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Abstract: Physical activity in general and sports in particular, is a mechanism that produces stress
and generates great force in the tendon and in the muscle-tendon unit, which increases the risk of
injury (tendinopathies). Eccentric and repetitive contraction of the muscle precipitates persistent
microtraumatism in the tendon unit. In the development of tendinopathies, the cellular process
includes inflammation, apoptosis, vascular, and neuronal changes. Currently, treatments with oral
supplements are frequently used. Curcumin seems to preserve, and even repair, damaged tendons.
In this systematic review, we focus more especially on the benefits of curcumin. The biological
actions of curcumin are diverse, but act around three systems: (a) inflammatory, (b) nuclear factor
B (NF-κB) related apoptosis pathways, and (c) oxidative stress systems. A bibliographic search is
conducted under the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) as a basis for reporting reliable systematic reviews to perform a Scoping review.
After analysing the manuscripts, we can conclude that curcumin is a product that demonstrates a
significant biological antialgic, anti-inflammatory, and antioxidant power. Therefore, supplementation
has a positive effect on the inflammatory and regenerative response in tendinopathies. In addition,
curcumin decreases and modulates the cell infiltration, activation, and maturation of leukocytes, as
well as the production of pro-inflammatory mediators at the site of inflammation.

Keywords: cytokines; curcumine; exercise; inflammation; nutrition; tendinopathies

1. Introduction

Tendinopathies are frequent problems in TraumatologyServices, being approximately 30%
of the pathology in the locomotor apparatus. Inflammatory or degenerative tendinopathies
occur in the general population and especially in older people. Various conservative strate-
gies have been proposed to treat tendinopathies, including the use of dietary supplements,
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to promote physiological turnover of tendon tissue, in order to prevent inflammation and
de-generation [1,2].

Physical activity in general, and sport in particular, is a stress mechanism that generates
a great force on the tendon and in the muscle-tendon junction that increases the risk of
tendon injuries [3]. Many anatomical areas can be affected, depending on the type of
activity or sports discipline. Particular interest is centered in Achilles tendinopathy, patellar
tendinopathy, and epicondylitis, which have a high incidence in athletes. In addition to
sports discipline, the development of tendinopathy can result from modifiable and non-
modifiable risk factors, such as age and gender. In this context, adolescents seem to be less
affected by tendinopathies compared to adults [4].

The myotendinous junction (MTJ) plays a key role in this group of pathologies, because
MTJ is the structure where muscle fibers interact with tendons [5]. The MTJ is structurally
specialized to transmit force [6]. Despite this, force applied to the MTJ can be so extensive
that can result in strain injuries, especially during eccentric loading [7]. For this reason,
these are among the most frequent injuries in many popular sports [8,9]. The highly folded
muscle membrane at the MTJ increases the contact area between muscle and tendon and
potentially the load tolerance of the MTJ. Upon strong contraction of the sarcomeres, there is
great tension of the muscle provided by the tendon which can generate injury by disabling
the forces. In experiments in induced strain injuries in animal muscles, in which the muscles
are pulled while being stimulated to contract, it has been observed that a disruption occurs
in the distal part of the muscle fibers or in the basal lamina between the muscle fiber and
the tendon [10]. This observation confirms that the connection between the muscle fibers
and the tendon is a weak area [11].

Patients with tendinopathy often present persistent symptoms of mild to moderate
intensity, leading to a decrease in physical activity and consequently a negative change in
the quality of life. The primary cause of tendon degeneration seems to be due to mechanical
overload followed by an inadequate recovery, leading to a failure of traction and tension of
the collagen fibres within the tendon. Repetitive contraction of the muscle precipitates a
persistent microtrauma in tendons. This situation lacks an adequate recovery due to the
slow collagen turnover. In the long term, this can lead to significant degenerative changes
that present clinical symptoms after clinical examination [12–15].

In tendinopathies, both macro and microscopic, tendon collagen fibres appear thinner,
deorganised, and with associated fibrotic changes. Injured tendons have a higher concen-
tration of type III collagen in contrast to healthy tendon tissue, which is mainly composed
of type I collagen (COL-I) [15,16]. The cellular process in the tendon includes inflammation,
apoptosis, vascular, and neuronal changes. In addition, specific factors must be considered
in the development of tendinopathy, including gender, previous diseases or injuries, age,
and flexibility [17].

Different molecules can play a negative role in the biology of tendon tissue and
represent a risk factor in developing tendinopathy. Corticosteroids, antibiotics such as
Quinolone, aromatase inhibitors, and statins as inhibitors of β-Hydroxy β-methylglutaryl-
CoA (HMG-CoA) reductase are the drugs most frequently associated with altered tendon
properties [18].

On the other hand, tendon pathologies can be the first clinical sign in various metabolic
diseases, such as gouty arthritis and hypercholesterolemia. These pathologies present a
high degree of inflammation that may be responsible for tendon degeneration. In patients
affected by diabetes, glycation end products (including collagen) impair the biological and
mechanical functions of tendons and ligaments [19–21].

Oral treatments with glucosamine, chondroitin sulphate, vitamin C, hydrolysed COL-I,
L-arginine, curcumin (present report), among others, can help to preserve, or even repair,
damaged tendons [22–28]. These supplements are not subject to rigorous pharmaceutical
controls. However, some of these products have received permission to be sold as medicines
in many countries. Recently, nutraceutical products have become more and more popular
as they seem to be efficient in the prevention and healing processes of tendon injuries.
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The present review is focused on curcumin supplementation as a useful agent in the
treatment of tendinopathies. The aim is to summarise current knowledge and areas of
ongoing research in the treatment of tendinopathies using curcumin supplementation.

Tendons have an active metabolic activity mainly focused on energy production
and the synthesis of extracellular matrix (ECM) and collagen. This protein is the main
component of the tendon (30% of the total tendon mass). The remaining 70% is water. Type
I collagen represents about 65–80% and elastin is 2% of the dry mass of tendons [29,30].

Collagen molecules are arranged in fibres especially designed to transmit forces
between muscle and bone. Tenocytes and tenoblasts are cells located between the collagen
fibres along the longitudinal axis of the tendon [31].

Tendinitis (inflammation of the tendon), tendon rupture, tenosynovitis (inflammation
of the tendon lining), and calcifications, are the most common tendon affections. Along
with this review, we will only focus on those characterised by an inflammatory process. In
this respect, several classifications of tendinopathies have been established from a lesional
or anatomopathological point of view. Nevertheless, we have chosen a simple classification
centered on reactive and degenerative tendinopathy [3,32].

(a) Reactive tendinopathy (mechanical) is usually the consequence of an acute over-
load on the tendon due to tension or compression. In this type, the immune system
plays a key role in tissue regeneration and maintenance processes. In this event,
tendinopathy sometimes coincides with an episode of a cold or after oral surgery.
From a microscopic point of view, cellular hyperactivity of the tendon can be observed
after physical stress in reactive tendinopathy. The number of tendon cells increases
greatly, the cells become rounded and the tissue attracts water due to the presence
of hydrophilic molecules (i.e., proteoglycans). These machromolecules (proteogly-
cans and glycosaminoglycans) are important for water retention and improve the
biomechanical properties (elasticity) in the tendon against shear and compression
forces [33].

(b) Degenerative tendinopathy is characterised by a progression of ECM and collagen
disorganisation. Cellular damage is accompanied by alterations in tendon vasculariza-
tion, being unable to withstand any tensional stress, and evolving to be mechanically
useless. In addition, the tissue begins to produce pain-related substances and activates
the peripheral nerve, causing hypersensitivity [34].

1.1. The Inflammatory Process in Tendinopathies

Some years ago, tendinopathy was thought to be a degenerative process However, the
development of tendinopathy is preceded by an inflammatory process. Several subtypes of
immune cells and inflammatory mediators play a key role in the initiation and progression
of tendinopathy [35].

During the progression of tendinopathies, both collagen in ECM and tenocytes are
affected [36]. Repetitive mechanical overload and hypoxic injury, together with intracellular
stress factors, are the main causes of tendinopathy, leading to the presence of elevated
inflammatory markers [37].

High tendon requirements are accompanied by high temperatures within the ten-
don, which can increase apoptotic phenomena. Heat stress and hypoxia can lead to the
overexpression of molecules such as matrix metalloproteinases (MMP) that promote ECM
degradation and overproduction of inflammatory cytokines. In addition, the effect of
hypoxia is associated with increased expression of vascular endothelial growth factor
(VEGF). When overload exceeds the capacity for recovery, a pathogenic sequence leads to
tendinopathy in the MTJ [11,16].

Tendon and MTJ injuries are accompanied by inflammation, with the expression of
inflammatory mediators including proinflammatory and anti-inflammatory cytokines and
growth factors produced by tenocytes, such as tumor necrosis factor-α (TNF-α), interleukin
(IL)-1β, IL-6, IL-10, VEGF, transforming growth factor-β (TGF- β), cyclooxygenase-2 (COX-
2), and prostaglandin E2 (PGE2) [37–42]. TNF-α and IL-1β promote the production of IL-6,
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a cytokine with a dual role in inflammation, tissue injury, and repair [43]. In this context,
IL-6 seems to play a central role in acute stress response by initiating anti-inflammatory and
restorative processes [43]. However, when the damage presents a significant pathological
component, IL-6 induces an inflammatory response [39]. In this line, IL-6 is not only
involved in inflammation but it is implicated as well in the early stages of tendon healing
by promoting increased expression of COL1A1 (type I collagen-α1 chain) in tendons. The
COL1A1 gene codes part of the type I collagen molecule [39,43].

In the acute phase of the inflammatory response, tenocytes synthesize proinflammatory
cytokines, with a positive feedback mechanism that causes edema and hyperemia [16,44].
In addition, cytokines and immunomodulatory factors provoke cell proliferation, pain, and
degradation of ECM with necrosis. ECM dynamics are instrumental in restructuring tissue
architecture. The ECM constantly undergoes remodelling processes with degradation or
modifications [16,38,45–49].

During the acute phase of the inflammatory process, there is an imbalance between
proinflammatory factors, with ECM degradation; and protective factors, leading to pain,
due to the release of substance P, glutamate, COX-2, PGE2, and PGE3 [50,51]. TNF-α, IL-1β,
VEGF, and low levels of COL-I potentiate the inflammatory state and favour increased
MMP activity, accompanied by a degenerative response and increased risk of tendon
rupture [16].

The MMPs are a family of proteolytic enzymes that have the ability to degrade the
components of the ECM network. MMPs are also factors that promote the healing process.
The MMPs involved in tendon damage are MMP 1, 2, 3, 8, 9, 13, 14, 19, and 38, and their
activation results from an imbalance with their inhibitors, the TIMPs (tissue inhibitors of
MMPs). Therefore, tendon homeostasis is the result of a continuous remodelling process
mediated by MMPs and TIMPs with the apposition ECM and production of COL-I [3,49,52,53].

On the other hand, VEGF (responsible for neoangiogenesis) is released after hypoxic
stress in the early stages of tendinopathy. VEGF favors inflammatory mediators to gain
access to the injury site. VEGF, together with cytokines such as IL-6 and IL-21R, is able
to stimulate the expression of MMPs. This process is associated with ECM degradation
and inhibition of TIMP expression in several cell types such as tenocytes, fibroblasts,
chondrocytes, and endothelial cells [38]. The VEGF, together with other growth factors
secreted by inflammatory cells, such as epidermal growth factor (EGF), fibroblast growth
factor (FGF), TGF-β and insulin-like growth factor-I (IGF-I), promote tenocyte proliferation
and the release of COX-2, PGE2, and prostacyclins. These last messengers are involved in
the onset of pain in acute tendinopathy [38]. From the cytokines, the IL-21 is a pleiotropic
cytokine, belonging to the common γ-chain cytokine family, mainly produced by T follicular
helper (Tfh) cells, Th17 cells, NKT cells, and neutrophils [54]. IL-1β is upregulated in the
synovial membrane, enhancing inflammatory reactions in injured joints. IL-1β contributes
as well to the onset of proliferative and degenerative changes in the tendon [53]. The actions
of this cytokine include local effects on the endothelium, induction of systemic acute phase
reactions, and deleterious effects on tenocytes. IL-1β acts through its specific receptor on
tenocytes, which after binding, can activate numerous signaling pathways, including those
modulated by mitogen-activated protein kinases (MAPKs). These proteins play a key role
in intracellular signal transduction, allowing the cell to integrate different extracellular
stimuli activated by growth and stress factors. IL-1β also induces inflammatory mediators
such as COX-2, PGE2, and MMPs [53]. Otherwise, IL-1β increases the expression of PGE
synthase, which catalyses the final step in the conversion of PGH2 to PGE2. In addition,
IL-1β stimulates the expression of the EP4 receptor (G protein-coupled PGE2 receptor) in
tendon cells. Specific upregulation of EP4 receptors on tenocytes by inflammatory cytokines
may enhance inflammatory signaling pathways. This ultimately leads to tendon matrix
degradation and thus tendinopathy. On the other hand, IL-1β reduces the expression of
COL-I at the mRNA level in human tissues, which may lead to less ECM deposition during
tendinopathies [53]. IL-1α, on the other hand, affects inflammatory and immune responses,
angiogenesis, and cell formation processes [37].
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The healing process of tendon ruptures is mediated primarily by MMPs and throm-
bosponin motif metalloproteinases (ADAMTS) and their tissue inhibitors (TIMPs) [52,55,56].

It has been suggested that nitric oxide (NO) may play a role in the recovery process
of tendinopathies. NO is synthesised by nitric oxide synthetases (NOS). There are four
isoforms of the NOS enzymes: neuronal, endothelial, mitochondrial, and inducible (iNOS).
In this context, iNOS is an isoform that can be induced by pro-inflammatory cytokines [57,58].
It has been suggested that NO may promote increased collagen synthesis [59], which
would also be important in cases of tendon scarring. Semis et al. [60] have observed that
after collagenase injection into rat tendons, malondialdehyde (MDA) (an indicator of lipid
peroxidation) increases. These authors suggest that this fact contributes to the formation of
tendinopathy by affecting tendon homeostasis and triggering inflammatory and apoptotic
processes in the tendon tissue.

1.2. Therapeutic Management of Tendinopathies

Conservative treatment using eccentric exercises (with or without pain) has been
shown to provide very good results at short and medium term in patients with tendi-nosis.
This approach is associated with a decrease in fragility and thinning, favouring hypertrophy
and a more normal appearance of the tendon structure. However, there is no scientific
evidence of histological adaptations caused by excentric training [61].

Actually, different physical (exercise), physiotherapeutic (cryotherapy, electro-therapy,
etc.), pharmacological (analgesics and antiinflammatory drugs), biological treatments
(platelet-rich plasma (PRP), stem cells and autologous blood injections) are currently
used [62].

1.3. Nutritional Approach to Tendinopathy

The fundamental therapeutic approach to tendinopathies in medicine is based on the
use of pharmacological products and physical and manual techniques [63]. The role of
nutrition as an effective tool to prevent and support the treatment of certain pathologies is
gaining increased recognision. The use of nutritional supplements has to be considered,
due to their metabolic effects on injured tissue in repair processes [2] and the relative
absence of side effects.

Among the vitamins, the most accumulated evidence in tendon repair processes
corresponds to vitamins C and D. Vitamin C is instrumental due to its antioxidant properties
and its action as a coenzyme in collagen synthesis through the hydroxyla-tion of proline
and lysine to hydroxyproline and hydroxylysinerespectively. Both hy-droxylated amino
acids are essential for collagen structure and tendon function [28,64,65]. Thus, vitamin
C deficiency is associated with a decrease in the synthesis of procollagen, due to a lower
hydroxylation of proline and lysine residues [66,67].

Vitamin D is another nutritional element that has recently been gaining im-portance.
Vitamin D is considered to act directly on collagen synthesis by tenocytes. When vitamin D
was added to fibroblast culture media obtained from human tendons, a dose-dependent
anabolic effect was demonstrated, with a progressive increase in COL-I mRNA levels.
A decrease in ROS (reactive oxygen species) and MMP expression was also observed.
These facts demonstrate that vitamin D has a positive effect on tendon tissue, and its
deficiency could be a limiting factor for collagen synthesis as well as an increased oxidative
stress [68,69]. Furthermore, in animal models, it has been observed that an increase in
vitamin D, compared to deficient animals, improves car-tilage organisation and strengthens
postsurgical tendon to bone scars [70]. Therefore, there is a positive correlation between
vitamin D levels and the strength of tendon healing [71].

Amino acids have also been proposed as supportive nutrients in the treatment of
tendinopathies due their key role in protein synthesis. A positive relationship has been
observed between leucine and collagen synthesis. Leucine, an essential amino acid, causes
increased levels of hydroxyproline which, in addition to being a fundamental component
of collagen, plays an essential role in fiber stability [72]. Glycine is also a key element
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in collagen synthesis. A diet containing 5% glycine correlates with an in-crease in the
synthesis of hydroxyproline and glycosaminoglycans and thereby, a greater capacity for
synthesis of collagen molecules [73].

In this nutritional context, curcumin is becoming increasingly important in the process
of connective tissue recovery, in particular after tendinopathy and MTJ.

1.4. Curcumin as a Therapeutic Adjuvant in Tendinopathy

Curcuma longa is a rhizomatous perennial herbaceous plant of the Zingiberaceae
family, native to Southeast Asia, rich in bioactive molecules that have numerous health and
therapeutic properties, among which the most researched are anti-inflammatory [74].

The biological actions of curcumin are diverse, but they are locked around three
systems: (a) inflammatory, (b) nuclear factor κB (NF-κB) related apoptosis pathways, and
(c) oxidative stress systems [75].

Curcumin and metabolic derivatives are potent antioxidants. This is a very important
property because the redox balance of living cells is constantly challenged by newly formed
ROS and their nitrogen analogues that can alter main macromolecules, essential for tendon
structure and function [76,77]. To counteract oxidative damage, the body is endowed
with protective enzymes (superoxide dismutase, catalase, among others) and a set of low
molecular weight compounds capable of neutralising ROS. Curcumin and analogs support
this process by scavenging oxygen species (e.g., superoxide, hydroxyl radicals, and NO) [78].
The assumption that the antioxidant activity of curcumin is related to anti-inflammatory
effects is supported by the results of the inhibition of the main enzymes responsible for the
transformation of arachidonic acid into prostaglandins, lipooxygenase (LOX), and COX, by
natural and synthetic curcuminoids [79–81].

2. Methodology
Study Analysis and Search Strategy

To conduct the present review, a structured search of SCOPUS, Medline (Pub-Med),
and Web of Science (WOS) databases was performed. The search used the following
words related to curcumin, tendons, and tendinopathy (“curcumin” AND “tendon” OR
“tendinopathy” OR “tendinosis” OR “Tenocyte”). Titles and abstracts were separated from
the search to identify duplicates and possibly missing articles. The appropriateness of the
articles was assessed according to the GRADE concept [82] and the level of evidence [83].
All articles were selected if they had “Moderate” or “High” scientific quality and a gradable
grade of evidence from 2 to 2++. Inclusion criteria included: studies that aimed to identify
a beneficial effect of any form of curcumin as a sole use, or as an adjuvant to other products,
either in the restoration of the tendon tissue, whether or not associated with tendinopathy,
or that were randomized, double-blind controlled studies with parallel design in animal
samples or in humans. The complete search strategy is shown in Figure 1.

The search was performed according to the Cochrane guidelines for systematic re-
views [84]. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines were followed [85]. The evaluation was conducted as a Scoping
review to examine the extent (size), range (variety), and nature (characteristics) of the evi-
dence of the possible effect of curcumine on the tendon healing and also to determine the
value of undertaking a systematic review, summarize findings from a body of knowledge
that is heterogeneous in methods or discipline, or identify gaps in the literature to aid the
planning and commissioning of future research [86,87]. To analyze the risk of bias, we also
used Cochrane guidelines [86]. In view of the domains provided by the tool, we scored
those studies satisfying four or more low-risk bias domains as low risk and the remainder
as high risk.
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The final result of the search provides results which, although illustrative of the
effect of the use of curcumin on the tendon, are not very homogeneous, considering the
different administrations and applications in human samples or experimental animals. It
has therefore been decided to offer, in addition, a list of those studies in which the use of
“Curcumin” AND “Delayed Onsed Muscular Soreness” (DOMS) OR “Exercise Induced
Muscular Injury” when the method of provoking the injury was through the use of eccentric
work, not fatigue, not long duration exercise. The reason is that this model of injury with
this provocative noxa primarily affects the myotendinous area and its connective tissue.
The evaluation flow is presented below in Figure 2.
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3. Results

In the evaluation of bias (Figures 3 and 4), in studies with laboratory animals, it can be
observed that the randomization of the animals is absent or not discussed, except in the
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MTJ-DOMS studies (Figure 4). Although it might not influence the study, this is unknown.
Finally, except in three studies, it is common for the investigator to work blindly without
knowing from which animal the sample came, but this is not indicated [88–92].
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The type of molecule and whether or not there is a commercial brand, is exposed in
the column “Molecule” and the administered curcumin dosage, and the route is indicated
in the proper columns “dosage” and “route”. In the Tables, within the corresponding
column, it is indicated whether the study had a control group and a placebo group or not.
The number and type of subjects included in the study are shown in the “n and Type of
subjects” column. The next two columns are related to the type of injury evaluated and
the tests or procedures to study the effect. Finally, the last column exposes the “Impact
on resolution” of the injury. The two upper studies [87,93] are in vitro and show a better
modulation of the inflammatory and degradative processes enhancing the down-regulation
of the collagen. Rodent studies [88–90,94–96] conclude that curcumin seems to promote
tendon-to-bone healing associated with anti-inflammatory and antioxidation effects, with a
better functional recovery. Finally, the human studies [91,92] related to surgery procedures
include a better pain score, concomitant with the usual treatment, and patient satisfaction.
In relation to Tables 1 and 2, which evaluate the effect of the use of curcumin against
DOMS in the MTJ, due to eccentric work, a lower presence of pain perception and lower
creatine kinase (CK) values seem a common result, although there are those that do not
observe changes [97–114]. The studies that determine cytokines are not conclusive and
show diverse results, being better described in [100,102,103,109], although it is necessary
to point out that no changes in TNF-α were reported in [101,102,109,112], while positive
changes reported in [97,103,110].

When evaluating the possible effect of curcumin on the injury response of an eccentric
work such as DOMS in MTJ, we pleasantly observed that randomization and double-
blinding are present in almost all of them. It is assumed that the statistical study and
the evaluation of the results remain with the double-blind method until the discussion
begins once the study arms are identified. However, there are three of them, in this group
of studies with rodents [97–99], in which the presence of double blinding is not feasible
and the administration of the results in an unknown way is not faithfully exposed in the
methodology. In general, evaluating the effect of the use of curcumin against DOMS in
the MTJ, due to eccentric work, a lower presence of pain perception and lower creatine
kinase (CK) values seem a common result, although there are those that do not observe
changes [98–100,105,106,109–114]. On the other hand, there are two studies where the
design is crossover [105,106] and where, despite explicitly exposing the randomization
method, the presence of a double blind that reaches up to the evaluation of the results,
is not well determined. The data from each of the studies are presented in Tables 1–3.
Table 3 is related to studies on the effect of curcumin on tendon and Tables 1 and 2 on MTJ
injury related to eccentric work and DOMS. The content of the tables is discussed in the
corresponding section. There are 10 different studies with curcumin on the tendon and
17 on MTJ.
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Table 1. Studies evaluating the effect of curcumin in miotendinous junction related to DOMS.

Reference Molecule/s Dosage Route Days Placebo/Control n Type of Subjects Type Injury Tests Impact on Resolution.

Davis JM et al. (2007) [99] Curcumin 10 mg (≈40 mg/kg) Oral (pellets) 3 P 64 Rodents Eccentric exercise or
Concentric exercise Blood analysis (CK, Inflamation), FP

⊕ Running time to fatigue, running distance,
IL-1β, IL-6, TNF-α, in the eccentric exercise
working set of animals.

Kawanishi N et al. (2013) [100] Curcumin
(Theracurmin®) 3 mg Oral (after injury) 1 P 52 Rodents Eccentric exercise Blood analysis (M Injury, Inflamation pattern) muscle

immunohisyology

⊕ NADPH oxidase, MCP-1 and F4/80 mRNA
expression, H2O2, attenuated oxidative stress
≈ CK, LDH, COX2 expression.,

Boz I et al. (2014) [101] Curcumin 200 mg/kg Oral gavage 20 P 30 Rodents Eccentric exercise Blood analysis (M Injury, Inflamation pattern, oxidative pattern)
Muscle histology,.

⊕ CK, Mb
≈MDA, SOD, GPx

Drobnic F et al. (2014) [102] Curcumin
(Meriva®)

200 mg/day

(2 g Meriva®)
Oral 4 P 20 Human Eccentric exercise Blood analysis (CK, Inflamation, oxidative pattern), VAS. ⊕ IL-8, VAS;

≈ CRP, MCP1, CK, TAC.

Tanabe et al. (2015) [103] Curcumin
(Theracurmin®) 150 mg/day Oral 1 P 14 Human Eccentric exercise Blood analysis (M Injury, Inflamation pattern), VAS, FP, Arm

circumference

⊕ CK, MVIC
≈ ROM, VAS, IL-6, TNF-α, Arm
circumference

Nicol et al. (2015) [104]
Curcumin
(Eurofins
Scientific Inc)

2.5 g/12 h Oral 5 P 19 Human Eccentric exercise Blood analysis (M Injury, Inflamation pattern), VAS, FP ⊕ VAS, CK, IL-6, Exercise performance.
≈ Swelling, TNF-α

McFarlin et al. (2016) [105] Curcumin
(Longvida®) 400 mg/day Oral 6 P 28 Human Eccentric exercise Blood analysis (CK, Inflamation, oxidative pattern), VAS, FP ⊕, CK, IL-8, TNF-α.

≈ VAS, IL-6, IL-10

Nakhostin-Roohi B et al. (2016) [106] Curcumin
(Theracurmin®) 1150 mg Oral (after injury) 1 P 10 Human Eccentric exercise Blood analysis (M Injury, Inflamation pattern), VAS. ⊕ VAS, CK, ALT, AST, TAC

Delecroix B et al. (2017) [107] Curcumin +
Piperine (*) 2 g/8 h Oral 4 P 10 Human Eccentric exercise Blood analysis (M Injury, Inflamation, oxidative pattern), VAS, FP ⊕ Exercise performance.

≈ VAS, CK.

Tanabe Y et al. (2019) [108] Curcumin
(Theracurmin®) 90 mg/12 h Oral 11 P 24 Human Eccentric exercise Blood analysis (CK), VAS, FP ⊕ VAS, ROM

≈MVIC, CK.

⊕: Effective; ≈: Ineffective; (*): Placebo added 20 mg of piperine as the curcumin treatment; AST: Aspartate aminotransferase; BAP: Biological antioxidant power; CAT: Catalase;
CK: Creatine kinase; CLE: Curcuma longa extract; CRP: C-Reactive protein; d: Day; d-ROMs: Diacron-reactive oxygen metabolites; ESR: Erythrocyte sedimentation rate; FRAP: Ferric
reducing ability plasma; GPx: Glutathione peroxidase; Hs: High sensitivity; IL-6: Interleukin-6; IL-8: Interleukin-8; IL-10: Interleukin-10; La: Lactate; LDH: Lactate dehydrogenase;
Mb: Myoglobin; MCP-1: Monocyte chemoattractant protein 1; MVIC: Maximal voluntary isometric contraction; P: Placebo; ROM: Range of motion; TC: Tight circumference;
TNF-α: Tumor necrosis factor-α; UPS: Ubiquitin proteasome system; VAS: Visual analogue scale; VO2 max: Maximal oxygen consumption.

Table 2. Studies evaluating the effect of curcumin in miotendinous junction related to DOMS.

Reference Molecule/s Dosage Route Days Placebo/Control n Type of Subjects Type Injury Tests Impact on Resolution.

Jäger R et al. (2019) [109] Curcumin
(CurcuWIN®) 50 or 200 mg/day Oral 56 P 74 Humans Eccentric exercise VAS, FP (Isokinetic and isometric test)

≈ VAS, isokinetic strength tests.
⊕ tendency in VAS and some isokinetic test for
the 200 mg dosage.

Tanabe Y et al. (2019) Ex I

[110]
Curcumin
(Theracurmin®)

90 mg/12 h

Oral Before injury

7 P

10

Human Eccentric exercise Blood analysis (M Injury, Inflamation, oxidative pattern), VAS, FP

⊕ IL-8,
≈ VAS, Swelling, CK, MVIC, ROM, TNF-α, BAP,

Tanabe Y et al. (2019) Ex II Oral After injury 10 ⊕ VAS, CK, MVIC, ROM, d-ROMs.
≈ Swelling, IL-8„ TNF-α, BAP, d-ROMs.

Basham SA et al. (2020) [111] Curcumin
(CurcuFresh®) 1.5 g/day Oral 28 P 20 Human Eccentric exercise Blood analysis (M Injury, Inflamation pattern, oxidative pattern), VAS ⊕ CK, VAS, TAC, MDA, TNFα,

Cardaci TD et al. (2020) [113] Curcumin +
Piperine (*) 2 g/day Oral 11 P (Piperine) 23 Human Eccentric exercise Muscle biopsy, VAS,

⊕ Ubiquitin, MAFbx/Atrogin-1. UPS
dysregulation is mediated by downregulation of
proteasome catalytic enzymes.
≈ USP19, VAS.
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Table 2. Cont.

Reference Molecule/s Dosage Route Days Placebo/Control n Type of Subjects Type Injury Tests Impact on Resolution.

Mallard AR et al. (2020) [114] Curcumin
(+LipiSperse) 450 mg/day Oral 1 P 27 Human Eccentric exercise Blood analysis (CK, Inflamation, oxidative pattern), VAS, FP ⊕, VAS, Swelling (TC), Lac, IL-10, IL-6, IL-8,

≈ CK, LDH, CRP-Hs, Mb, TNF-α,

Amalraj A et al. (2020) [115] Curcumin
(Cureit®) 500 mg/day Oral 4 P 30 Human Eccentric exercise Blood analysis (CK), VAS, FP (maximal aerobic exercise testing) ⊕ VAS,

≈ CK, VO2 max

Hillman AR et al. (2021) [116] Curcumin
(CLE) 475 mg/day Oral 10 P 22 Humans Eccentric exercise Blood analysis (CK, ESRVAS, FP (vertical jump) ⊕ VAS, Vertical jump

≈ CK, ESR

⊕: Effective; ≈: Ineffective; (*): Placebo added 20 mg of piperine as the curcumin treatment.; AST: Aspartate aminotransferase; BAP: Biological antioxidant power; CAT: Catalase;
CK: Creatine kinase; CLE: Curcuma longa extract; CRP: C-Reactive protein; d: Day; d-ROMs: Diacron-reactive oxygen metabolites; ESR: Erythrocyte sedimentation rate; FRAP: Ferric
reducing ability plasma; GPx: Glutathione peroxidase; Hs: High sensitivity; IL-6: Interleukin-6; IL-8: Interleukin-8; IL-10: Interleukin-10; La: Lactate; LDH: Lactate dehydrogenase;
Mb: Myoglobin; MCP-1: Monocyte chemoattractant protein 1; MVIC: Maximal voluntary isometric contraction; P: Placebo; ROM: range of motion; SOD: Superoxide dismutase;
TC: Tight circumference; TNF-α: Tumor necrosis factor-α; UPS: Ubiquitin proteasome system; VAS: Visual analogue scale; VO2 max: Maximal oxygen consumption.

Table 3. Studies evaluating the effect of curcumin in tendinopathy.

Reference Molecule/s Dosage Route Days Placebo/Control n Type of Subjects Type Injury Tests Impact on Resolution.

Buhrmann et al. (2011) [94] Curcumin 5–20 µM Tenocytes culture in vitro 12 h, 24 h, 48 h C - Human tenocytes
monolayer cultures IL-1β stimulated tenocytes Histology, Immunology

⊕modulation of NF-κB signaling, inhibited
IL-1β-induced inflammation and apoptosis. Any
toxicity on the cells

Mueller AL et al. (2022) [95] Calebin A 5000 µM DMSO
(<0.1%)). Tenocytes culture in vitro 18 h C - Canine tenocytes

monolayer cultures Tendinitis µenvironment Histology, Immunology

⊕ inflammatory and degradative processes by
blocking TNF-β, TNF-α-induced adhesiveness and
T-lymphocytes facilitating down-regulation of
Collagen I, Tenomodulin, tenocyte-specific
transcription factor and the up-regulation of NF-κB
phosphorylation;.

Chen B et al. (2021) [96] Curcumin, Mg, Chitosan Hydrogel locally applied
during surgery 3–4–21 C Rodents Rotator cuff C/R Histology, Immunology,

Biomechanical.

Promote rotator cuff tendon-to-bone healing
⊕ anti-inflammatory and antioxidation effects,
⊕ biomechanical tests and histological results

Chen Y et al. (2019) [88] Curcumin, Chitosan 135 mg/mL Hydrogel locally applied
during surgery Every 3 d/4 weeks C 21 Rodents Achilles tendon ectopic

calcification model
Imaging (xR), Histology,
Immunology.

⊕ Partially reversed tendon calcification
and enhanced tendon regeneration

Güleç A et al. (2018) [89] Curcumin 200 mg/kg Oral gavage 28 C 18 Rodents Achilles tendon C/R Histology and Biomechanical

⊕ Tenocyte morphology, collagen, and ground
substance scores, ⊕ Biomechanical parameters
(failure load, cross-sectional area, length, ultimate
stress, strain),↔ Vascularization,

Jiang D et al. (2016) [90] Curcumin 100 mg/kg Oral gavage 14 C 64 Rodents Patellar tendon Histology, Immunology Gene
expression, Biomechanical

⊕ Organized collagen fiber, alignment, ⊕ collagen I,
⊕ biomechanical properties and ↑SOD, ↓MDA.

Zhang J et al. (2021) [91] Curcumin
Celecoxib - Electrospun polyester

membrane (EPM) 3 C 40 Rodents Achilles tendon C/R Histology, Immunology
The EPM with Curcumin and Celecoxib acts
synergistically preventing peritendinous adhesion
and inflammation.

Li Y et al. (2016) [92] Curcumin 0.44 mg/kg/0.1 mL
saline

Polymeric nanomicelles
applied locally 28 C 36 Rodents Achilles tendon C/R Histology, Biomechanical ⊕ inflammatory adhesion, ⊕ collagen fiber

orientation ⊕ tendon strength

Merolla et al. (2015) [97]
Curcuma, MSM,
Boswellia, Vit C, Glucosamin,
CS, Collagen, Arginin

200 mg Oral 168 P 50 Human Rotator cuff surgery VAS, PGAS, Constant–Murley
Score, Biomechanical.

⊕ postoperative rotator cuff short and partially
mid-term pain, while longterm pain was unchanged,
⊕ concomitant treatment

Henrotin Y et al. (2021) [98] Curcumin, Boswellia 144 mg Oral 30 No 670 Human Diverse tendinopathies Analog visual scale (VAS),
patien satisfaction

⊕ pain score, concomitant treatment and patient
satisfaction

⊕: Effective; Ineffective; ↑: Higher or improved; ↓: Lower;↔: Similar than the Control group; CS: Condroitin sulfate; d: Days; DMSO: Dimethyl-sulfoxide; EPM: Electrospun polyester
membrane; IL-1β: Interleukin-1β; MSM: C/R: cut and repair; NF-κB: Nuclear Factor-κB; PGAS: Patient Global Assessment scores; VAS: Visula analog scale; Vit C: Vitamin C.
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4. Discussion

This review highlights the key role of curcumin in inflammatory and degradative
processes by blocking the action of proinflammatory citokines such as TNF-α, and other
inflammatory markers, facilitating collagen and tenocyte-specific transcription factor reg-
ulation. This leads to the conclusion that curcumin is a nutritional element that helps in
promoting tendon healing through these anti-inflammatory and antioxidant effects.

4.1. Curcumin as Anti-Inflammatory and Immunomodulatory Agent

The pharmacological actions of curcumin as an anti-inflammatory agent have already
been examined by Srimal and Dhawan [115]. Ammon et al. [116] have demonstrated that
curcumin inhibits leukotriene formation in rat peritoneal polymorphonuclear neutrophils.
Leukotrienes (LT) are metabolites derived from the oxidative metabolism of arachidonic
acid via the 5-lipoxygenase pathway.

Also, the anti-inflammatory effect of curcumin is related to its ability to suppress acute
and chronic inflammation [117]. NF-κB plays a key role in signal transduction pathways
that are involved in inflammatory diseases and several cancer types [118]. Curcumin
inhibits TNF-α dependent activation of NF- kβ [119]. COX-2 is present in inflammatory
processes, and curcumin decreases its expression and inhibits the expression of the pro-
inflammatory enzyme 5-LOX, which transforms fatty acids into leukotrienes.

Furthermore, curcumin induces down-regulation of several inflammatory cytokines
such as TNF-α, IL-1β, IL-6, IL-8, interferon, and other chemokines [120,121]. In vivo
studies in humans and animals, curcumin has also revealed anti-inflammatory effects.
Several clinical trials revealed the efficacy of curcumin in inflammatory diseases such as
inflammatory bowel disease (IBD) in humans through the modulation of inflammatory
factors [122]. In the study by Chan et al. [123], curcumin supplementation (92 ng/g body
weight of curcumin) was observed to have an anti-inflammatory effect by reducing iNOS
mRNA expression (50–70%) in the liver of mice injected with lipopolysaccharide [123].

As mentioned before, curcumin has a variety of pharmacological properties that
help to reduce tissue damage and promote tissue repair. Curcumin has antioxidant, anti-
inflammatory, and anti-infective properties. In addition, curcumin may down-regulate
NF-κβ involved in apoptosis, matrix degradation, and inflammation in tenocytes. NF-
κβ helps to control many functions in the cell, such as growth and survival, as well as
controlling immune and inflammatory response [74,87,124,125].

Curcumin induces down-regulation of proinflammatory interleukins (IL-1β, IL-2, IL-6,
IL-8, and IL-12), inflammatory cytokines, and monocyte chemotactic protein-1 (MCP-1),
by inhibiting the transcriptional signalling pathway (JAK/STAT). In addition, overexpres-
sion of B-cell lymphoma-2 (Bcl-2) or B-cell lymphoma-extra large (Bcl-xL) controls the
intrinsic apoptosis pathway and protects cells against apoptosis. Otherwise, both cell
types counteract proapoptotic and proinflammatory attacks and restore the physiological
anti-inflammatory response [74,126].

In addition, curcumin acts as an immunomodulator factor by suppressing acquired im-
mune responses in T-cells, inhibiting activation, differentiation, and cytokine production [127].

Pharmacological Action of Curcumin

• Antioxidant

Curcumin also behaves as an antioxidant showing its positive effects on cell regenera-
tion and wound healing. However, it has negative effects on neoangiogenesis (a frequent
anatomopathological finding in tendinopathies). Inhibitory activity has also been observed
with respect to ECM MMPs [128].

Curcumin functions as a scavenger of oxygen species (e.g., superoxide, radical hy-
droxyl, and NO) [78].

Oxidative stress plays an important role in the pathogenesis of various diseases [129,130].
Curcumin has been found to be a free radical scavenger and reducing agent, resulting in the
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inhibition of DNA damage. In addition, in vitro studies have shown that curcumin inhibits
the production of NO and ROS in macrophages [131,132]. In animals, it has also been shown
to inhibit lipooxygenase and cyclooxygenase in fibroblasts [133]. In addition, curcumin
could increase collagen synthesis, promote angiogenesis, decrease ROS and improve the
wound healing process. An optimised COL-I/COL-III ratio could explain the optimal
matrix organisation in tendon healing. Therefore, curcumin enhances tendon regeneration
through well-organised collagen fibres, extensive collagen deposition, decreased ROS level,
and increased biomechanical properties of regenerated tendon tissues [74,88,127,134].

Curcumin moderates neuronal damage and the neuroprotective effects are induced by
N-methyl-D-aspartate (NMDA) [135]. Therefore, curcumin, acts as a neuro-protective and
anti-inflammatory agent. For instance, curcumin has been considered an adjuvant in the
treatment of multiple sclerosis, rheumatoid arthritis, and psoriasis [136–138].

• Collagen organisation

The administration of curcumin inhibits the crosslinking of collagen bundles with
alteration of the molecular structure [23]. In addition, curcumin inhibits the proliferation of
endothelial cells modulating basic fibroblast growth factor (bFGF) [24] and suppressing
angiogenesis, a common finding in chronic tendinopathy. For all these reasons, curcumin is
a key candidate for the treatment of this pathology.

As commented before, the oral administration of curcumin over a long period of
time decreases the accumulation and crosslinking of collagen, returning it to its original
structure and properties. On the other hand, collagen salt precipitation and altered acid
digestion are common findings in tendinopathies, and curcumin administration is able to
restore tendon characteristics [139].

In rats with a tendon injury, the animals treated with curcumin showed deposition of
well-organised collagen fibres, with lower levels of MDA and an increase of biomechanical
properties, together with an increase in the activity of manganese superoxide dismutase
(Mn-SOD), mitochondrial antioxidant [88].

• Analgesic

One of the most important pathological signs of tendinopathy is pain. Tendinous
pain is accompanied by muscle pain (related to the MTJ) which leads to increased muscle
tone. The effect of pain and increased muscle tone hinders physical therapy and the
tissue recovery process [140]. However, these findings do not always have an explanation
supported by scientific evidence. This is because in humans the situation seems to be more
complex than in animal models [141,142]. In this context, chronic pain tends to inhibit
or make difficult the voluntary and reflex contractile activity of the affected muscle or
its agonists. This fact suggests that these effects are beneficial and provide a protective
adaptation, and are not only the cause of pain. In any case, the administration of analgesics
will improve the quality of life and facilitate the implementation of physical therapy in the
treatment of the affected tissue.

Curcumin has an effect on pain perception [143]. In this regard, several clinical tri-
als have demonstrated the analgesic effect of curcuminoids, alone or administered with
other analgesics, in various pain conditions, such as osteoarthritis, chronic postsurgical
pain, and active rheumatoid arthritis [138]. The analgesic effect may be mediated by a
modulation of the inflammatory and oxidative responses in muscle injury as previously
explained [100,144]. Essentially, this analgesic effect is explained by curcumin’s ability to:
(a) inhibit the production of PGE2 by inhibiting the expression of the COX-2 gene [145];
(b) stimulate the production of cortisol by the adrenal gland inhibiting potassium channels;
(c) reducing the nerve endings of the neurotransmitter substance P [146,147] and (d) by
desensitising the transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1)
ion channels responsible for pain sensation, thereby reducing pain sensitivity [148,149].
Through these actions, curcumin can limit post-exercise inflammation, which in turn re-
duces pain sensitivity and DOMS. It has been suggested that curcumin promotes the
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modulation of TRPV1 rather than modifying inflammatory responses to exert antinocicep-
tive effects [150,151].

• Biostimulator

Curcumin may induce pharmacokinetic alterations when it is used in combination
with drugs to treat cardiovascular conditions, antidepressants, anticoagulants, antibiotics,
chemotherapeutic agents, and antihistamines [152,153]. Curcumin seems to have some
biostimulatory power and is used as a biopotentiator for antimicrobial agents and anticancer
drugs [80,154]. The fundamental mechanism used by curcumin to carry out these actions
is through the suppression of drug metabolising enzymes in the liver [155]. This must be
considered when curcumin is administered in patients suffering tendinopathy and who are
being treated with other drugs such as antihistamines that are, both together, well tolerated
and compatible for a short time period [156]. Administration of curcumin together with
antibiotics such as norfloxacin [157] or antifungals, enhanced lightly the area under the
curve [158]. No apparent change in pharmacokineticsis is observed when curcumin is
administered in combination with commonly used anti-inflammatory or antalgesic drugs.
However, as indicated by Fredriksson [159], NSAIDs (non-steroidal anti-inflammatory
drugs) may affect the healing of the tissues of the musculoskeletal system, and in particular
the proliferation of tenocytes after injury. Nevertheless, the scientific literature does not
provide sufficient evidence for or against the use of NSAIDs following acute injury or
surgical repair of the tendon-bone interface [160–162]. Despite this controversy, the use
of NSAIDs in chronic musculoskeletal pathology, particularly tendinopathies, is common.
The use of curcumin in association with NSAIDs during prolonged inflammatory processes
can be synergistic and further investigated [163,164].

4.2. Therapeutic Guidance

At present, it is not easy to define a suitable dose of curcumin for therapeutic purposes.
As observed in Table 3, there is no homogeneity about what might be called the optimal dose
and therapeutic use. Unformulated curcumin, administered orally, is poorly bioavailable
in humans due to its low digestive absorption, protein binding, rapid metabolism, and
systemic elimination from the body [165,166]. Some pharmaceutical formulations or certain
combinations with other compounds, increase the solubility, prolong plasmatic presence
and improve the pharmacokinetic profile and cellular uptake [167–169].

To optimise the bioavailability of curcumin, new delivery systems have been devel-
oped, such as the solid lipid particle, the micellar system, or hydrophilic nanoparticles,
which are able to increase the concentration of curcumin by up to 15–20 times [170,171].
Therefore, giving an indication from the different studies for an anti-inflammatory dose is
somewhat arbitrary. The absence of a recommended dose is based in the variability coming
from different formulations used in the different studies performed in tendons and DOMS.
They present different bioavailability and not all studies determine the plasma level, in
order to associate the possible therapeutic effect with a given plasma concentration.

However, despite low serum levels after oral administration of curcumin, beneficial
effects in vivo are evident [79]. Based on the studies evaluated in this review, possible
effective doses range from 90 mg in bioavailable compounds to 5 g in Curcuma longa
extracts [172]. An appropriate therapeutic dose for curcumin would be between 1–1.5 g,
spread over 2–3 daily doses, to maintain more sustained serum levels, considering that
plasma concentrations of curcumin peak 1–2 h after ingestion and gradually decline over
12 h [173–178].

5. Conclusions

Curcumin is a product that has demonstrated consistent biological analgesic, anti-
inflammatory, and antioxidant properties. Supplementation has a positive effect on the
inflammatory and regenerative response in tendinopathy. Curcumin decreases and modu-
lates the infiltration, activation, and maturation of leukocytes, as well as the production of
pro-inflammatory mediators at the site of inflammation. Curcumin inhibits angiogenesis
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at the injured site and decreases the accumulation and crosslinking of collagen, returning
it to its original structure and properties. Considering the ability of curcumin to facilitate
the action of other drugs, its wide therapeutic margin with minimal or no unwanted side
effects makes it a promising molecule for therapeutic use in isolation or as a complement to
other pharmacological therapies in musculoskeletal pathology, particularly tendinopathies.
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