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Abstract: Breastfeeding is the gold standard for early nutrition. Metabolites from the one-carbon
metabolism pool are crucial for infant development. The aim of this study is to compare the breast-
milk one-carbon metabolic profile to other biofluids where these metabolites are present, including
cord and adult blood plasma as well as cerebrospinal fluid. Breast milk (n = 142), cord blood plasma
(n = 23), maternal plasma (n = 28), aging adult plasma (n = 91), cerebrospinal fluid (n = 92), and
infant milk formula (n = 11) samples were analyzed by LC-MS/MS to quantify choline, betaine,
methionine, S-adenosylmethionine, S-adenosylhomocysteine, total homocysteine, and cystathionine.
Differences between groups were visualized by principal component analysis and analyzed by
Kruskal–Wallis test. Correlation analysis was performed between one-carbon metabolites in human
breast milk. Principal component analysis based on these metabolites separated breast milk samples
from other biofluids. The S-adenosylmethionine (SAM) concentration was significantly higher in
breast milk compared to the other biofluids and was absent in infant milk formulas. Despite many
significant correlations between metabolites in one-carbon metabolism, there were no significant
correlations between SAM and methionine or total homocysteine. Together, our data indicate a high
concentration of SAM in breast milk, which may suggest a strong demand for this metabolite during
infant early growth while its absence in infant milk formulas may indicate the inadequacy of this
vital metabolic nutrient.

Keywords: breast milk; breastfeeding; milk formula; one-carbon metabolism; S-adenosylmethionine

1. Introduction

The composition of breast milk has elegantly evolved to meet the specific require-
ments of developing organisms. From nutrients to hormones to immune system compo-
nents, oligosaccharides, and specific microorganisms, breast milk contains a wide range
of molecules that serve as the unique nutritional source required for healthy growth and
development [1]. When breastfeeding is not feasible, milk substitutes have been developed
to meet the nutritional requirements of infants. However, the optimal composition to
promote healthy infant growth may require further refinement. Compared to artificial milk
formula use, breastfeeding has been consistently associated with a lower risk of infections,
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diarrhea, allergies, or obesity [1,2]. Consequently, exclusive breastfeeding during the first
6 months of age is strongly recommended by major public health agencies including the
World Health Organization [1,3].

Among the milk bioactive molecules, metabolites from the one-carbon metabolism
pool are important nutrients for infant development and participate in crucial physiologic
processes (Figure 1) [4,5]. For instance, breast milk is a rich source of choline, an essential
nutrient for infant development [6,7]. Choline is used as a substrate in several important
reactions, including neurotransmitter and phosphatidylcholine biosynthesis, or can also be
oxidized to betaine. In mammals, betaine is primarily metabolized in the liver, where it can
transfer a methyl group to homocysteine to synthesize methionine. Subsequent enzymatic
reactions convert methionine into S-adenosylmethionine (SAM), S-adenosylhomocysteine
(SAH), and homocysteine in the so-called methionine cycle (Figure 1; for review, see [8]).
SAM is an important metabolite that participates in multiple critical reactions for infant
development, including phosphatidylcholine, polyamine, and carnitine biosynthesis, or
DNA and protein methylation [8]. SAM is also available in several countries as an over-the-
counter dietary supplement, which is supported by numerous clinical trials indicating its
efficacy in the treatment of a wide range of conditions, including depression [9,10], hepatic
disorders [11,12], and osteoarthritis [13,14].
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Figure 1. Schematic representation of one-carbon metabolism-associated pathways. CHO, choline;
BET, betaine; MET, methionine, SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine; CYS,
cystathionine; HCY, homocysteine.

We recently performed one-carbon metabolite profiling in human milk samples from
two independent cohorts [15]. In this study, we observed remarkably high concentrations
of SAM in this biofluid compared to levels reported in plasma in the literature [16,17].
Given the lack of previous reports of the SAM content in breast milk and the fundamental
role that SAM plays in cellular biology, we sought to compare levels of metabolites related
to one-carbon metabolism, with a focus on SAM, in human breast milk with other biofluids
where these metabolites are present, including cord blood, maternal plasma, healthy aging
adult plasma, and cerebrospinal fluid (CSF). In addition to the biofluids, we tested several
infant milk formulas as possible sources of one-carbon nutrients in formula-fed infants.
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2. Materials and Methods
2.1. Study Design

Human samples used in the present study originated from previous studies: (1) breast
milk samples from two independent cohorts (34 samples were from the US-based MILK
study and 109 samples from the European-based MAMI cohort) were obtained at 1 month
after birth [15,18]; (2) maternal and cord blood plasma (n = 28 and n = 23, respectively) were
obtained at delivery from the MAMI cohort [18]; (3) blood plasma and CSF (n = 91 and
n = 92, respectively) from cognitively normal adults were obtained from longitudinal
studies of healthy aging and dementia at the Knight Alzheimer’s Disease Research Center at
Washington University in St. Louis, MO, USA. Demographic characteristics of participants
are reported in Supplementary Table S1. All samples were from normal healthy individuals.
The studies were conducted in accordance with the Declaration of Helsinki, the protocols
were approved by the corresponding official institutional review board, and informed
consent was obtained from all participants. Milk formulas (n = 11) were commercially
available (seven purchased from local stores in the US and four obtained from different
pharmacies in Spain). All milk formulas were suitable for newborn infants (milk formulas
appropriate for infants between 0 and 6 months of age).

2.2. Metabolite Analysis

All biofluid samples were stored at −80 ◦C until analysis. Eleven commercially avail-
able milk formulas for infants younger than 6 months were analyzed in triplicate. Choline,
betaine, methionine, SAM, SAH, and cystathionine were determined by liquid chromatog-
raphy coupled with mass spectrometry (LC-MS/MS) as previously described [17]. This
analysis in human breast milk samples had been previously reported [15]. Briefly, breast
milk samples were processed by ultrafiltration utilizing the microcentrifugal filter units
Microcon YM-10 and 10 kDa NMWL (Millipore, Burlington, MA, USA) prior to LC-MS/MS
analysis. For formula milk, each product was weighed and dissolved in the corresponding
volume of distilled water following the manufacturer’s instructions. When the milk powder
was added to the solution, it was further diluted for metabolite determination, and an
aliquot of 50 µL was used for LC-MS/MS analysis of metabolites as described for breast
milk samples. The total homocysteine (tHCY) was measured by HPLC-fluorescence in CSF
as previously described [19] and by LC-MS/MS in breast milk and plasma samples [16].
Briefly, samples were prepared by adding 10 µL of breast milk, plasma, or standards to
120 µL of internal standard solution (containing d4-homocysteine in 4 mM of dithiothreitol
dissolved in distilled water). After incubation at room temperature for 30 min, samples were
deproteinized with 200 µL acetonitrile and 0.1% formic acid and centrifuged at 1400 rpm
for 5 min. Samples were analyzed following the injection of 10 µL of extract on a Synergi
Hydro 4 µ 150 × 3 mm (Phenomenex), maintained at 40 ◦C, and eluted in a gradient with
buffer A (100% water, 0.5% formic acid and 0.25% heptafluorobutyric acid) and buffer B
(100% acetonitrile, 0.5% formic acid 0.25% heptafluorobutyric acid). The flow rate was
0.5 mL/min, with a step-wise gradient over a total run time of 10 min. Mass spectrometry
was performed on a 5500 QTrap (Sciex, Framingham, MA, USA), and the observed (m/z)
values of the fragment ions were homocysteine (m/z 136 → 90) and d4-homocysteine
(m/z 140→ 94). All data were collected and processed using Analyst software v1.4.2 (Sciex,
Framingham, MA, USA). The coefficient of variation for all metabolites between assays
had a range of 6.2–17.8%. The limits of detection and calibration curves are reported in
Table S2. One milk sample was identified as an outlier due to a high tHCY concentration
(20.5 µmol/L) and removed from the analysis.

2.3. Statistical Analysis

Unless otherwise stated, descriptive data are shown as the median and interquartile
range. Data normality was assessed with the Shapiro–Wilk test. Data were log-transformed
before principal component analysis (PCA) was performed. Differences between groups
were assessed with the non-parametric Kruskal–Wallis test and post hoc Dunn method, with
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Bonferroni correction to account for multiple comparisons. The correlation of one-carbon
metabolites in human breast milk was performed on log-transformed concentration data
using the REML method to calculate the intra-class correlation between each metabolite.
Correlations are reported as the Pearson correlation coefficient with the corresponding
p-value. A two-tailed p-value below 0.05 was considered statistically significant. Statistical
analyses were performed in JMPv16 (SAS Institute Inc., Cary, NC, USA).

3. Results

Absolute concentrations for the one-carbon metabolites in the different biofluids
are shown in Table 1. The PCA score plot based on the seven metabolites analyzed
showed a clear separation of milk samples from other biofluids, with the different types of
plasma samples (cord blood, maternal, and healthy aging adult plasma) clustering together
(Figure 2A). To compare metabolite concentrations across biofluids, we used maternal
plasma median values as a reference. The SAM content was strikingly elevated in breast
milk, reaching a median concentration of 1830 nmol/L (Table 1), 44-fold higher than ma-
ternal plasma values (median concentration of 42 nmol/L, Table 1 and Figure 2B). In
comparison, the SAM concentration in cord blood, aging adult plasma, and CSF was 1.3-,
1.4-, and 3.7-fold higher, respectively, compared to maternal plasma (Table 1, Figure 2B).
Choline and SAH concentrations were also higher in breast milk (10.5- and 6.4-fold, re-
spectively) compared to maternal plasma (Table 1). Conversely, the betaine, methionine,
cystathionine, and homocysteine concentrations were 0.3-, 0.2-, 0.5-, and 0.1-fold lower,
respectively (Table 1). Notably, SAM was undetected in all of the infant milk formulas
analyzed, while other metabolites, especially choline and methionine, were present at
higher concentrations than in human breast milk (Table 1).
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Figure 2. One−carbon metabolite profiling in biofluids and milk formula. One-carbon metabolite
concentrations were measured in breast milk (purple, n = 142), cord blood plasma (red, n = 23),
maternal plasma (green, n = 28), aging adult plasma (blue, n = 91), CSF (orange, n = 92), and milk
formula (n = 11). (A) PCA score plot based on metabolite concentrations in the different biofluids;
shaded areas show 95% confidence regions. (B) Boxplot of SAM concentration in biofluids and milk
formula relative to the median values for the maternal plasma samples shown with logarithmic
Y-axis. Kruskal–Wallis test with post hoc Dunn method was applied; groups not connected by the
same letter show statistical differences (p < 0.05). CHO, choline; BET, betaine; MET, methionine, SAM,
S-adenosylmethionine; SAH, S-adenosylhomocysteine; CYS, cystathionine; tHCY, total homocysteine;
CSF, cerebrospinal fluid; N.D., not detected.
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Table 1. One-carbon metabolite concentrations in biofluids and milk formula.

Breast Milk
(n = 142)

Maternal
Plasma
(n = 28)

Cord Plasma
(n = 23)

Adult
Plasma
(n = 91)

Cerebrospinal
Fluid

(n = 92)

Milk
Formula
(n = 11)

p Value

CHO, µmol/L 123.5 (92.8) a 11.8 (4.2) b 56.8 (36.0) a,b 7.1 (2.2) b 2.7 (1.0) c 1510 (208) d <0.0001
BET, µmol/L 3.6 (3.2) a 12.2 (5.5) b 30.9 (16.7) b,c 35.9 (14.8) c 1.9 (0.6) d 16.0 (15.7) a,b <0.0001
MET, µmol/L 4.2 (2.1) a 21.4 (8.6) b,c 31.0 (5.7) b 21.1 (4.5) b,c 3.2 (1.0) d 272 (358) c <0.0001
SAM, nmol/L 1830 (805) a 42 (16) b,c 56 (86) b,c 59 (16) b 154 (29) d <0.1 c <0.0001
SAH, nmol/L 263 (192) a 41 (14) b 43 (39) b,c 26 (8) b,c 10 (6) d 18.6 (27.7) c,d <0.0001
tHCY, µmol/L * 0.27 (0.15) a 7.38 (2.60) b 7.05 (2.03) b 5.70 (2.90) b 0.09 (0.03) c N.A. <0.0001
CYS, µmol/L 91 (91) a 199 (107) b 334 (187) b 105 (61) a 43 (20) c 20.9 (11.3) c <0.0001

Data are shown as median (interquartile range). Differences between groups were assessed with the Kruskal–Wallis
test with the post hoc Dunn method; groups not connected by the same letter show statistical differences (p < 0.05).
CHO, choline; BET, betaine; MET, methionine, SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine; CYS,
cystathionine; tHCY, total homocysteine. *, data from 138 breast milk samples; N.A., not analyzed. CHO, BET,
MET, SAM, SAH, and CYS concentrations in breast milk were previously reported in reference [15].

Multivariate correlation coefficients between each metabolite in human breast milk
and the corresponding probability values are shown in Table 2. As may be expected,
many metabolites are significantly correlated in the one-carbon metabolism pathway. Of
interest is the absence of a significant correlation between SAM and its substrate precursor
metabolite methionine and demethylated metabolite tHCY.

Table 2. One-carbon metabolite correlations in breast milk samples.

CHO BET MET SAM SAH CYS tHCY

CHO 1
BET 0.58 (<0.001) 1
MET 0.43 (<0.001) 0.25 (0.003) 1
SAM 0.01 (0.904) −0.18 (0.035) 0.02 (0.851) 1
SAH 0.25 (0.003) 0.45 (<0.001) 0.09 (0.262) −0.20 (0.015) 1
CYS 0.46 (<0.001) 0.45 (<0.001) 0.32 (<0.001) 0.32 (<0.001) 0.42 (<0.001) 1
tHCY * 0.30 (<0.001) 0.22 (0.009) 0.25 (0.003) 0.08 (0.376) 0.26 (0.002) 0.41 (<0.001) 1

Data are shown as Pearson correlation coefficients with their corresponding p values from log-transformed
concentrations of the one-carbon metabolites in breast milk samples (n = 142). CHO, choline; BET, betaine;
MET, methionine, SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine; CYS, cystathionine; tHCY, total
homocysteine. *, data from 138 samples.

4. Discussion

In this study, we compared the levels of one-carbon metabolites in breast milk with
other biofluids where these metabolites are present, including plasma and CSF. We show
that breast milk has a distinct one-carbon metabolic profile than other biofluids, including
cord blood and maternal plasma, healthy aging adult plasma, and CSF. The concentrations
of some of these metabolites in breast milk have been previously reported [6,7,20,21].
For instance, it is well known that choline is substantially higher in milk than in plasma,
indicating a key role of this nutrient in infant development; consistent with other studies [7],
we found a 10-fold increase in milk choline compared to plasma.

In recent years, several studies have applied metabolomic approaches to further inves-
tigate breast milk composition [22–25]. However, to our knowledge, there are no previous
reports of SAM concentration in breast milk, with the exception of our previous report in
the same cohort [15]. Our study demonstrates that the SAM concentration is significantly
higher in breast milk compared to the other biofluids, with a 44-fold increase compared to
maternal plasma and 12-fold increase compared to CSF (see Table 1 and Figure 2B). The
SAM levels in maternal and adult plasma are not significantly different, suggesting that the
high SAM content observed in milk is derived from breast tissue and not circulating plasma
(see Table 1). SAM is the methyl-group donor for most transmethylation reactions in the
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organism, including phosphatidylcholine, polyamine, and carnitine biosynthesis, as well
as DNA and protein methylation [26]. The by-product metabolite of methylation is SAH.
Interestingly, the SAH levels in breast milk are approximately 6-fold higher than maternal
and cord blood (see Table 1), which likely reflects a higher activity of methylation reactions.

Since SAM is the principal methyl-group donor in multiple cellular methyltransferase
pathways and given its high concentration in breast milk, it is tempting to speculate
that SAM may be a crucial nutrient in infant growth and development and may play
an essential role during early stages of life. There is growing evidence to suggest that
epigenetic mechanisms, specifically DNA methylation, including posttranslational histone
modifications, take place early in development and could persist well into later stages of
life that are associated with disease in adulthood [27]. In particular, DNA methylation
modifications in genes regulating the hypothalamus pituitary adrenal axis and the immune
system have been identified in infants that are related to cardiometabolic disease [28].
Another recent study has determined DNA methylation changes in saliva samples during
the first year of life. Clear differences in DNA methylation were found between 6 and
52 weeks of age in 42 genes; 36 genes showed increased, and 6 genes showed decreased
DNA methylation [29]. It has been suggested that the increased methylation, which is
associated with overall decreased gene expression, may represent a slowing mechanism
to reduce extensive growth development following the period of extremely rapid growth
during pregnancy. The full extent of DNA methylation on specific genes during infancy and
childhood development is still not fully understood. However, SAM as a methyl-donor in
breast milk may play an important role in this respect. It is required for the methylation of
phospholipids, more specifically the synthesis of phosphatidylcholine that can be recycled
to choline, an important metabolite in breast milk for neurodevelopment.

It is important to note that SAM is absent in the different milk formulas analyzed in
this study (see Figure 2B). Formula-fed infants can hydrolyze proteins to obtain methionine
and convert it into SAM. Although methionine is present in a high concentration in formula
milk and can be converted to SAM, this occurs mostly in hepatic tissue where several
isoforms of methionine adenosyltransferase (MAT) with a wide Km range are present.
Other tissues including central nervous system tissue have a limited capacity to convert
methionine to SAM since only a single low-Km MAT isoform is present [30]. This may be
critical for neurodevelopment and assessing the plasma levels of metabolites related to
one-carbon metabolism in breast-milk-fed and formula-fed infants would be required to
further our understanding of the importance of elevated SAM levels in breast milk. It is
also important to note that the concentration of SAM in breast milk is close to peak plasma
concentrations following oral administration of enteric-coated SAM tablets. In one study
in women, the SAM levels reached a Cmax of 2.5 µM at 5.2 h following an oral dose of
1000 mg SAM-tosylate [31]. In our study, we found that the level of SAM in breast milk
is 1.83 µM. This may provide some assurance that levels of breast milk SAM may not
increase substantially after oral supplementation. However, further studies are required to
determine if repeated chronic oral supplementation of SAM results in accumulation and
higher levels in breast milk. This is particularly important as breastfeeding mothers may use
oral SAM supplementation to prevent post-partum depression, as standard antidepressant
therapies are viewed as being harmful to the infant [32].

Limitations of this study include the fact that breast milk samples were obtained at
a single time point (1 month after birth). As composition varies with time, longitudinal
studies of one-carbon metabolism in breast milk are required to assess the dynamic changes
during the critical period of nutritional support in infants.

5. Conclusions

S-adenosylmethionine is particularly elevated in breast milk compared to other bioflu-
ids. High concentrations of SAM in breast milk highlight the need to further investigate
the role of this metabolite in breast milk as a readily available micronutrient for newborns
and opens the venue for revisiting milk formula composition.
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