
Citation: Hao, R.; Shan, S.; Yang, D.;

Zhang, H.; Sun, Y.; Li, Z.

Peonidin-3-O-Glucoside from Purple

Corncob Ameliorates Nonalcoholic

Fatty Liver Disease by Regulating

Mitochondrial and Lysosome

Functions to Reduce Oxidative Stress

and Inflammation. Nutrients 2023, 15,

372. https://doi.org/10.3390/

nu15020372

Academic Editors: Xavier Capó,

Margalida Mesquida and

Naoki Tanaka

Received: 24 November 2022

Revised: 27 December 2022

Accepted: 5 January 2023

Published: 11 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nutrients

Article

Peonidin-3-O-Glucoside from Purple Corncob Ameliorates
Nonalcoholic Fatty Liver Disease by Regulating Mitochondrial
and Lysosome Functions to Reduce Oxidative Stress
and Inflammation
Ruilin Hao 1 , Shuhua Shan 1, Dandan Yang 2, Huimin Zhang 2, Yi Sun 2 and Zhuoyu Li 1,*

1 Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute
of Biotechnology, Shanxi University, Taiyuan 030006, China

2 Department of Biology, Xinzhou Normal University, Xinzhou 034000, China
* Correspondence: lzy@sxu.edu.cn; Tel.: +86-(351)-701-0599; Fax: +86-(351)-701-8397

Abstract: A frequent chronic liver condition across the world is nonalcoholic fatty liver disease
(NAFLD). Oxidative stress caused by lipid accumulation is generally considered to be the main
cause of NAFLD. Anthocyanins can effectively inhibit the production of reactive oxygen species
and improve oxidative stress. In this work, six major anthocyanins were separated from purple
corncob by semi-preparative liquid chromatography. The effects of the 6 kinds of anthocyanins
against NAFLD were investigated using a free fatty acid (FFA)-induced cell model. The results
showed that peonidin 3-O-glucoside (P3G) can significantly reduce lipid accumulation in the NAFLD
cell model. The treatment with P3G also inhibited oxidative stress via inhibiting the excessive
production of reactive oxygen species and superoxide anion, increasing glutathione levels, and
enhancing the activities of SOD, GPX, and CAT. Further studies unveiled that treatment with P3G
not only alleviated inflammation but also improved the depletion of mitochondrial content and
damage of the mitochondrial electron transfer chain developed concomitantly in the cell model.
P3G upregulated transcription factor EB (TFEB)-mediated lysosomal function and activated the
peroxisome proliferator-activated receptor alpha (PPARα)-mediated peroxisomal lipid oxidation by
interacting with PPARα possibly. Overall, this study added to our understanding of the protective
effects of purple corn anthocyanins against NAFLD and offered suggestions for developing functional
foods containing these anthocyanins.

Keywords: nonalcoholic fatty liver disease; purple corncob; peonidin-3-O-glucoside; lysosomal
function; mitochondrion

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in
the world, and its global prevalence has doubled in the past 20 years. In humans, NAFLD
is characterized by excessive accumulation of lipids in the liver, which is a common
complication of obesity and is related to insulin resistance and metabolic syndrome [1].
NAFLD represents a series of progressive stages of liver disease, from simple steatosis to
nonalcoholic steatohepatitis that manifests as liver inflammation, necrosis, and fibrosis [2,3].

Abnormal accumulation of saturated fats such as triglycerides in the liver has been
reported to be associated with the pathogenesis of NAFLD [3]. This abnormal accumu-
lation can lead to mitochondrial dysfunction and overproduction of ROS [4]. Excessive
mitochondrial ROS exacerbates mitochondrial dysfunction and can also activate NF-κB
and promote tumor necrosis factor α (TNF-α), interleukin (IL)-1β, and IL-6 production and
induce liver inflammation and the development of nonalcoholic fatty liver [3–7].

Corn originates in the American continent and is considered one of the main food
sources in the world. Corn contains many bioactive compounds that provide ideal health
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benefits [8]. Waxy corn has a variety of grain colors, including white, yellow, red, purple,
and black. The different colors of corn kernels are due to the different types and quantities
of anthocyanins in the pericarp and aleurone layers. Purple corn contains more antho-
cyanins than other corn [9–11]. Purple corn anthocyanins have the potential to reduce
the risk of cardiovascular disease, hypertension, obesity, diabetes, and cancer [12–16]. As
scavengers of reactive oxygen species, anthocyanins can reduce oxidative stress [17,18].
Anthocyanins can also inhibit NF-κB and PPAR activation and IL-8 mRNA expression,
improving inflammatory responses [19].

In previous studies, the anthocyanin profiles of different genotypes of purple corn in
China were evaluated. The main anthocyanins of purple corn were cyanidin 3-glucoside,
peonidin 3-glucoside, pelargonidin 3-glucoside, and their acylated derivatives [20–22].
The purpose of this study was to isolate the main components of purple corn antho-
cyanins, establish an NAFLD cell model induced by free fatty acids (FFAs), compare
and analyze the intervention effects of different anthocyanins on NAFLD, and clarify the
potential mechanisms.

2. Materials and Methods
2.1. Chemicals

HPLC-grade formic acid and acetonitrile, Nile Red, Oil Red O,3-(4,5-dimethyl-2-
thiazolyl)-2,5-diphenyl-2-h-tetrazolium bromide (MTT), and NDA (naphthalene-2,3-dicar-
acetaldehyde) fluorescent dyes were purchased from Shanghai Aladdin Biochemical Tech-
nology Co. (Shanghai, China). A reactive oxygen species assay kit (S0033S), DHE (Dihy-
droethidium), mitotracker green (C1048), mitochondrial membrane potential detection
kit (C2006), Lyso-tracker Green, superoxide dismutase (SOD), glutathione peroxidation
physiological enzyme (GPx), catalase (CAT) detection kit, cell lysis solution (P0013), human
interleukin-1β (IL-1β) enzyme-linked immunosorbent assay kit (PI305), human interleukin-
6 (IL-6) enzyme-linked immunosorbent assay kit (PI330) and human tumor necrosis factor-α
(TNF-α) enzyme-linked immunosorbent assay kit (PT518) were purchased from Beyotime
Biotechnology (Shanghai, China). The antibodies used in Western blot detection were
purchased from Beyotime Biotechnology (Shanghai, China). An aspartate aminotransferase
assay kit (C010-2-1) and alanine aminotransferase assay kit (C009-2-1) were purchased from
Nanjing Jiancheng Bioengineering Institute (Nanjing, China). Other reagents used are of
analytical grade.

Purple corn (Jinnuo No. 8) was obtained between August and December 2019 and
was provided by the Maize Research Institute of Shanxi Academy of Agricultural Sci-
ences (Taiyuan, China). The harvested purple corncobs were first washed with deionized
water and then dried in an oven at 40 ◦C for 48 h until the humidity level dropped to
9.62~12.60% [23,24]. After drying, the corncob samples were ground into powder in a
spice grinder (FSD-100A, Taizhou City, Zhejiang Province, China) and passed through a
100-mesh sieve.

2.2. Extraction and Purification of Purple Corn Anthocyanins

Anthocyanin extraction was performed according to the reference method of Li et al.,
with slight modifications [25]. Purple corncob samples (1000 g) were soaked at 4 ◦C and
extracted twice in methanol (4 L) containing 0.1% HCl for 12 h each time [25]. The extract
was further purified on a column of AB-8 macroporous resin (C. Chen, Somavat, Singh, and
Elvira, 2017). We used an LC-16P preparative-HPLC system combined with a Shimadzu
Shim-pack GIS-C18 column (20 × 250 mm, 10 µm) [26] to separate anthocyanins. The
mobile phase consisted of water/acetonitrile/formic acid (80/15/5, v/v/v). For isocratic
elution, the flow rate was 10 mL/min, the column temperature was set to 35 ◦C, the UV
detection was set to 520 nm, and 5 mL of sample solution (15.3 g/L total anthocyanins) was
injected. An automated fraction collector was used for collecting the anthocyanin fraction.
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2.3. HPLC-DAD-MS Assay

The qualitative and quantitative analysis of C3S in samples was carried out by
LCMS-8050 liquid chromatography-mass spectrometry [25]. An Agilent SB-C18 column
(4.6 × 150 mm, 2.7 µm; Agilent Technologies Inc., Palo Alto, CA, USA) was used to separate
the anthocyanin samples. The flow rate and injection volume were 1 mL/min and 20 µL,
respectively. The column temperature was 35 ◦C. The chromatographic column passed
through phase A (5% formic acid in water) and phase B (5% formic acid in acetonitrile).
The elution gradient was as follows: 5% B (0–5 min); 5–10% B (5–10 min); 10–27.5% B
(10–40 min).

The acquisition mode of MS was automatic ESI-MS/MS in positive ion mode, under
the following conditions: atomizing gas flow rate, 3 L/min; heating gas flow rate, 10 L/min;
interface temperature, 350 ◦C; DL temperature, 250 ◦C; heating module temperature, 400 ◦C;
dry air flow rate, 10 L/min; fragmentation voltage, 4 KV; scan mode, Q3 Scan; scan range,
100–1000 m/z.

2.4. Establishment of NAFLD Cell Model

The normal human liver cell line L02 was purchased from the Type Culture Collection
of the Chinese Academy of Sciences (Shanghai, China) and was cultivated in a humidified
incubator at a constant temperature of 37 ◦C with 5% CO2. Ten percent fetal bovine serum,
100 units/mL penicillin, and 100 units/mL streptomycin were added to RPMI 1640 medium
(Gibco). We referred to the method of Yang Xu et al. of treating L02 cells with 0.5 mM FFA
to establish a NAFLD model [27]. Palmitic acid (PA) was dissolved in 0.1 M NaOH at 70 ◦C
to obtain a 100 mM PA solution. Mix 100 mM PA solution with 100 mM oleic acid (OA) in a
volume of OA/PA = 2:1. The mixture was then mixed in equal amounts with 10% BSA to
obtain a 50 mM FFA stock solution. When building the NAFLD cell model, dilute the FFA
stock solution to 0.5 mM with cell culture medium. The NAFLD cell model was obtained
after cells were cultured for 24 h in culture medium containing 0.5 mM FFA.

2.4.1. The Effect of Purple Corn Anthocyanin on Lipid Accumulation in Hepatocytes

As previously mentioned [28], the Nile Red staining procedure was used. L02 cells
were seeded in a 6-well plate at a density of 1 × 105 cells per well and cultivated for 24 h
before being exposed to 0.5 mM FFA and treated with various concentrations of purple
corncob anthocyanins (10, 100, 200, and 300 µM). The cells were then rinsed twice with PBS,
treated with Nile Red (0.1 M) for 30 min at 37 ◦C, and observed using an IX71 inverted
fluorescence microscope (Olympus, Tokyo, Japan). Only cells treated with FFA served as
the FFA-treated group; the nontreated group served as the control group.

Oil Red O staining was carried out using a previously published procedure with slight
modifications [29]. After the L02 cells had been washed twice with PBS and fixed for 30 min
at room temperature with 4% paraformaldehyde, the supernatant was discarded. The cells
were then stained with Cole’s hematoxylin solution (Solarbio Life Science CO., Beijing,
China) for 5 min after being dyed with 0.6% (w/v) Oil Red O for 30 min at room temperature.

L02 cells were seeded and treated in a 6-well plate as described before. After 24 h of
exposure, the cells were washed twice with 2 mL of PBS. The cells were then scraped and
resuspended in PBS before being centrifuged to remove the PBS. Isopropyl alcohol was
used to extract the triglycerides from the precipitated cells. The extract was centrifuged
at 12,000 rpm for 10 min at 4 ◦C to collect the supernatant. The triglyceride content of the
supernatant was determined using an assay kit (BC0625) purchased from Beijing Solbio
Technology Co., Ltd. in China. The absorbance at 420 nm was measured with a Synergy
HTX microplate reader (Agilent, Santa Clara, CA, USA).

2.4.2. Hepatocyte Viability

L02 cells were seeded into a 96-well plate (5 × 103 cells per well) and cultivated for
24 h. They were then exposed to 0.5 mM FFA for 24 h, followed by 24 h of exposure to
a variety of concentrations of purple corncob anthocyanins (10, 100, 200, and 300 µM). A
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Infinite M200 micro-plate meter (TECAN, Männedorf, Switzerland) was used to evaluate
the cell viability rate after adding 0.5 mg/mL of MTT into each well. The cell viability rate
using a microplate meter (Tecan Infinite M200, Männedorf, Switzerland) at 490 nm.

2.4.3. Hepatocyte Damage Detection

We tested alanine aminotransferase (ALT) and aspartate aminotransferase (AST) to
investigate the damaging effect of FFA on hepatocytes and the effect of purple corncob
anthocyanins [30]. L02 cells were seeded in a 6-well plate (1 × 105. L02 cells were treated
with FFA and different concentrations of purple corncob anthocyanins. After that, the
cells were collected and washed 2 times with 0.1 mol/L phosphate buffer. The cells
were then centrifuged at 1000 rpm for 10 min and the cell precipitate was collected. To
the cell precipitate, 0.1 mol/L phosphate buffer was added (500 µL), and the cells were
broken by ultrasound under ice water bath conditions (ultrasound power was 450 W,
working 5S, pause 30S, 10 cycles). The prepared homogenate was applied to a BCA protein
concentration assay kit (P0010S, Beyotime Biotechnology, Shanghai, China) to determine
the protein concentration. ALT and AST activities were measured according to the aspartate
and alanine aminotransferase assay kit instructions. The results are reported in units/g
of protein.

2.5. The Effect of P3G on the Antioxidant System of Hepatocytes
2.5.1. Analysis of Cellular Glutathione (GSH), Superoxide Anion Radicals (O2

−•), and
Reactive Oxygen Species (ROS)

Cellular ROS, O2
−•, and GSH levels were measured using a ROS kit (DCF was used as

the fluorescence probe), dihydroethidium (DHE), and naphtha-lene-2,3-dicar-acetaldehyde
(NDA) fluorescent dyes [31–33]. The cells were washed twice with PBS after the treatment,
and the supernatant was discarded. After that, three groups of L02 cells were stained with
ROS kit (20 µM DCF probe), DHE (10 µg/mL), and NDA (50 µM), and kept at 37 ◦C for
30 min. After that, the stained cells were analyzed using the fluorescence microscope and
FACS Canto II flow cytometry (FCM) (BD, Franklin Lakes, NJ, USA). In FCM analysis,
the DCF fluorescence was excited by the laser beam (488 nm) and recorded at the FITC
channel. The DHE fluorescence was determined at an excitation wavelength of 535 nm and
emission of 610 nm by flow cytometry (FCM). The NDA fluorescence was recorded at the
FITC channel.

2.5.2. SOD, GPx and CAT Activity Assay

L02 cells were collected with a scraper and washed once with PBS. Cell samples were
lysed with cell lysis buffer and centrifuged at 12,000× g for 10 min at 4 ◦C. The supernatant
was used to determine the enzyme activities of SOD, GPx, and CAT according to the (S0109
total superoxide dismutase assay kit with NBT, S0058 total glutathione peroxidase assay kit,
S0051 catalase assay kit; three kits were purchased from Beyotime Biotechnology, Shanghai,
China) kit instructions.

2.6. The Effect of P3G on Hepatocyte Mitochondria

According to the method described by Chen et al., the mitochondrial membrane po-
tential and mitochondrial mass were detected using the Mitochondrial Membrane Potential
Detection Kit and MitoTracker Green [34,35]. L02 cells were seeded in a 6-well plate and
treated as previously described. Cells were washed twice with 2 mL of PBS after 24 h of
exposure. The specific steps were carried out according to the kit instructions, and the
concentration of MitoTracker Green in the working solution was 100 nM. The mitochondrial
membrane potential was evaluated by fluorescence microscopic imaging and FCM. The
cell was stained with JC-1 for 20 min at 37 ◦C after 24 h of P3G treatment. In FCM analysis,
fluorescence was read at 488 nm excitation and 530 nm emission for green and at 540 nm
excitation and 590 nm emission for red. The ratio of aggregated JC-1 (red fluorescence) and
monomeric JC-1 (green fluorescence) represented the mitochondrial membrane potential.
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The ATP level in L02 cells was also analyzed. L02 cells were seeded in a 6-well plate
and treated as previously described. Following PBS aspiration, the lysate was added at a
rate of 200 µL per well, and cells were lysed by repeated blowing with a pipette for 2 min.
The lysed cell suspension was centrifuged for 5 min at 4 ◦C at 12,000 g. The assay of the
ATP level in supernatant was carried out as directed by the instruction (S0026, Beyotime
Biotechnology, Shanghai, China).

2.7. The Effect of P3G on Lysosome Function

As described previously, L02 cells were treated with FFA and different concentrations
of purple corncob anthocyanins. In order to detect P3G’s effect on lysosome function, the
cells were stained with Lyso-Tracker Green’s 50 nM for 30 min at 37 ◦C in the dark. After
staining, the cells were visualized by an inverted fluorescence microscope. The results were
uttered as the mean fluorescence intensity [36].

2.8. Western Blot

The cells were washed two times with PBS, gathered by a cell scraper, and lysed on
ice utilizing RIPA cell lysis buffer for 30 min. The cell lysate was centrifuged at 13,000 rpm
for 15 min at 4 ◦C. The supernatant was collected, and the protein concentration was
determined. Then, equal amounts of 30 µg protein from different samples were transferred
to polyvinylidene fluoride (PVDF) membranes by 10% SDS-PAGE. The membrane blocking
was accomplished by using 5% skimmed milk at room temperature for 1 h. The following
antibodies were used: TFEB Rabbit Polyclonal Antibody (CAT No. AF8130), Lamin B1
Rabbit Monoclonal Antibody (CAT No. AF1408), LAMP1 Rabbit Polyclonal Antibody
(CAT No. AF7353), Caspase-1 Rabbit Monoclonal Antibody (CAT No. AF1681), NF-κB p65
Rabbit Polyclonal antibody (CAT No. AN365) GAPDH Rabbit Monoclonal Antibody (CAT
No. AF1186) (File S1) [29].

2.9. The Effect of P3G on Hepatocyte Inflammation

L02 cells were planted in 6-well plates at a density of 2 × 105 cells per well and
incubated for 24 h. Following 0.5 mM FFA treatment, L02 cells were treated for 24 h
with P3G at varied concentrations (100, 200, and 300 µM). The cell-free supernatant was
obtained following P3G stimulation for 24 h by centrifuging for 5 min at 500× g. The ELISA
method was employed to detect IL-1, IL-6, and TNF- in the supernatant according to the kit
instructions (Beyotime Biotechnology, Shanghai, China). Briefly, the supernatants without
dilution and cytokine standards were applied to 96-well plates covered with monoclonal
antibody (coupled to HRP) and incubated at 37 ◦C for 30 min. The plates were then cleaned
and incubated with the substrate solution for 20 min at 37 ◦C. The stop solution was then
added, and absorbance at 450 nm was measured with a Synergy HTX microplate reader
(Agilent, Santa Clara, CA, USA). The results were plotted against the standard curve’s
linear component.

2.10. Molecular Docking

The in vitro studies of P3G against PPARα were confirmed by computational dock-
ing studies using AutoDock Vina software [37]. From the PDB database, the PPARα’s
3D-structure program database (PDB) format file (PDB ID: 2ZNN) was obtained. Before
docking simulations, the protein’s energy was minimized using the UCSF Chimera pro-
gram [38]. The PyMOL software suite was used to remove the hetero atoms and water
molecules [39]. Dehydrogenation, calculation of Gasteiger charges, and fusion of nonpolar
hydrogen atoms were all done using the Autodock tools [40]. Finally, the PDBQT format,
the only one supported by AutoDock Vina, was used to save the protein and ligand. To
ensure that the active site is completely covered and that ligands can move freely, a grid
box with the dimensions 29 × 29 × 29 Å was established and centered at the coordinates
X = 2.91, Y = 4.87, and Z = 4.66 [41]. The number of maximum binding modes was set to 50.
The docking results were visualized and analyzed using PyMOL.
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2.11. Molecular Dynamics Study

To gather more detailed binding information, GROMACS 2020.4 was utilized for
molecular dynamics (MD) simulation. Using the acpype program, the GAFF force field
was used to pre-treat P3G [41]. The amber14ffSB force field was added to charge α-
glucosidase [42]. ACPYPE software was used to create the ligand topology [43]. Complexes
were soaked in a cubic water box that was filled with water molecules; the distance between
the complexes and the border of the box was 1 nm. The complexes’ surface charges were
reduced by adding 4 Na+. Energy minimization was conducted. The minimized system
was subjected to MD that utilized an NPT ensemble after being equilibrated by NVT at
1 bar and 300 K for 100 ps. The MD simulation was then set to run for 50 ns [44]. Root
mean square deviation (RMSD), solvent accessible surface area (SASA), and hydrogen
bond analyses were performed on the track and structure using VMD.

2.12. qRT-PCR Analysis

The expression levels of PPAR, CPT-1A, ACOX1, and actin were determined using
quantitative real-time PCR testing. L02 cells were collected with a scraper from the well of
the 6-well plate and washed once with PBS. Cells were lysed with 0.5 mL Trizol (Beyotime
Biotechnology, Shanghai, China) and reverse transcribed to cDNA using the Prime Script RT
reagent Kit (TaKaRa, Shiga, Japan) according to the manufacturer’s procedure. The primers
and amplification conditions were the same as described [45]. Quantitative real-time PCR
was undertaken on a CFX96 real-time PCR system (Bio-Rad Laboratories, Inc., Hercules, CA,
USA), and the temperature conditions were 95 ◦C for 5 min, followed by 95 ◦C for 15 s and
60 ◦C for 30 s with 40 amplification cycles. The primers (5′-3′) of PPARα, CPT-1A, ACOX1,
and β-actin were designed as follows: PPARα (F, 5′-TGGCTCTTGACCCTATTGG-3′; R, 5′-
GGGAACAGATTTCCACATTG-3′), CPT-1A (F, 5′-CCTCCGTAGCTGACTCGGTA-3′; R, 5′-
GGAGTGACCGTGAACTGAAAG-3′), ACOX1 (F, 5′-GCGGACTACACTTCATAAATGC-3′;
R, 5′-CCACAGGACACCATTAAGC-3′), β-actin (F, 5′-TGGATCAGCAAGCAGGAGTA-3′;
R, 5′-TCGGCCACATTGTGAACTTT-3′).

2.13. Statistical Analysis

Every experiment was run at least three times, and the results were expressed as the
mean ± standard deviation (SD). The fluorescence intensity and Oil Red O colored area of
the photo-micrograph were analyzed using Image Pro Plus 6.0 (Media Cybernetics, Inc.,
Rockville, MD, USA), and the findings indicated the average fluorescence intensity and
the percentage of Oil Red O colored area. One-way analysis of variance (ANOVA) was
used to determine the significance between two groups, and the findings were expressed
as a comparison to the results obtained for Duncan’s multiple range test or Student’s t-test
using GraphPad Prism version 8.0.0 (GraphPad Software, San Diego, CA, USA). A p-value
less than 0.05 was regarded as significant.

3. Results and Discussion
3.1. Extraction and Purification of Purple Corn Anthocyanins

The methanol extract of purple corncob (containing 0.1% HCl) was analyzed by
HPLC, and six anthocyanin peaks are shown in Figure S1. As shown in Figure S2, six
anthocyanin components were collected from purple corncob extract by preparative HPLC,
which were P1, P2, P3, P4, P5, and P6 peaks. Then, HPLC-DAD-ESI-MS was used for
structure identification and purity determination (Figure S3). The main anthocyanins of
6 peaks were peonidin 3-o-glucoside (P3G, P1, peak 1); cyanidin 3-(6′-malonylglycoside)
(C3M, P2, peak 2); cyanidin 3-(6′′-succinylglucoside) (C3S, P3, peak 3); cyanidin 3-(3′′,6′-
dimalonylglucoside) (C3D, P4, peak 4); peonidin 3-(6′-malonylglycoside) (P3M, P5, peak
5); and pelargonidin 3-(3′′,6′′-dimalonylglucoside) (Pg3D, P6, peak 6) (Figure 1). Detailed
identification information is provided in Table 1.
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Table 1. Identification of anthocyanins monomer in the purple corn cob.

LC-ESI-MS MS/MS DAD

Peaks [M]+ (m/z) Fragments [M + H]+ (m/z) Vis-Max (nm) Compounds

1 463 301 516/246/234/279/212 Peonidin-3-O-glucoside
2 535 287 517/246/234/280 Cyanidin-3-(6′-malonyl-glucoside)
3 549 287 516/246/235/280 Cyanidin-3-(6′′-succinyl-glucoside)
4 621 287 517/246/280/234/ Cyanidin-3-O-3′′,6′′-O-dimalonyl-glucoside
5 549 301 516/246/234/280 Peonidin-3-(6′′-malonyl-glucoside)
6 605 271 501/245/235/267/432 Pelargonidin-3-O-3′′,6′′-O-dimalonyl-glucoside

3.2. Purple Corn Anthocyanin Improved NAFLD Cell Model
3.2.1. Purple Corn Anthocyanin Reduced the Accumulation of Lipids in NAFLD Cells

As shown in the results in Figures 2A and S4, the quantitative fluorescence inten-
sity of the control group was 100%, and the fluorescence intensity of cells in the model
group induced by 0.5 mM FFA increased to 310.54 ± 26.14%. After 300 µM purple corn
anthocyanin intervention, the fluorescence intensity decreased to 141.54 ± 23.07% (P3G),
276.58 ± 33.38% (C3M), 154.47 ± 17.41% (C3S), 197.88 ± 42.49% (C3D), 222.94 ± 24.83%
(P3M), 237.60 ± 29.14% (Pg3D). As shown in Figures 2B and S5, the same as Nile Red
staining, after intervention with 300 µM purple corn anthocyanins, the area ratio of Oil
Red O decreased to 32.70 ± 7.75% (P3G), 61.81 ± 15.38% (C3M), 33.56% ± 2.82% (C3S),
67.15 ± 3.09% (C3D), 67.77 ± 2.36% (P3M), 66.76 ± 4.90% (Pg3D).
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Figure 2. Effects of purple corncob anthocyanins on FFA-induced lipid accumulation in L02 cells
via Nile Red staining and Oil Red O staining (quantitative data of panel). (A) Quantitative data of
Nile Red staining panel, control group was considered as 100%; (B) quantitative data of Oil Red
O staining panel, FFA-treated group was considered as 100%. (# p < 0.05, ## p < 0.01 compared
with control; * p < 0.05, ** p < 0.01 vs. FFA-treated group.) P3G, peonidin-3-o-glucoside; C3M,
cyanidin-3-(6′-malonylglucoside); C3S, cyanidin 3-(6′′-succinyl-glucoside); C3D, cyanidin 3-o-3′′,6′′-
o-dimalonylglucoside; P3M, peonidin 3-(6′′-malonyl-glucoside); Pg3D, pelargonidin 3-o-3′′,6′′-o-
dimalonylglucoside.

The results show that purple corncob anthocyanins can effectively reduce lipid accu-
mulation in L02 cells. Among them, P3G shows a better relief effect than other anthocyanins.
As seen in Figure 3A,C, the fluorescence intensity of Nile Red dropped dramatically with
increasing P3G concentrations. The fluorescence intensity was 221.30 ± 59.16 (100 µM),
198.58 ± 38.25 (200 µM), and 141.54 ± 23.07% (300 µM). The Oil Red O staining results
are consistent with the Nile Red staining results (Figure 3B,D). The intracellular triglyc-
eride content increased after FFA treatment from 9.31 ± 1.43 mmol/L (control group) to
45.83 ± 3.77 mmol/L. (Figure S6). After different concentrations of P3G treatment, the in-
tracellular triglyceride content decreased to 44.48 ± 1.51 (10 µM P3G), 38.34 ± 1.29 (100 µM
P3G), 25.18 ± 1.34 (200 µM P3G), and 15.57 ± 0.71 mmol/L (300 µM P3G). These findings
suggest that P3G therapy can prevent hepatocytes from accumulating lipids as a result of
FFA exposure.
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Figure 3. Through the use of Nile Red and Oil Red O staining, the effects of purple corn anthocyanins
(P3G) on FFA-induced lipid formation in L02 cells are demonstrated. (A) Nile Red staining image
(×200); (B) Oil Red O staining image (×200); (C) quantitative data of Nile Red-positive area in
panel (A), control group was considered as 100%; (D) quantitative data of Oil Red O-positive area in
panel (B), FFA treatment group was considered as 100%; (E) P3G (10, 100, 200, and 300 µM) effects
on ALT activity in the presence of FFA; (F) P3G (10, 100, 200, and 300 µM) effects on AST activity
in the presence of FFA. (# p < 0.05, ## p < 0.01 compared with control; * p < 0.05, ** p < 0.01 vs.
FFA-treated group.).

3.2.2. Purple Corn Anthocyanin Enhanced the Viability of NAFLD Cell Model

The cell viability decreased significantly after the intervention of 0.5 mM FFA, which
decreased to 56.33 ± 4.35% in comparison with the control group (Figure S7). The viability
of the NAFLD cell model increased from 54.37 ± 3.84% (FFA) to 109.99 ± 9.48% (P3G),
88.85± 0.26% (C3M), 114.32± 11.38% (C3S), 107.82± 13.91% (C3D), 106.65± 9.33% (P3M),
and 109.30 ± 5.01% (Pg3D) after treatment with six anthocyanin monomers at 300 µM.
Purple corncob anthocyanin monomer has no obvious toxicity to liver L02 cells and can
significantly improve the decline in cell viability caused by FFA.

3.2.3. P3G Ameliorates Hepatocyte Injury Induced by FFA

We found that FFA caused a significant increase in AST and ALT in L02 cells from
2.08 ± 0.05 units/g and 0.38 ± 0.14 units/g in the control group to 15.19 ± 0.20 and
8.13 ± 0.24 units/g, respectively. However, the P3G processing offsets the increase in AST
and ALT levels (Figure 3E,F). After treatment with different concentrations of P3G, AST
levels dropped to 17.08 ± 0.21 (10 µM), 10.86 ± 0.19 (100 µM), 5.87 ± 0.18 (200 µM),
3.45 ± 0.17 units/g (300 µM). The ALT levels dropped to 6.89 ± 0.23 (10 µM), 5.57 ± 0.22
(100 µM), 1.83 ± 1.22 (200 µM), and 2.24 ± 0.84 units/g (300 µM). The results showed that
P3G could significantly improve hepatocyte injury induced by FFA.

3.3. P3G Reduces the Oxidative Stress Induced by FFA
3.3.1. P3G Reduces ROS Levels in NAFLD Cell Model

Eliminating ROS is considered to be an effective way to alleviate NAFLD [46,47]. As
shown in Figure 4A,D, 0.5 mM FFA induced a significant overproduction of ROS in L02 cells.
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However, P3G generated the best results at a concentration of 300 µM, and the fluorescence
intensity was decreased to 31.25 ± 11.78% (compared with the FFA-treated group, p > 0.05)
as a result of its considerable inhibitory action on the rise of ROS induced by FFA. Figure 4G
shows that after FFA treatment, the percentage of DCF-positive cells increased to 82.0%
compared to the control group (24.6%). After different concentrations of P3G intervention,
the percentage of DCF-positive cells decreased significantly. The proportion of new cells
that were DCF-positive decreased to 30.8% after 300 µM P3G treatment (Figure 4G). The
flow cytometry results were consistent with the fluorescence imaging statistical results.

Similar results were obtained from the observation of O2
−•. As shown in Figure 4B,E,

compared to the control group, the O2
−• level significantly increased after FFA

(317.75 ± 6.47%). Flow cytometry analysis revealed that the percentage of DHE-positive
cells increased to 19.5% after FFA treatment compared to 0.28% in the control group
(Figure 4H). After treatment with different concentrations of P3G, the percentage of DHE-
positive cells was significantly reduced in a dose-dependent manner. Treatment with
300 µM P3G reduced the percentage of DCF-positive neoplastic cells to 3.62%. O2

−•

production was dose-dependently decreased by P3G administration.
GSH is a significant endogenous nonenzymatic antioxidant that can scavenge ROS.

The changes in GSH content in L02 cells were detected by NDA staining. As shown in
Figure 4C,F, the GSH concentration in the FFA treatment group dropped to 84.67 ± 3.60%
compared to the control group. P3G significantly increased the GSH concentration in cells
(Figure 4C,F). FFA treatment reduced the proportion of NDA-positive cells from 46.8%
(the control group) to 38.6%, as shown by the flow cytometry analysis results (Figure 4I).
NDA-positive cells increased to 55.7% (10 µM P3G), 64.9% (100 µM P3G), 71.6% (200 µM
P3G), and 73.6% (300 µM P3G) after intervention with different concentrations of P3G. The
level of oxidative stress induced by FFA in hepatocytes can be efficiently decreased by P3G.

3.3.2. P3G Enhances the Activities of SOD, GPx and CAT

As shown in Figure 4J–L, FFA significantly decreased the functions of GPx and
CAT in L02 cells (p > 0.05). SOD, GPx, and CAT activity in the 300 µM P3G treatment
group increased from 49.22 ± 3.56, 60.55 ± 4.08, and 31.92 ± 0.94 u/mg to 59.24 ± 0.88,
125.19 ± 13.11, and 84.01 ± 3.13 u/mg, respectively, when compared to FFA treatment.
P3G can reduce the level of oxidative stress caused by FFA by increasing the activities of
SOD, GPx, and CAT.

3.4. P3G Strengthened the Mitochondrial Function

Cell aging and apoptosis may result from the aberrant energy metabolism and mi-
tochondrial structure caused by oxidative stress [48]. In this work, the mitochondrial
membrane potential and mitochondrial mass of L02 cells were measured using JC-1 and
MitoTracker Green, respectively (Figure 5).

Figure 5A,D demonstrates that 0.5 mM FFA decreases the JC-1 fluorescence fusion
result from 100% in the control group to 68.36± 6.63% in the experimental group. In a dose-
dependent manner, P3G restored the decline in mitochondrial membrane potential. The
mitochondrial membrane potential rose with an increase in P3G concentration, reaching
values of 71.06 ± 4.27% (10 µM), 77.08 ± 6.71% (100 µM), 91.91 ± 4.85% (200 µM), and
96.12 ± 7.66% (300 µM). The results of the flow cytometry analysis showed that the FFA
group had a significantly lower red/green ratio than the control group, while P3G reversed
this trend (Figure 5A). After treatment with different concentrations of P3G, the percentage
of negative cells (cells with green fluorescence) was reduced to 27.0% (10 µM P3G), 14.4%
(100 µM P3G), 14.1% (200 µM P3G), and 12.8% (300 µM P3G). The mitochondrial membrane
potential induced by FFA in hepatocytes was effectively increased by P3G. The mass study
of mitochondria revealed the same conclusion. The fluorescence intensity of Mito-Tracker
Green increased following treatment with various doses of P3G, rising from 64.673.33%
(FFA) to 72.862.91% (100 µM P3G), 81.771.27% (200 µM P3G), and 97.420.43% (300 µM P3G)
(Figure 5B,E). The findings demonstrate that P3G can promote mitochondrial dysfunction
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caused by FFA. According to Figure S8, the ATP level in the FFA-treated group was
significantly lower than that in the control group (p < 0.01). When compared to the FFA-
treated group, intervention with different doses of P3G significantly reversed ATP levels in
FFA-exposed L02 cells (p < 0.05).
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Figure 4. The impact of P3G on the levels of ROS, superoxide anion free radicals, GSH, and antioxi-
dant enzyme activity in L02 cells. Following 0.5 mM FFA treatment, L02 cells were incubated with
P3G at several concentrations (10, 100, 200, and 300 µM) for 24 h. Cells were then stained using the
fluorescent probes DCFH-DA, DHE, and NDA after treatment. (A) DCF fluorescence image (×200);
(B) DHE fluorescence image (×200); (C) NDA fluorescence image (×200); (D) quantitative data of
panel (A), FFA-treated group was considered as 100%; (E) quantitative data of panel (B), control group
was considered as 100%; (F) quantitative data of panel (C); (G) FCM results of DCF staining; (H) FCM
results of DHE staining; (I) FCM results of NDA staining; (J) SOD activities; (K) GPx activities;
(L) CAT activities. (The control group was considered as 100%; # p < 0.05, ## p < 0.01 compared with
control; * p < 0.05, ** p < 0.01 vs. FFA-treated group).
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Figure 5. P3G’s effect on mitochondrial membrane potential, mitochondrial mass, lysosome level,
and the expression of lysosome-related proteins in L02 cells. (A) JC-1 fluorescent image (×200)
and FCM results of JC-1 staining (positive, cells with red fluorescence; negative, cells with green
fluorescence); (B) MitoTracker Green fluorescent image (×200); (C) LysoTracker Green fluorescence
image (×200); (D) quantitative data of panel (A); (E) quantitative data of panel (B); (F) quantitative
data of panel (C); (the control group was considered as 100%; # p < 0.05, ## p < 0.01 compared with
control; * p < 0.05, ** p < 0.01 vs. FFA-treated group). (G) Western blots of cellular cathepsin D, TFEB,
and LAMP1 proteins; (H) quantitative data of LAMP1; (I) quantitative data of TFEB; (J) quantitative
data of cathepsin D. The Western blots test was repeated 3 times and the image presented was typical
of these 3 independent tests. (The control group was considered as 1.0; # p < 0.05, ## p < 0.01 compared
with control; * p < 0.05, ** p < 0.01 vs. FFA-treated group).

3.5. P3G Enhances the Lysosomal Function

In rodents with NAFLD, the lysosomal function was inhibited [49]. The fluorescence
intensity of LysoTracker in the FFA-treated group reduced to 87.99 ± 1.03% compared
to the control, as illustrated in Figure 5C,F. The fluorescence intensity of Lyso Tracker
Green increased upon treatment with various doses of P3G, reaching 92.53 ± 1.58 (10 µM),
93.31 ± 3.73 (100 µM), 92.97 ± 1.63 (200 µM), and 101.21 ± 10.60% (300 µM).

Lysosome-associated membrane protein-1 (LAMP1) is one of the main protein com-
ponents on the lysosomal membrane [50,51]. The LAMP1 level in the FFA-treated L02
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cells reduced (0.67 ± 0.09) in comparison to the control group, according to the Western
blot results in Figure 5G,H, but P3G considerably increased the LAMP1 level. Following
treatment at different concentrations of P3G, the levels of LAMP1 increased to 0.81 ± 0.06
(10 µM), 1.15 ± 0.18 (100 µM), and 1.44 ± 0.26 (200 µM).

The majority of lysosomal hydrolases contain cathepsin D, which is a member of the
cathepsin protease family [52]. Studies have found that decreased liver cathepsin D levels
in patients with NFALD will affect lysosomal acidification, resulting in the accumulation of
lipids. The findings of the verification of the cathepsin D expression level are displayed
in Figure 5G,J. The results show that the expression level of cathepsin D increased to
1.08 ± 0.20 after treatment with 200 M P3G, almost matching the expression level in the
control cells. These results suggest that P3G intervention can boost lysosomal function,
up-regulate LAMP1 and cathepsin D expression, and promote lysosomal biosynthesis.

TFEB is the basic transcription factor helix-loop-helix leucine zip from the NITF fam-
ily [53]. TFEB is the main transcriptional regulator of autophagy and lysosomal biogenesis.
Overexpression of TFEB has been reported to produce improved autophagy, which in
turn helps to break down accumulated lipids in liver cells to treat various genetic and
dietary models of obesity and alcoholic liver disease [54–56]. In this work, we examined
whether P3G-induced lysosomal function in L02 cells involves TFEB. The expression of the
cytoplasmic TFEB protein decreased following FFA treatment (0.63 ± 0.04), as shown in
Figure 5G,I. The expression of TFEB in the cytoplasm further decreased after treatment with
300 µM P3G (0.19 ± 0.01), whereas the expression in the nucleus dramatically increased
(1.18 ± 0.05). P3G treatment did not significantly increase the expression of total TFEB in
cells but significantly promoted the translocation of TFEB to the nucleus.

3.6. P3G Reduces the Level of Inflammation in NAFLD

The rate of inflammation in NAFLD increases with the build-up of ROS [57–59].
Caspase-1 is an important target of inflammasomes, which in turn increases cytokines
such as interleukin-1β and tumor necrosis factor α (TNFα) and promotes the development
of inflammation in NAFLD. In rodent models of NAFLD, the development of hepatic
inflammation has also been associated with increased NF-κB activity [60]. In the NAFLD
model, increased stimulation of ROS promotes NF-κB expression and the development
of inflammation [61,62]. The inflammatory cytokines IL-1, IL-6, and TNF-α were tested
by ELISA, and the effects of FFA and P3G on the expression of caspase-1 and NF-B were
examined by Western blotting. The result is shown in Figure 6. FFA treatment significantly
increased the expression of caspase-1, reaching 1.80 ± 0.084 compared to the control group.
After 300 µM P3G treatment, the level of caspase-1 decreased to 0.85 ± 0.082 in comparison
with the control group. P3G significantly reduced the expression levels of activated NF-κB
to 1.24 ± 0.27 (100 µM), 0.83 ± 0.15 (200 µM), and 0.80 ± 0.06 (300 µM) (Figure 6). At the
same time, according to the results of Figure 6, P3G significantly reduced the production of
IL-6, TNF-α, and IL-1β and reduced the inflammation caused by FFA.

As a transcription factor, TFEB promotes the expression of PPARα [63]. We found
that P3G significantly promoted TFEB expression, which in turn ameliorated lysosomal
inhibition during NAFLD. Based on this finding, we further explored P3G’s effects on the
expression of PPARα and the peroxisomal genes CPT1A and ACOX1. Figure 7 demonstrates
that the expression of PPARα, ACOX1, and CPT1A, were downregulated in L02 cells treated
with FFAs. P3G upregulates the expression of PPARα protein and downstream target
proteins ACOX1 and CPT1A in a dose-dependent way (Figure 7), which in turn promotes
peroxisomal degradation of aberrantly accumulated fatty acids via β-oxidation. Yaoyao
Jia et al. found that cyanidin-3-O-glucoside, pelargonidin-3-O-glucoside, and delphinidin-
3-O-glucoside not only induce PPAR gene expression but also exert hypolipidaemic by
activating PPARα activity [64]. Based on these results, we postulated that there might
exist potential intermolecular interactions between PPARα and P3G; a molecular docking
analysis was therefore carried out. Figure 7C depicts the interactions between P3G and
PPARα amino acid residues. Hydrophobic interactions and hydrogen bonds are the main
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forces between P3G and PPARα. P3G forms hydrogen bonds with bond lengths of 3.2 and
3.9 Å with residues SER 280, ALA 333 of PPARα, respectively. P3G binds to THR 279, LEU
321, VAL 324, VAL 332, and ALA 333 of PPARα, respectively, to form σ–π bonds with bond
lengths of 3.9, 3.6, 3.7, 4.0, and 3.6 Å. The MD analysis showed that the number of hydrogen
bonds finally stabilized at 2 during the simulation, which was consistent with the docking
results (Figure 7D).
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Figure 6. Effect of P3G on the expression of inflammation-related proteins in L02 cells. Follow-
ing 0.5 mM FFA treatment, L02 cells were incubated with P3G at various doses (100, 200, and
300 µM) for 24 h. (A) Western blots of cellular caspase-1, NF-κB p65, and TFEB (Nuclents) proteins;
(B) quantitative data of caspase-1; (C) quantitative data of NF-κB p65; (D) quantitative data of TFEB
(Nuclents); (the Western blots test was repeated 3 times and the image presented was typical of these
3 independent tests. The control group was considered 1.0; # p < 0.05, ## p < 0.01 compared with
control; * p < 0.05, ** p < 0.01 vs. FFA-treated group). The amount of IL-1β (E), IL-6 (F), and TNF-α
(G) were determined according to the ELISA product instructions; (E) quantitative data of IL-1β;
(F) quantitative data of IL-6; (G) quantitative data of TNF-α. (Control group was considered as 1.0;
# p < 0.05, ## p < 0.01 compared with control; * p < 0.05, ** p < 0.01 vs. FFA-treated group.).
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Figure 7. P3G’s effects on the expression level of PPAR and associated enzymes, as well as the
result of their molecular docking. Following 0.5 mM FFA treatment, L02 cells were incubated with
P3G at various doses (100, 200, and 300 µM) for 24 h. (A) The mRNA level of PPARα, CPT1A,
and ACOX1 (Control group was considered as 1.0; ## p < 0.01 compared with control; * p < 0.05,
** p < 0.01 vs. FFA-treated group.); (B) the predicted binding complex of P3G and PPAR, P3G is
colored in yellow, hydrogen bonds are colored in blue, and π−σ hydrophobic interactions are colored
in gray; (C) with increasing simulation time, the amount of hydrogen bonds between P3G and PPAR
dynamically changes.

3.7. Molecular Dynamics

Molecular dynamics (MD) simulations supply elaborate information between proteins
and ligands at different time scales under simulated physiological conditions, which helps
us further understand the binding process [65]. As shown in Figure S9, the potential
energy, temperature, pressure, and density of PPARα and PPARα/P3G complexes reached
a steady state in a short time during the MD simulation. This result indicates that the
topology files of protein and ligand and the parameters implied in the MD simulation
process are reasonable.

To determine when the steady state will arrive and to verify the stability of the
simulation, the root mean square deviation (RMSD) is used [66]. Figure 8A demonstrates
that after 50 ns of simulation, free PPAR’s ultimate RMSD value is 0.2 nm. In contrast,
the RMSD value of the PPARα/P3G complex showed a relatively stable state at about
0.18 nm at the end of the simulation time. It may be due to the formation of hydrogen and
hydrophobic bonds between P3G and PPARα, which leads to a more stable conformation
of the complex. The root mean square fluctuations (RMSF) values were also calculated
for all residues on all time scales (Figure 8B). The remaining sites were comparatively
constant compared to free PPARα, with the exception of the significant fluctuations in
residues 300–400 in the complex system, indicating that P3G triggered flexible alterations
in PPARα residues 300–400. Interestingly, we found that the radius of gyration of the
complex was smaller than that of the free PPARα (Figure 8C), suggesting that the binding
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of P3G pushed the protein to become more compact. The binding of P3G also reduced the
solvent-accessible surface area (SASA) of the complex (Figure 8D). The radial distribution
function (RDF) is usually used to reveal the distribution density of ligands at a certain
distance (r) from the central atom of the protein [67]. Figure 8E shows the RDF of P3G with
a typical peak at 1 nm, representing the average distance between the central atom of the
protein and P3G, after which a sharp decrease in g(r) is noted when r(nm) is large. The
structural alterations in the protein and ligand before and after P3G’s binding to PPAR were
also looked at, along with changes in the Gibbs energy landscape profiles. The distinction
between PPARα and PPARα/P3G complexes before and after MD simulations is shown in
Figure 9A,B. Figure 9A,B indicate that, when P3G binds to PPARα, the structure protein
changes significantly in the P3G’s binding area. After the simulation, Figure 9C depicts
a sizable modification in the spatial structure of P3G. The change of PPARα with P3G
after MD simulation may be due to the stronger interaction between P3G and PPARα. The
change of PPARα and P3G after MD simulation may be due to the stronger interaction
between P3G and PPARα. The free energy shape of PPARα and PPARα/P3G complexes is
depicted in Figure 9D. (both 2D and 3D landscapes). Figure 9D shows that the free energy
distribution of PPARα/P3G is more concentrated than that of free PPARα, demonstrating
that P3G promotes the conformation of PPARα to become more compact and stable.
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Figure 9. The changes of structure and Gibbs energy landscape in PPARA and PPARA/P3G complex
before and after MD simulations. (A) Superimposition of the structures of PPARA pre-MD and
post-MD simulations, white arrows indicate structures that have changed before and after MD;
(B) superimposition of the structures of PPARA from PPARA/P3G complex pre-MD and post-MD
simulations, white arrows indicate structures that have changed before and after MD; (C) 3D binding
graph of P3G with PPARA and conformational changes of P3G; (D) the Gibbs energy landscape plot
obtained during 50 ns MD simulations for free PPARA and PPARA/P3G complex.

The secondary structures of the PPARα and PPARα/P3G complexes as well as Ra-
machandran plots were also examined. Figure S10 and Video S1 indicates how the distribu-
tion of PPARα’s secondary structures underwent a significant change after the binding of
P3G, particularly the secondary structure formed by the amino acid residues at positions
330–340. After P3G was included, the secondary structure of the amino acid residues at
positions 330 to 340 altered from S BEND to 3-Helix. The Ramachandran plot of ALA333
changed from 60◦, 60◦ (phi, psi angle) to −60◦, 120◦ (phi, psi angle) after combining with
P3G (Figure S10), and this shift promotes the formation of 3-Helix. 3-Helix may be more
advantageous than S-BEND for maintaining the structure of the protein [68]. Due to the
secondary structure transformation, the PPARα /P3G complex has a more compact confor-
mation compared to the free PPARα (the movie provided in the Supplementary Material
describes this process).

4. Discussion

The liver is essential for lipid metabolism [69]. When lipids accumulate, fats are
primarily stored as triglycerides in hepatocytes, resulting in steatosis, the main histological
feature of nonalcoholic fatty liver disease [70]. Anthocyanins are polar compounds found
in foods as glycosides and acylated glycosides that have a variety of health-promoting
properties. Many studies have previously reported that may have significant potential in
the prevention and treatment of NAFLD [71]. Anthocyanins from Bilberry, Cherry, and
Grape-Skin have been shown to improve lipid metabolism and reduce triglyceride levels in
the NAFLD model [72–74]. We isolated six anthocyanin components from purple corn cob
and tested their ability to interfere with NAFLD in this study. We discovered that P3G had
the greatest ability to improve NAFLD. The development of NAFLD and oxidative stress
are tightly connected [75]. When NAFLD occurs, lipid accumulation leads to mitochondrial
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DNA and protein abnormalities, resulting in abnormal electron transfer to form superoxide
or hydrogen peroxide [76]. The activities of GSH, CAT, and other antioxidant enzymes in
NAFLD patients are low, so ROS cannot be cleared in hepatocytes in time [77]. Therefore,
we investigated the effect of P3G on free radicals in LO2 cells. The findings demonstrated
that P3G is an effective free radical scavenger. This finding is consistent with the fact that
P3G exposure increases the activity of antioxidant enzymes such as SOD, GPx, and CAT in
cells. Anthocyanins from purple sweet potato and mulberry have been shown to reduce
ROS production, restore glutathione (GSH) and antioxidant enzyme activity, and protect
experimental mice from free radical-mediated endoplasmic reticulum stress [78,79].

Mitochondria are involved in the regulation of intracellular calcium levels, cellular
homeostasis, and ROS [80]. Mitochondrial dysfunction and an impaired mitochondrial
respiratory chain have been reported in NAFLD patients [81]. Oxidative stress causes
mitochondrial dysfunction and an impaired mitochondrial respiratory chain, which further
reduces cellular catabolism of lipids and energy supply [82]. This could hasten the progres-
sion of liver inflammation and NAFLD. Reducing mitochondrial dysfunction and restoring
the mitochondrial respiratory chain may be an effective way to treat NAFLD. This study
also confirmed that P3G, in a dose-dependent manner, reduces mitochondrial membrane
damage, improves mitochondrial information, and increases ATP supply in cells.

Lysosomes promote the degradation of polysaccharides, proteins, and lipids/free
fatty acids (FFA) [83]. Lysosomes can alleviate the lipid accumulation of hepatocytes by
selectively degrading triglycerides (TGs) and cholesterol [84]. Lysosomal inhibition occurs
during NAFLD, and genes involved in peroxisome biogenesis and lipid metabolism are
significantly downregulated following lysosomal inhibition [85]. Expression of PPARα
is significantly downregulated during NAFLD [86]. Peroxisome genes such as CPT1A
and ACOX1 are transcriptional targets of PPARα, and lysosomal repression, reduction
in peroxisome, and fatty acid metabolism-related enzyme activities are associated with
PPARα [85]. This study discovered that P3G intervention dramatically increased the
expression of the lysosomal markers LAMP1 and cathepsin D. In the meantime, P3G
might encourage TFEB’s nuclear translocation and promote the expression of PPARα. This
outcome is consistent with Yang Xu et al.’s findings [27]. The peroxisome’s CPT1 and
ACOX1 expression was further encouraged by increased PPARα expression. The results
of molecular docking and molecular dynamics assays showed that the major interactions
between P3G and PPAR are hydrogen bonds and hydrophobic contacts. The formation of
hydrogen bonds and hydrophobic forces between P3G and PPAR facilitates the modification
of PPARα’s secondary structure. The modification of the secondary structure may aid in
the stabilization of the P3G/ PPARα complex and may increase the activity of PPARα.

The variation in the OH part, the quantity and type of OH part methylation, the degree
of OH part methylation, and the binding position of these linkages all contribute to the
structural differences of anthocyanins [87]. In comparison to the other five acyl-containing
anthocyanins, the acyl-free P3G showed better effectiveness in improving NAFLD, accord-
ing to this study. In comparison to the other five acyl-containing anthocyanins, the acyl-free
P3G showed better effectiveness in reducing NAFLD, according to this study. Acylation
may improve anthocyanin stability in aqueous solution [88], but it may also impair antho-
cyanin biological activity. This could be related to anthocyanin catabolism in cells. The
investigation of the impact of acyl groups on the biological activity of anthocyanins will be
the primary focus of the following phase of research.

5. Conclusions

In this study, an established hepatocyte model was used to evaluate the effect of purple
corncob anthocyanin on NAFLD, in which P3G showed the potential to improve FFA-
induced NAFLD. Further studies found that P3G seems to reduce FFA-induced oxidative
stress by reducing mitochondrial damage, including the increase in ROS and superoxide
anion levels. P3G may enhance the function of lysosomes by regulating the translocation of
TFEB, so as to promote the degradation of lipid peroxide in hepatocytes and reduce the
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possibility of ROS production. P3G can also reduce caspase-1 and NF-κB expression to
alleviate the level of hepatocyte inflammation caused by FFA. P3G interacts with PPARA
primarily through hydrogen bonds and hydrophobic forces, according to the results of
molecular docking and MD simulation analysis. The interaction with P3G increases the
stability and compactness of the PPARA structure. P3G may upregulate the expression of
genes involved in the oxidative catabolism of fatty acids by activating PPARA in addition
to upregulating the expression of PPARA through TFEB, thereby reducing the aberrant
buildup of fatty acids. Our research enriches the understanding of the biological function of
purple corncob anthocyanins and provides ideas for the development of functional foods
to improve NAFLD.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu15020372/s1, Figure S1: High-performance liquid chromato
graphy–diode array detector (HPLC-DAD) (520 nm) chromatogram of a crude anthocyanin extract
from purple corn cob. serial numbers (1~6) correspond to peak numbers in Table 1; Figure S2:
Semi-HPLC-UV/Vis (520 nm) chromatogram of a purified anthocyanin extract; Figure S3: High-
performance liquid chromatography–diode array detector (HPLC-DAD) (520 nm) chromatogram of
purple corncob anthocyanin monomer, serial numbers (1~6) correspond to peak numbers in Table 1;
Figure S4: Effect of purple corncob anthocyanidins on FFAs-induced lipid accumulation in L02 cells
via Nile Red staining. P3G, peonidin-3-o-glucoside; C3M, cyanidin-3-(6′-malonylglucoside); C3S,
cyanidin 3-(6′′-succinyl-glucoside); C3D, cyanidin 3-o-3′′,6′′-o-dimalonylglucoside; P3M, peonidin
3-(6′′-malonyl-glucoside); Pg3D, pelargonidin 3-o-3′′,6′′-o-dimalonylglucoside. Figure S5: Effect of
purple corncob anthocyanidins on FFAs-induced lipid accumulation in L02 cells via Oil Red O staining.
P3G, peonidin-3-o-glucoside; C3M, cyanidin-3-(6′-malonylglucoside); C3S, cyanidin 3-(6′′-succinyl-
glucoside); C3D, cyanidin 3-o-3′′,6′′-o-dimalonylglucoside; P3M, peonidin 3-(6′′-malonyl-glucoside);
Pg3D, pelargonidin 3-o-3′′,6′′-o-dimalonylglucoside. Figure S6: The intracellular triglyceride contents
in L02 hepatic cells. Following 0.5 mM FFA treatment, L02 cells were incubated with P3G at several
concentrations (10, 100, 200, and 300 µM) for 24 h. Triglyceride contents were assayed by assay
kits as described in the text. Values were mean ± SD (n = 3) and expressed in mmol/L. (The
control group was considered as 100%; # p < 0.05, ## p < 0.01 com-pared with control; * p < 0.05,
** p < 0.01 vs. FFA-treated group.); Figure S7: The effect of purple corncob anthocyanin monomers
on the viability of L02 cells after treated by FFAs, control group was considered as 100%. (# p < 0.05
compared with control, * p < 0.05 vs. FFAs-treated alone). P3G, peonidin-3-o-glucoside; C3M,
cyanidin-3-(6′-malonylglucoside); C3S, cyanidin 3-(6′′-succinyl-glucoside); C3D, cyanidin 3-o-3′′,6′′-
o-dimalonylglucoside; P3M, peonidin 3-(6′′-malonyl-glucoside); Pg3D, pelargonidin 3-o-3′′,6′′-o-
dimalonylglucoside; Figure S8: The ATP contents in L02 hepatic cells. Following 0.5 mM FFA
treatment, L02 cells were incubated with P3G at several concentrations (10, 100, 200, and 300 µM)
for 24 h. ATP contents were assayed by assay kits as described in the text. Values were mean ± SD
(n = 3) and expressed in nmol/L. (The control group was considered as 100%; # p < 0.05, ## p < 0.01
com-pared with control; * p < 0.05, ** p < 0.01 vs. FFA-treated group.); Figure S9: Evaluation of MD
simulations. (A) The potential energy changes during energy minimization. (B) The temperature
changes during NVT simulation. Pressure (C) and density (D) changes during NPT simulation;
Figure S10: Ramachandran plot and secondary structure of PPARA and PPARA/P3G complex.
File S1: Raw western blot bands. Video S1: Dynamic trajectories of proteins and ligands during
the simulation.
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