that appeared to be related to the
common pathogenic mechanisms underlying both migraine and CKDs. These mechanisms
appeared to involve the cardiovascular system and endothelial function [133].

Hemodialysis-related migraine has been described in the literature. In fact, hemodial-
ysis patients often suffer from headaches during or after hemodialysis (HD) treatment. The
headache usually occurs in the first hour of an HD session and it resolves after a maxi-
mum of 72 h after HD treatment [135]. This phenomenon can be related to the electrolyte
imbalance and blood pressure fluctuations that occur during dialysis treatment [136].

6. Possible Nutritional Approaches and Lifestyle Changes to Counteract Migraine

Proper nutrition patterns and a healthy lifestyle are useful to prevent and alleviate
headache symptoms. This issue has a very ancient origin [137]. In fact, Ippocrate was
aware of the relationship between the consumption of some foods and the onset of mi-
graine [138]. Indeed, there are many foods that can cause painful attacks because they
contain substances that are able to alter intracranial blood circulation [139], inducing
vasodilation–vasoconstriction imbalance and a consequent headache. In this context, a
healthy diet may represent a valid preventive therapeutic strategy for migraine [140].

6.1. Mediterranean Diet

The MD can be defined as a model of dietary habits adopted by the populations living
in the Mediterranean area [141]. It is characterized by a high consumption of fresh fruit and
vegetables, legumes, and complex carbohydrates, accompanied by a moderate consumption
of seafoods and extra virgin olive oil (EVOO), as the main source of fats, and by a moderate
consumption of wine [141]. There are numerous clinical studies that highlight how MD is
able to reduce the risk of CNCDs onset and slow down their progression [142]. MD may
also be considered an adjuvant approach to fight migraine in this patient population [143].
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A meta-analysis highlighted the potential role of the MD in the fight against major
neurodegenerative diseases [144]. This diet is rich in polyunsaturated fatty acids (PUFAs)
and monounsaturated fatty acids (MUFAs) that seem to prevent the onset of Alzheimer’s
and Parkinson’s diseases [145]. Moreover, the intake of PUFAs and specifically of eicos-
apentaenoic acid (EPA) seem to have antidepressant effects [146]. A recent meta-analysis
analyzed 26 randomized double-blind placebo-controlled trials, highlighting the beneficial
effects on the depression symptoms of EPA intake, at a dosage of ≤1 g/day, compared to a
placebo [147]. Furthermore, as PUFAs are the main lipid-forming cerebral cortex, they are
able to play an important role in higher cognitive processes and in learning [148].

Moreover, the MD is rich in polyphenols, vitamins C, E, B12, and B9, and carotenoids,
and it is therefore able to counteract oxidative stress (OS) and lipid peroxidation, exerting
cardioprotective and neuroprotective effects [149].

The MD seems to reduce chronic migraine symptoms [143]. In fact, a recent clinical
study conducted on subjects aged between 18–64 years, who suffered from chronic mi-
graines, highlighted how those who had a poor adherence to the MD developed more
severe and frequent migraine attacks, compared to those who had a high adherence to
the MD [150]. This symptom reduction appeared to be associated with the systemic in-
flammation decrease, mediated by MD typical foods. A Western diet, on the other hand,
rich in pro-inflammatory foods, seems to be associated with an increase in migraine symp-
toms [151,152]. These associations seem to be related to the gut microbiota modification
induced by the different nutritional patterns. In fact, it is known that the Western diet,
characterized by a high dietary intake of salt, increases the Firmicutes/Bacteroidetes ratio, pro-
viding the conditions for gut dysbiosis. The latter induces a reduction in SCFA-producing
bacteria, losing their important beneficial functions for the host [55]. On the other hand,
the MD seems capable of positively modulating the gut microbiota by increasing its α-
diversity [153].

The Western diet, rich in saturated fatty acids, is characterized by an increase in
proteolytic fermentation, which leads to the production of gut-derived toxins, as previ-
ously described. Instead, the MD is characterized by an enhancement of saccharolytic
fermentation that stimulates SCFAs production [27].

6.2. The Ketogenic Diet

The ketogenic diet (KD) was initially used as an adjuvant treatment for drug-resistant
epilepsy and, to date, it is also widely used for rapid weight loss [154]. Its effects on
neurodegenerative diseases, cognitive functions, and autistic spectrum disorders have also
been studied. This nutritional approach is characterized by a high lipid intake, the right
amounts of proteins, and a low energy intake from carbohydrates. The objective of KD is
to reduce glycolysis and to stimulate the formation of endogenous ketones through the
oxidation of fatty acids [155].

The increased concentration of ketones leads to a state of ketosis, so that these
molecules take the place of glucose and can be used as the primary energy source by
the brain. The KD can protect the brain from OS and can normalize the neuronal bioener-
getics through the stimulation of mitochondrial biogenesis and the stabilization of synaptic
functions [156].

The first piece of evidence that the KD was able to alleviate the symptoms of migraine
dates back to the beginning of the last century. Since then, numerous clinical studies have
been conducted on patients suffering from chronic headaches. These studies have shown
that, through different mechanisms, the KD is able to reduce systemic inflammation [157]
and OS [158] at the level of the CNS, and to positively modulate the gut microbiota [159],
reducing the symptoms of migraine [160–162].

6.3. Probiotic and Prebiotic Supplementations

The WHO has defined probiotics as “living micro-organisms” capable of creating
benefits to human health when administered in adequate quantities [163]. The main
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prebiotics belong to genera Lactobacilli and Bifidobacteria and their effects depend on the
species and the strain, for example, Lactobacillus rhamnosus seems to be very effective in the
treatment of GI disorders, such as infectious diarrhea in children, or in the prevention of
antibiotic-induced diarrhea [164,165].

Probiotic integration can modulate chronic migraine symptoms [32,166]. The possible
mechanisms of action are unclear and may include the stimulation of SCFAs production, the
improvement of gut epithelial integrity, and the decrease in inflammation by the suppres-
sion of the kappa-B nuclear factor (NF-κB) pathway, lowering the levels of proinflammatory
cytokines [167]. Probiotics can also increase the rate of gastric emptying and attenuate
gastric stasis, a GI disorder commonly present in patients with migraine [168]. Several
studies have shown that probiotics assumption can rebalance the gut microbiota’s composi-
tion, improve gut permeability, and prevent the onset of neurological disorders, such as
migraine [169].

In some subjects, even some food allergies and intolerances can trigger migraine
attacks. Conversely, a decrease in gut permeability can provide relief from migraine.
Therefore, probiotics, thanks to an improvement of gut barrier functions, can also have
beneficial effects on headache patients. New clinical studies are necessary to confirm this
hypothesis [124,170].

Prebiotics are described as undigested substances capable of selectively stimulating
the growth and/or the activity of one or a limited number of symbiotic intestinal bacteria.
Prebiotics supplementation is able to restore gut eubiosis and can promote a reduction
in migraine attacks [171]. Many studies focus on the effects induced by the two main
prebiotics, galactogosharides (GOSs) and fructooligosaccharides (FOSs), demonstrating
how these organic substances are able to reduce neuroinflammation and brain OS [172,173].
GOSs and FOSs seem to stimulate brain functions and synaptic plasticity towards the brain
neurotrophic factor and receptors for N-methyl-D-aspartic acid (NMDA) [174].

6.4. Physical Activity

Physical activity, at the doses recommended by the WHO, seems to improve the quality
of life. In particular, the WHO recommends a daily moderate-intensity aerobic physical
activity of at least 150–300 min, or 75–150 min of vigorous-intensity aerobic physical activity
for adults [175]. This physical activity seems to improve muscle mass, cardiorespiratory
fitness, and bone health, and it appears to reduce the risks of AH, CV diseases, DM, various
types of cancer (including breast and colon cancers), and depression [176]. Regarding this
latter aspect, the mechanisms whereby physical exercise exerts its beneficial neurological
effects are numerous, which include the regulation of the HPA axis, the promotion of an
anti-inflammatory state, and the increase in neuroplasticity [177]. It is interesting to note
that physical exercise can determine changes in the gut microbiota’s composition, restoring
homeostasis and regulating energy expenditure [178]. Low-intensity physical exercise can
affect GI tract functions, reducing the intestinal transit time and, thus, the contact time
between pathogens and the GI mucus layer [179].

Adapted physical activity can represent a valid non-pharmacological strategy for the
clinical management of patients affected by CNCDs [180]. In fact, these patients, as previ-
ously illustrated, present an alteration in the gut microbiota, which induces and amplifies
the chronic inflammatory state, which is, in turn, responsible for CNCDs progression [181].
Numerous studies suggest that adapted physical activity in CNCDs patients is able to both
qualitatively and quantitatively modulate the gut microbiota’s composition, exerting im-
portant benefits on the patient’s quality of life and reducing CV risk [74]. Physical activity
increases the abundance of gut microbiota bacteria and improves its quality (Figure 4) [182].
Studies on animal models suggest that physical activity is able to increase the abundance of
the genus Bacteroidetes and decrease the genus Firmicutes, with a consequent reduction in the
Firmicutes/Bacteroidetes ratio, improving the quality of the gut microbiota composition [74].
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Thanks to the positive modulation of the gut microbiota by physical exercise, the latter,
especially the aerobic type, seems able to prevent the onset of chronic migraine, rather
than being able to reduce the symptoms of chronic headaches already existing. Several
clinical studies, in fact, have highlighted how sedentary subjects are more likely to develop
chronic migraine compared to active subjects [183]. On the other hand, other clinical studies
showed that, in subjects who already suffered from migraine, intense physical exercise led
to the exacerbation of this disorder [184].

6.5. Vitamin D Supplementation

It is well known that a vitamin D deficiency is associated with chronic pain, depression,
and some neurological disorders [185]. The brain is characterized by an abundance of
receptors for vitamin D and there is evidence of the non-skeletal role of vitamin D in the
mechanisms that regulate inflammation, immunity, and neurotransmitter metabolism [186].
Vitamin D blood levels are related to sun exposure (depending on the latitude and outdoor
activities), dietary intake, and genetic components [187]. Migraine patients tend to avoid
sunlight because of photophobia during migraine attacks. Moreover, it is known that
reduced physical activity and a sedentary lifestyle, conducted indoors, greatly increase the
risk of vitamin D deficiency [188].

Several studies have reported that vitamin D low-serum levels may be associated with
an increased risk of migraines/headaches [189]. In addition, it has been suggested that the
prevalence of a deficiency/insufficiency of vitamin D may be greater in patients suffering
from migraines/headaches when compared with subjects without headaches [190].

6.6. Other Vitamin Supplementations

In patients with very intense migraine, a lack of vitamin B12 is often observed [191].
Vitamin B12 deficiency in association with hyperhomocysteinemia causes damage to en-
dothelial cells, increasing free radical levels, which may be related to migraine episode
generation [192]. Recent studies suggested that a vitamin B12 deficiency in chronic mi-
graine can be induced by the frequent use of analgesics, which may alter vitamin B12
absorption [193].

Furthermore, studies on riboflavin have shown that the intake of this vitamin is
effective in the prophylaxis of migraine, thus reducing the frequency of attacks [194].
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Emerging evidence shows the statistically significant role of thiamine (vitamin B1) in
migraine mitigation [195,196]. Thiamine has been shown to be particularly important in
the regulation of brain levels of serotonin; abnormalities in the function of serotonin seem
to be directly involved in the pathophysiology of migraine [86].

Vitamin K2 supplementation can also play a potential role in patients with mi-
graine [197].

6.7. Iron Supplementation

Dietary iron is the primary source of iron in the body [198]. Dietary iron intake has
different effects on migraine in women of different ages, and these different effects may
be due to age-related menstrual changes [199]. Higher serum levels of ferritin in women
over 50 years of age may have a protective effect against migraine [200]. The recommended
dietary allowance (RDA) for iron is 18 mg/day for females; however, as evidenced by
numerous scientific studies, the average dietary intake of iron for women aged 20 to
50 years old is lower than the RDA [201].

To verify the frequency of migraine attacks in patients with iron deficiency anemia, a
study was conducted on 127 subjects who underwent validated tests on migraine, anxiety,
depression, and quality of life. The results obtained showed that almost 80% of patients
suffered from recurring headaches and that they were often smokers and showed low
hemoglobin levels and low mean corpuscular volume values. Moreover, most patients
with an iron deficiency presented depression, anxiety, and a poor quality of life [202].

6.8. Polyphenol-Rich Foods Consumption

Polyphenols are important constituents of plant-based foods, closely related to the
main sensory and beneficial properties of fruit, vegetables, and their derivatives. Polyphe-
nols can be classified into four main categories (flavonoids, phenolic acids, stilbenes, and
lignans) based on the number of phenolic rings and other structural elements that bind
these rings together [203]. A diet rich in polyphenols, especially flavanones and lignans,
has been associated in the literature with reduced migraine severity. A lower intake of
phenols and flavonoids, on the other hand, seems to correlate with more severe migraine
attacks. Encouraging the consumption of polyphenol-rich foods, such as fruit, vegetables,
and EVOO, can represent a valid adjuvant strategy to counteract migraine [204]. The
beneficial analgesic action of polyphenols seems to be mainly exerted by their antioxidant
properties. Indeed, the literature studies suggest that OS may play a significant role in the
pathogenesis of migraine. The antioxidant compounds contained in foods seem to be able
to prevent OS by inhibiting the initiation and propagation of the oxidative chain reaction,
which is at the basis of the migraine attack [205].

One of the most controversial polyphenol-rich foods related to migraine onset is choco-
late (rich in catechins, flavonols, anthocyanins, and procyanidins). Numerous studies have
evaluated the possibility that the consumption of chocolate can stimulate migraine attack
onset in subjects who are predisposed to it; however, the pathophysiological mechanisms
underlying this correlation have not been elucidated and there is currently insufficient
evidence to establish if chocolate is a real migraine trigger [206].

6.9. Magnesium Supplementation

Magnesium is an essential mineral that plays an important role in nerve function [207].
Recent studies have shown, for the general population, a lower average magnesium
consumption level than the dietary recommendations, suggesting that a low intake of
magnesium may be associated with migraine and that a good percentage of migraine
subjects may suffer from a magnesium deficiency [208]. Magnesium inhibits neuronal
overexcitation and vasospasm, reduces the formation of inflammatory substances, and im-
proves mitochondrial oxidative phosphorylation and serotonin receptor transmission [209].
At present, most studies on magnesium as a possible preventive treatment for migraine are
limited to oral food supplements, not considering magnesium-rich foods [208]. However,
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most of these oral food supplements have several limitations and side effects, such as GI
disorders, nephrolithiasis, and an increased risk of CV disease [210].

6.10. Abstention from Histamine-Rich Food Consumption

Histamine (2-[3H-imidazol-4-yl]ethanamine) activation causes a number of vascular
phenomena, which can result in a migraine attack [90,211]. Histamine is a substance that
is regularly produced by our body within immune cells [212]. It is a chemical mediator
within our body that performs two important functions: a mediator of inflammatory and
allergic reactions and a neurotransmitter [212]. Several host factors, in addition to genetic
factors, may influence histamine/receptor effects, including the gut microbiota composition,
gender, aging, autoimmune diseases, cancer, and pulmonary diseases [213].

Histamine is also a biogenic amine that can be found in many foods; in particular, it
may be present in high levels in those foods, often referred to as triggers of migraine in
susceptible individuals [214]. The relationship between the diet and migraine has long
been controversial and it based on the association between the consumption of certain
foods and the manifestation of migraine pain [215]. Many of the foods in question are
potentially rich in biologically active amines: histamine, tyramine, and others [216]. Because
of the genetic origin, some subjects produce low levels of diaminossidase (DAO) and this
means that an excess of histamine is not neutralized and it causes, among other issues,
migraine [217]. Mutations involving genes responsible for producing DAO (AOC1 on
chromosome 7) can increase the susceptibility to histamine-intolerance development [218].
Some drugs, including NSAIDS, antidepressants, immunomodulators, antiarrhythmics,
and other substances (e.g., acetylcysteine, clavulan acid, metoclopramide, and verapamil),
may decrease the threshold of tolerance to histamines [219]. Alcohol consumption, in
particular, red wine, is a powerful inhibitor of DAO because it also contains, in addition to
high levels of histamine, other classes of biogenic amines, such as tyramine and sulfites,
which compete with the histamine for binding to the active site of the enzyme [220].

7. Conclusions

Migraine development seems to be partially related to the condition of gut dysbiosis.
In fact, it can lead to a reduction in SCFAs production and to a concomitant increase in
gut-derived inflammatory cytokines, which can influence CNS activities and, in turn, cause
migraine. Moreover, there seems to be a bi-directional correlation between migraine and
the risk of CNCDs onset and progression, where the gut microbiota plays a pivotal role.

Besides, numerous studies highlight an association between specific nutritional pat-
terns and lifestyles related to gut eubiosis restoration and the prevention of migraine
attacks. Therefore, healthy nutritional habits (such as a MD), an appropriate choice of foods
both in quantitative and qualitative terms, oral food supplements administration (such as
prebiotics and probiotics), and a constant physical exercise seem to be effective adjuvant
strategies for migraine prevention.

The main limitations of this narrative review are certainly to be found in the lacking
of this scientific field. In fact, the literature and clinical trials, regarding the link between
CNCDs and migraine and the possible role played by gut dysbiosis, are limited and, above
all, controversial. To better clarify these possible correlations, it would be useful to perform
randomized clinical trials on CNCDs patients with migraine, evaluating the potential
presence of gut dysbiosis and monitoring how it can influence the progression of these
pathological conditions. Moreover, it would be interesting to examine the positive impacts
of possible therapeutic approaches, based on a personalized diet and oral food supplements,
formulated ad hoc.
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5-HT 5-hydroxytryptamine
AH Arterial Hypertension
BDNF Brain Neurotrophic Factor
BMI Body Mass Index
CGRP Calcitonin Gene-Related Peptide
CKD Chronic Kidney Disease
CNCDs Chronic Non-Communicable Diseases
CNS Central Nervous System
CV Cardiovascular
DAO Diaminossidase
DM Dibetes Mellitus
ED Endothelial Dysfunction
EPA Aicosapentaenoic Acid
EVOO Extra Virgin Olive Oil
FOSs Fructooligosaccharides
GI Gastrointestinal
GOSs Galactogosharides
HPA Hypothalamic–Pituitary–Adrenal
H3R Histamine H3 Receptor Agonist
IAA Indole 3 Acetic Acid
IL Interleukin
IS Indoxyl Sulphate
KD Ketogenic Diet
MD Mediteranean Diet
MUFAs Monounsaturated Fatty Acids
NF-κB Kappa-B Nuclear Factor
NMDA N-Methyl-D-Aspartic Acid
NO Nitric Oxide
NSAIDs Nonsteroidal Anti-Inflammatory Drugs
OS Oxidative Stress
p-CS P-Cresyl Sulfate
PUFAs Polyunsaturated Fatty Acids
RAAS Renin–Angiotensin–Aldosterone System
RDA Recommended Dietary Allowance
SCFAs Short Chain Fatty Acids
TMAO Trimethylamine N-Oxide
TNF Tumor Necrosis Factor
WHO World Health Organization
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