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Abstract: Background: Targeting the gut microbiota may become a new therapeutic to prevent and
delay the progression of chronic kidney disease (CKD). Nonetheless, the causal relationship between
specific intestinal flora and CKD is still unclear. Materials and Method: To identify genetically pre-
dicted microbiota, we used summary data from genome-wide association studies on gut microbiota
in 18340 participants from 24 cohorts. Furthermore, we genetically predicted the causal relationship
between 211 gut microbiotas and six phenotypes (outcomes) (CKD, estimated glomerular filtration
rate (eGFR), urine albumin to creatinine ratio (UACR), dialysis, rapid progress to CKD, and rapid
decline of eGFR). Four Mendelian randomization (MR) methods, including inverse variance weighted
(IVW), MR-Egger, weighted median, and weighted mode were used to investigate the casual re-
lationship between gut microbiotas and various outcomes. The result of IVW was deemed as the
primary result. Then, Cochrane’s Q test, MR-Egger, and MR-PRESSO Global test were used to detect
heterogeneity and pleiotropy. The leave-one method was used for testing the stability of MR results
and Bonferroni-corrected was used to test the strength of the causal relationship between exposure
and outcome. Results: Through the MR analysis of 211 microbiotas and six clinical phenotypes, a
total of 36 intestinal microflora were found to be associated with various outcomes. Among them,
Class Bacteroidia (=−0.005, 95% CI: −0.001 to −0.008, p = 0.002) has a strong causality with lower
eGFR after the Bonferroni-corrected test, whereas phylum Actinobacteria (OR = 1.0009, 95%CI: 1.0003–
1.0015, p = 0.0024) has a strong causal relationship with dialysis. The Cochrane’s Q test reveals that
there is no significant heterogeneity between various single nucleotide polymorphisms. In addition,
no significant level of pleiotropy was found according to MR-Egger and MR-PRESSO Global tests.
Conclusions: Through the two-sample MR analysis, we identified the specific intestinal flora that
has a causal relationship with the incidence and progression of CKD at the level of gene prediction,
which may provide helpful biomarkers for early disease diagnosis and potential therapeutic targets
for CKD.

Keywords: chronic kidney disease; gut microbiota; renal function; mendelian randomization

1. Introduction

Chronic kidney disease (CKD) is a global health concern and affects nearly 700 million
patients in the world [1]. With the progression of CKD, the renal function persistently
declines, and renal replacement treatment is often necessary for patients going through
the end-stage of the disease (ESKD) [2,3], which has brought a heavy burden on social and
family medical expenditure [4]. In recent years, several new therapies have been found to
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delay the occurrence and progress of CKD [5,6]. Among them, hindering the progress of
CKD by intervening in the gut–kidney axis is becoming a new research trend [7]. The gut
microbiota, as the microorganisms regulating metabolism in the host intestine, also play
an important role in the regulation of local and systemic immunity of the host [8,9]. CKD
patients have certain micro-inflammatory states, and the disorder of intestinal flora will
aggravate the imbalance of the immune system and the production of pro-inflammatory cy-
tokines, leading to a systemic inflammatory response and further accelerating the progress
of CKD and cardiovascular disease [10,11]. Emerging evidence shows that CKD patients are
likely to have a certain degree of intestinal flora disorder [12,13]. As the disease progresses,
the buildup of urea and other waste products causes intestinal dysbiosis and inflammation
of the intestinal wall [14,15]. Some harmful metabolites (e.g., indoxyl sulfate, p-cresyl
sulfate, indole-3 acetic acid, trimethylamine N-oxide (TMAO), and phenylacetylglutamine)
produced by the disordered flora in turn will further aggravate the progress of CKD [16].
Therefore, the interactive dialogue based on the gut–kidney axis plays a primary role in the
progression of CKD.

In recent years, the medical community worldwide has been targeting intestinal flora to
regulate the incidence and progression of CKD [17,18]. Since there is an imbalance between
harmful bacteria and probiotics in the intestinal tract of CKD patients, the alteration of
intestinal flora may affect kidney injury and urinary toxin levels, a phenomenon that
has been proved by previous animal model studies [13,19]. Several studies based on the
stool of CKD patients for omics analysis also found that the alteration of gut bacteria was
related to the severity of CKD [20,21]. Nevertheless, these studies are mainly based on
observational cross-sectional analysis and cannot clarify the causal relationship. Mendelian
randomization (MR) integrates summary data from genome-wide association studies
(GWAS), minimizes the influence of confounding factors, and is often used to determine the
possible correlation between exposure factors and outcomes [22]. Therefore, our study aims
to investigate the causal relationship between specified gut microbiota, CKD, and renal
function, which may provide guidance for developing helpful biomarkers for noninvasive
diagnosis and potential therapeutic targets for CKD.

2. Method
2.1. Exposure and Outcome

This study considers a total of 211 intestinal microflora (131 genera, 35 families,
20 orders, 16 classes, and 9 phyla) with different attributes as exposure factors. There are
six phenotypes (prespecified outcomes) included, and four of them are primarily from
cross-sectional data: CKD (main outcome, defined as an estimated glomerular filtration rate
(eGFR) of less than 60 mL/min/1.73 m2), eGFR (eGFR was calculated by using creatinine
value according to CKD-EPI formula, and the results were analyzed by R software package
(Nephro) [23]), urine albumin to creatinine ratio (UACR), and dialysis. To better reflect the
dynamic impact of intestinal flora on CKD and renal function, we selected two additional
endpoints in the form of cohort studies: rapid decline of kidney function (Rapid3) (the eGFR
decreases by more than 3 mL/min/1.73 m2 per year), and rapid progress to CKD (CKDi25)
(defined as the decrease of eGFR ≥ 25% of baseline accompanied by the progression from
no CKD to CKD).

2.2. Data Source of Gut Microflora and Outcome

The full GWAS summary statistics towards the microbiota were derived primarily from
a large-scale multi-ethnic GWAS meta-analysis (MiBioGen Consortium, www.mibiogen.org
(accessed on 15 July 2022)) of 18,340 people from 24 cohorts which recorded 211 gut micro-
biota and 122,110 related single nucleotide polymorphis(SNPs) [24]. The summary statistics
of instrument variables for CKD were derived from a meta-analysis by the Chronic Kidney
Diseases Genetics Consortium (CKDGen Consortium) [25], which included 23 European
ancestry cohorts (n = 480,698; 41,395 patients and 439,303 controls). In addition, the GWAS
summary statistics of eGFR came from a meta-analysis [26], which included the data of the
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Chronic Kidney Disease Genetics (CKDGen) Consortium and UK Biobank (n = 1,201,909).
The data of UACR were derived from a meta-analysis, which recorded the summary data
of trans-ethnic (n = 564,257) and European-ancestry [27]. The summary statistics of Rapid3
(including 34,874 cases and 107,090 controls) and CKDi25 (encompassing 19,901 cases and
175,244 controls) were derived from a meta-analysis of 42 GWAS studies from the CKDGen
Consortium and United Kingdom Biobank [28]. The GWAS summary statistics of dialysis
were mainly extracted from UK Biobank (http://www.nealelab.is/uk-biobank, accessed
on 15 July 2022). The datasets of CKD, eGFR, UACR, Rapid3, and CKDi25 are available at
http://ckdgen.imbi.uni-freiburg.de/ (accessed on 15 July 2022). The profile of the included
literature has been placed in the Supplement Table S2.

2.3. The Selection of Instrumental Variables

First, the instrumental variables selected for analysis need to be strongly correlated
with exposure factors. To ensure sufficient instrumental variables screening, the SNPs with
a p-value less than the locus-wide significance level (1 × 10−5) were selected. Furthermore,
we excluded instrumental variables with F values (formula: (R2/(R2 − 1)) × ((N – K −
1)/K)) < 10 to ensure the strength of the association between instrumental variables and
exposure factors. Secondly, the selected instrumental variables need to meet the indepen-
dence test. To check the independence of these variables and the linkage disequilibrium
effect, we set the linkage disequilibrium parameter (R2) of SNP to 0.001 and the genetic
distance of 10,000 kb. Those with a MAF value of less than 0.01 are also excluded. Thirdly,
since instrumental variables are not related to outcomes when the p value (outcome) of
those variables was less than 0.05, they were excluded. The Phenoscanner [29] was used
to check the possible confounding factors (i.e., hypertension, heart disease, diabetes, etc.)
related to the instrumental variable, preventing such factors from interfering with the
impact of exposure on outcomes. The above selection of instrumental variables ensures the
reliability of our research results.

2.4. Mendelian Randomization Analysis

Inverse variance weighted (IVW), MR-Egger, weighted median, and weighted mode
were used to investigate the causal relationship between exposure factors and outcome.
IVW is a classic method that merges Wald ratio estimates of each instrumental variable
in a meta-analysis, which is equivalent to implementing a weighted linear regression of
the associations of the instrumental variables with the outcome. The intercept of the in-
strumental variables is constrained to zero. IVW is advantageous because it can obtain
unbiased estimates of the status without horizontal pleiotropy. Differently, the MR-Egger
method [30] is based on the assumption of InSIDE and mainly reflects the dose relation-
ship between instrumental variables and outcomes, taking into account a certain level
of pleiotropy. The weighted median method can reduce the occurrence of class 1 errors
and allows some genetic variants to be invalid. When most instrumental variables with
similar causal estimates are valid, the weighted mode approach is still credible even if
some instrumental variables do not meet the requirements of the MR method for causal
inference. If the outcomes of these methods are inconsistent, we prioritize to IVW as the
main result. In order to guarantee that each IV was associated with the same effect allele,
we harmonized the summary statistics, deleted SNPs with unclear strands (SNPs for A/T,
C/G alleles), and aligned the summary statistics. The palindromic SNPs were removed
to prevent the effect of alleles on the outcome of causality between gut microbiota taxa
and CKD.

MR-Egger and MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) tests were
used to test horizontal pleiotropy and outliers. MR-Egger was specifically applied to
preliminarily identify the existence of horizontal pleiotropy. If the p value was greater than
0.05, it showed that there was no significant horizontal pleiotropy. Compared with MR-
Egger, MR-PRESSO has higher accuracy and is useful in identifying horizontal pleiotropy
and outliers [31]. Subsequently, Conchrane’s Q test was used for testing heterogeneity
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among instrument variables. The leave-one-out sensitivity analysis was used to test the
outliers and the stability of the results. To obtain a more rigorous interpretation of the
causal relationship, we also use the Bonferroni-corrected, according to the number of
bacteria under each attribute (genera: 0.05/131 (3.81 × 10−4), families: 0.05/35 (1.4 × 10−3),
orders: 0.05/20 (2.5 × 10−3), classes: 0.05/16 (3.1 × 10−3), and phyla: 0.05/9 (5.5 × 10−3).
In addition, we conducted a sensitivity analysis using a fixed effects model to verify the
reliability of the results. A reverse causality analysis is also conducted to examine the
reverse causal association. The p value between 0.05 and the corrected value is considered
to have a nominal causal effect. The STROBE-MR guideline was used to guide the design
of this study [32]. The statistical analyses were performed using R software version 4.1.2
(https://www.rproject.org/, accessed on 15 July 2022).

3. Result
3.1. The Selection of Instrumental Variables

We screened the instrumental variables of 211 bacteria separately. A total of 14,587 in-
strumental variables achieved the locus-wide significance level (p < 1 × 10−5). After
removing the linkage disequilibrium effect for specific flora, 3678 instrumental variables
were retained. After eliminating the variables that are weakly related to exposure factors
(F < 10, n = 17) and those that may be associated with confounding factors of outcomes
(n = 30), a total of 3631 instrumental variables from 211 flora were finally included in the
analysis.

3.2. Two Samples MR Analysis
3.2.1. CKD

This study identified nine causal relationships between the gut microbiota and the
risk of developing CKD (Figure 1). A higher genetically predicted Class Bacteroidia, Family
FamilyXIII, Genus Coprococcus, Genus LachnospiraceaeUCG010, Gene Ruminococcus1, and Order
Bacteroidales were associated with a higher risk of CKD. Differently, Class Deltaproteobacteria,
Family Lachnospiraceae, as well as Genus Streptococcus were associated with a lower risk. The
MR-Egger and MR-PRESSO tests (Supplement Table S1) showed that there is no horizontal
pleiotropy or outliers (p > 0.05). Furthermore, results from Cochrane’s Q test (Supplement
Table S1) showed that no obvious heterogeneity was found in the selected SNPs (p > 0.05).
Nonetheless, the leave-one-out method (Supplement Figure S9) demonstrated that some
single SNPs might dominate the positive results of the above-exposed microbiota.

3.2.2. eGFR

Nine causal relationships were found according to IVW analysis (Figure 1). A higher
genetically predicted Genus LachnospiraceaeUG001, Order Bacteroidales, and Phylum Bac-
teroidetes were associated with a decrease in eGFR. While Class Deltaproteobacteria, Family
Pasteurellaceae, Genus Anaerofilum, Order Clostridiales, and Order Pasteurellales were associ-
ated with an increase in eGFR. MR-Egger and MR-PRESSO tests (Supplement Table S1)
showed that there is no horizontal pleiotropy or outliers (p > 0.05). Furthermore, no obvious
heterogeneity was found according to results from Cochrane’s Q test (Supplement Table
S1) (p > 0.05). In addition, the leave-one-out method (Supplement Figure S10) showed that
except for Class Bacteroidia, Class Deltaproteobacteria, and Family Pasteurellaceae, some single
SNPs might dominate the positive results.

https://www.rproject.org/
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Figure 1. Forest plots of estimates identified with inverse variance weighted. (A) Chronic kidney dis-
ease, (B) CKDi25 (defined as the decrease in eGFR ≥ 25% of baseline accompanied by the progression
from no CKD to CKD), (C) eGFR (estimated glomerular filtration rate), (D) Rapid3 (eGFR decreases
by more than 3 mL/min/1.73 m2 per year), (E) Dialysis, (F) UACR (urine albumin to creatinine ratio).

3.2.3. UACR

Between UACR, a causal correlation was found only in five microbiotas. A higher
genetically predicted Class Lentisphaeria, Genus Parasutterella, Order Pasteurellales, and Or-
der Lactobacillales were associated with an increase in proteinuria (Figure 1), while Order
Rhodospirillales was associated with the decrease in proteinuria. No horizontal pleiotropy
and outliers were seen according to the results of the MR-Egger and MR-PRESSO tests
(Supplement Table S1) (p > 0.05). The outcomes from Cochrane’s Q test revealed no sig-
nificant heterogeneity (Supplement Table S1) (p > 0.05). Finally, the leave-one-out method
(Supplement Figure S11) pointed out that only Genus Parasutterella achieved stable results
after excluding the SNP one by one.

3.2.4. Dialysis

A higher genetically predicted Genus Anaerofilum was associated with a lower risk
of dialysis, while the Phylum Actinobacteria was associated with a higher risk of dialysis.
Furthermore, the outcomes from MR-Egger and MR-PRESSO tests (Supplement Table S1)
confirmed that there is no horizontal pleiotropy (p > 0.05) and the outcomes from Cochrane’s
Q test (Supplement Table S1) demonstrated that there is no obvious heterogeneity among
the selected SNPs (p > 0.05). Also, no single outlier of SNP was identified after applying
the leave-one-out method (Supplement Figure S12).
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3.2.5. CKDi25

Genetically predicted five microbiotas (Figure 1) were associated with an increased
risk of CKDi25, including Class Bacteroidia, Order Desulfovibrionales, Genus Actinomyces,
Genus DefluviitaleaceaeUCG011, and Family Defluviitaleaceae. Four microbiotas were associ-
ated with reduced risk of CKDi25, specifically Genus Butyricimonas, Genus Streptococcus,
Class Gammaproteobacteria, and Class Deltaproteobacteria. MR-Egger and MR-PRESSO tests
(Supplement Table S1) showed that there is no horizontal pleiotropy (p > 0.05) and, again,
no obvious heterogeneity was found according to Cochrane’s Q test (Supplement Table
S1) (p > 0.05). The leave-one-out method showed that except for Genus Butyricimonas, there
may be some bias in other genetic predictions (Supplement Figure S13).

3.2.6. Rapid3

A higher genetically predicted (Figure 1) Genus Terrisporobacter was associated with
increased risk of Rapid3. Oppositely, Genus Christensenellaceae was associated with reduce
risk of Rapid3. No significant heterogeneity and horizontal pleiotropy were found ac-
cording to Cochrane’s Q, MR-Egger, and MR-PRESSO tests (Supplement Table S1). After
removing the SNP one by one, the results remained stable (Supplement Figure S14).

3.3. Bonferroni-Corrected Test, Sensitivity Analysis, and Reverse Analysis

Results from the Bonferroni-corrected test revealed that a higher level of Class Bac-
teroidia retains a strong causal relationship with lower eGFR (β = −0.005, 95% CI: −0.001 to
−0.008, p = 0.002), whereas a higher level of Phylum Actinobacteria retains a strong causal
relationship with dialysis (OR = 1.0009, 95%CI: 1.0003–1.0015, p = 0.0024). Figure 2 showed
the causal relationship between intestinal flora and various outcomes. After using the
fixed effect model for the sensitivity analysis, the research results remained unchanged
(Supplement Table S3). Reverse analysis (Supplement Table S4) demonstrates that CKD
may lead to a higher rate of Class Bacteroidia (p = 0.03), but we did not observe a clear
association for other microbiota. (p > 0.05).

Figure 2. Significant and nominally significant links between kidney disease and intestinal bacteria.
Abbreviation: CKD—chronic kidney disease, eGFR—estimated glomerular filtration rate, and UACR—
urine albumin to creatinine ratio.

4. Discussion

To the best of our knowledge, our study is the first large-scale comprehensive MR
study that investigates the causality between intestinal microorganisms, CKD, and renal
function at the level of gene prediction. Previous studies which investigated the association
between intestinal flora and CKD were mainly conducted with animal models [12]. Several
studies collected the feces of CKD patients, and the results obtained via omics analysis were
based on the cross-sectional level, hence failing to explain the causal relationship between
specific colonies causing CKD and renal function decline [20,21]. On the other hand, our
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study is based on new and large GWAS data and employs a gene prediction method
to determine the relationship between specific flora and the occurrence and progression
of CKD. Therefore, the results obtained are more authentic and have a reliable causal
interpretation effect, which may provide some guidance for the future treatment of CKD
by targeting specific gut microbiota.

In our study, we identified a total of 36 microflora that are associated with CKD and
the progression of kidney function, and a strong causal relationship was identified in two
of them. Class Bacteroidia (β = −0.005, 95% CI: −0.001 to −0.008, p = 0.0028) was associated
with a lower level of eGFR, and Phylum Actinobacteria (OR = 1.009, 95%CI: 1.003–1.006,
p = 0.002) was associated with dialysis. Reverse causality analysis revealed that CKD could
also contribute to the increase of Bacteroidia, which suggests that the bacteria and CKD
may interact with each other. In previous studies, Bacteroidia, as an obligate anaerobic
gram-negative bacterium, has been reported many times to be related to the severity of
CKD [33,34]. Bacteroidia have a gene that encodes a tryptophanase–tyrosine phenol-lyase
that plays an important role in the production and accumulation of uremic toxins [34]. In
a mouse nephrectomy CKD model, the accumulation of toxin levels was associated with
the increased abundance of Bacteroides [35]. A study involving only Chinese individuals
showed that, in patients with ESKD, the Prevotella dominant microbiota was decreased,
and there was an accumulation of Bacteroidia [36]. We hypothesized that Bacteroidia
caused the release of inflammatory mediators by producing corresponding toxins (e.g.,
indoxyl sulfate, TMAO, etc.) and accumulating in the blood circulation. These toxins and
inflammatory mediators have been shown to be involved in the activation of the RAAS
system [37], changes in the tissue microenvironment [38], and other pathways, which
ultimately lead to the burden and damage of the kidney [39]. It is important to note that
this buildup of toxins should result in various organ damage, not just the kidney. We can’t
yet demonstrate the underlying mechanism because the goal of our research focuses on
correlation analysis. Future studies on mechanism interpretation are required.

Our study based on genetic prediction found that there was a strong causal rela-
tionship between Class Bacteroidia and the decline of renal function. Interestingly, poten-
tial associations of Class Bacteroidia with CKD (OR: 1.13, 95%CI: 1.02–1.25, p = 0.02) and
CKDi25(OR = 1.16, 95%CI: 1.00–1.35, p = 0.045) were also found, which seems to indicate
that Bacteroides plays a crucial role in the occurrence and progression of CKD. Combined
with the results of previous studies, targeted regulation of bacterial richness seems to be a
new method to delay the progression of CKD. As a gram-positive prokaryotic microorgan-
ism, actinomycetes are still part of many discussions in the scholarly community regarding
their association with CKD. Li et al. carried out 16S ribosomal DNA pyrosequencing on
stool microbiota samples from patients with CKD and found that the abundance of actino-
mycetes was lower in the CKD group [40]; however, most related studies reveal opposite
results. Al-Asmakh et al. demonstrated that the abundance of actinomycetes was increased
in the intestinal tract of CKD rats [41]. Liu et al. revealed that the abundance of actino-
mycetes was increased in the fecal samples of CKD patients [42]. Vaziri et al. conducted a
study with dialysis patients and reported that the abundance of actinomycetes increased in
those with end-stage renal disease [12]. Our research confirmed that actinomycetes have
a strong causal correlation with dialysis. Nonetheless, there is no relationship between
CKD phenotypes and renal function. We are not sure whether this is due to the abundance
of actinomycetes mainly increasing in more severe CKD stages (such as ESKD or those
undergoing renal replacement treatment). Hence, we suggest that future studies focus on
the association of actinomycetes with the severity of CKD.

It is worth noting that there is a possibility of a false negative for the Bonferroni-
corrected test. Our study revealed that some microbiotas (e.g., Class Deltaproteobacteria,
Genus Streptococcus, Genus Anaerofilum, and Order Bacteroidales) are commonly associated
with various phenotypes. However, these correlations disappeared after the Bonferroni-
corrected test. Similar to this, there are significantly less encouraging results when em-
ploying alternative MR-Egger approaches. We suppose that this may due to the crosstalk
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between intestinal and renal axes is often coordinated by multiple factors. The role of single
microbiota in causing disease may not be as important as previously believed. Instead, a
number of microorganisms could be coordinating and causing the disorders. It is commonly
known that many bacteria participate in the regulation of kidney and intestinal patho-
physiology [43]. These microorganisms, which have a nominal causality with multiple
phenotypes, may also take part in the key dialogue between gut and kidney. Understanding
the pathophysiology of the interactions between these microbiotas and kidney diseases
can help us better comprehend the intricate mechanism of intestinal renal crosstalk and
provide us with guidelines for the further development of targeted multi-flora drugs in the
future.

Some mechanisms seem to preliminarily explain the relationship between intestinal
flora and kidney disease. For instance, the gut microbial metabolites p-cresyl sulfate and
indoxyl sulfate accumulation in the circulation results in increased intestinal permeabil-
ity [15], and the systemic inflammation in blood vessels, endothelial dysfunction [44],
insulin resistance [45], and activation of the renin–angiotensin–aldosterone system [46],
may induce or aggravate the progress of CKD. Furthermore, it was previously verified that
metabolic wastes and toxins in CKD patients further stimulate the disorder of the intestinal
environment, forming a vicious cycle [10]. In addition, there is evidence that the harmful
metabolites of disordered intestinal flora will stimulate the autonomic nervous system
and then cause the excitation of sympathetic nerves, forming a vicious cycle between the
brain–gut–kidney axis [47,48]. Complementarily, some studies proved that continuous
sympathetic excitation would further promote the activation of the inflammatory system,
inhibiting the repair of the kidney by pluripotent stem cells [45] and consequently causing
common episodes of hypertension that can lead to abnormal renal perfusion [49]. Related
studies also found that the transplantation of sterile fecal filtrate containing specific bacteria
may degrade these metabolic wastes and improve renal injury and fibrosis in mice [20],
which suggests that targeting specific intestinal flora may be a potential therapeutic target
in CKD.

It is equally important to acknowledge the limitations of our study. First, the mi-
crobiome is an exposure phenotype limitedly explained by genotype, which mean that
the robust calculation for Mendelian randomization statistical power would be too strict.
Second, since the MR analysis is based on untestable assumption, further experimental and
clinical validation study is crucial to test the clinical significance of microbial species. Third,
although we set up two authors to check independently, there may still be some bias owing
to subjective factors when using phenoscanner to remove the confounding influences of
gene variables, so the interpretation of the research results still needs to be cautious. Last
but not least, we used the alternative endpoint in our study, and there is no hard endpoint.
The interpretation of the alternative endpoint is not as strong as the hard endpoint outcome,
so it is necessary to carry out MR studies on compound hard endpoint in the future.

5. Conclusions

Through Mendelian randomization analysis of the causal relationship between 211 in-
testinal microflora and six phenotypes, we identified 34 nominal causalities and 2 strong
causal associations. Among them, Class Bacteroidia is strongly associated with lower eGFR,
while Phylum Actinomycetes are strongly associated with dialysis. Our research identifies
specific microbiota using genetic prediction, which may provide helpful biomarkers for
early disease diagnosis and potential therapeutic targets for CKD.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu15020360/s1, Table S1. Mendelian randomized outliers and
level pleiotropy test of exposure and outcome; Table S2. Summary presentation of included studies;
Table S3. Sensitivity analysis for CKD (fix effect model); Table S4. Reverse causal analysis of CKD
on gut microbiota; Figure S1. MR-Rgger analysis of causal effect between exposure microbiotas and
various outcomes; Figure S2. Weight mean analysis of causal effect between exposure microbiotas
and various outcomes; Figure S3. Scatter plots of significant and nominal significant estimates
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from genetically predicted microbiotas on CKD; Figure S4. Scatter plots of significant and nominal
significant estimates from genetically predicted microbiotas on eGFR; Figure S5. Scatter plots of
significant and nominal significant estimates from genetically predicted microbiotas on UACR;
Figure S6. Scatter plots of significant and nominal significant estimates from genetically predicted
microbiotas on dialysis; Figure S7. Scatter plots of significant and nominal significant estimates from
genetically predicted microbiotas on CKDi25; Figure S8. Scatter plots of significant and nominal
significant estimates from genetically predicted microbiotas on Rapid3; Figure S9. Leave-one-out
plots of significant and nominal significant estimates from genetically predicted microbiotas on CKD;
Figure S10. Leave-one-out plots of significant and nominal significant estimates from genetically
predicted microbiotas on eGFR; Figure S11. Leave-one-out plots of significant and nominal significant
estimates from genetically predicted microbiotas on UACR; Figure S12. Leave-one-out plots of
significant and nominal significant estimates from genetically predicted microbiotas on dialysis;
Figure S13. Leave-one-out plots of significant and nominal significant estimates from genetically
predicted microbiotas on CKDi25; Figure S14. Leave-one-out plots of significant and nominal
significant estimates from genetically predicted microbiotas on Rapid3; Figure S15. Funnel plots
of significant and nominal significant estimates from genetically predicted microbiotas on CKD;
Figure S16. Funnel plots of significant and nominal significant estimates from genetically predicted
microbiotas on eGFR; Figure S17. Funnel plots of significant and nominal significant estimates from
genetically predicted microbiotas on UACR; Figure S18. Funnel plots of significant and nominal
significant estimates from genetically predicted microbiotas on dialysis; Figure S19. Funnel plots
of significant and nominal significant estimates from genetically predicted microbiotas on CKDi25;
Figure S20. Funnel plots of significant and nominal significant estimates from genetically predicted
microbiotas on Rapid3.
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