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Abstract: Nutrition affects the early stages of disease development, but the mechanisms remain poorly
understood. High-throughput proteomic methods are being used to generate data and information
on the effects of nutrients, foods, and diets on health and disease processes. In this report, a novel
machine reading pipeline was used to identify all articles and abstracts on proteomics, diet, food, and
nutrition in humans. The resulting proteomic corpus was further analyzed to produce seven clusters
of “thematic” content defined as documents that have similar word content. Examples of publications
from several of these clusters were then described in a similar way to a typical descriptive review.

Keywords: machine reading; nutriproteomics; food proteomics; diet proteomics; nutrition
proteomics; artificial intelligence; transformer-based language model

1. Introduction

Nutrients and energy intake contribute to the initiation, progression, and outcome of
multiple diseases [1]. However, many of the molecular mechanisms by which food compo-
nents initiate diseases are not well defined, which hampers early detection of chronic dis-
eases and the influence of nutrition on these processes. Transcriptomic [2], metabolomic [3],
and proteomic technologies (this review) are increasingly used to probe subtle changes
in cells and molecules in blood that are affected by different diets, nutrients, and food
components.

Although blood is a key transport process to deliver metabolites to and from various
organs, as well as the garbage system for removing unused end products and cell debris,
both of which can be assessed from a venous blood draw. Sampling other human tissues,
such as from adipose or muscle, is more invasive and has more challenges for sample
preparation. Identifying biomarkers of exposure (e.g., [4,5]) is a primary goal of many of
research studies and results of omic analyses of blood components can be used to develop
predictive models that may explain the variability of nutrition response (e.g., [6])

Compared to genomic and transcriptomic technologies, high-throughput proteomic
methods have been the most challenging to develop because of the broad range in concen-
tration (particularly in the blood) and the extensive variation in physicochemical properties
of proteins. Nevertheless, advances in proteomic technologies such as antibody-based
multiplexed proximity extension assays [7], mass spectroscopic instrumentation and work-
flows [8,9], and DNA aptamer technologies [10] now permit the analysis of several thou-
sands of proteins simultaneously. The Human Protein Atlas lists 4072 proteins in plasma
detectable by mass spectroscopy (https://www.proteinatlas.org/humanproteome/blood+
protein/proteins+detected+in+ms (accessed on 18 September 2022)) and Somalogic’s
SomascanTM platform can quantify over 7000 proteins (https://somalogic.com/specificity/
(accessed on 18 September 2022)).
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The advancements in proteomic technologies are increasingly being used to identify
clinically and nutritionally relevant biomarkers such as receptors, enzymes, and trans-
porters. A PubMed search for (i) proteomics and nutrition, (ii) proteomics and diet, and
(iii) proteomics and food listed 4970, 2766, and 10,485 citations, respectively (as of
18 September 2022). Classical manual methods of reviewing this literature would nec-
essarily require restricting the search to more specific targets, eliminating the possibility of
a comprehensive survey of proteomics in nutri-, food-, and diet-proteomics. An alterna-
tive approach is to use machine reading technology to extract and analyze the corpus of
these topics.

We previously developed a natural language processing pipeline that parses, anno-
tates, and analyzes ~37 M citations and publications in the National Library of Medicine
(e.g., PubMed and PubMed Central) [11], as well as extracts semantically meaningful re-
lationships between the labelled entities. The relation extractor module of the pipeline is
built on a transformer-based language model [12] and fine-tuned to label the meaning and
directionality of the extracted relationships. In this report, we used parts of the machine
reading pipeline to identify, parse, and analyze all articles and abstracts on proteomics, diet,
food, and nutrition in humans. The resulting proteomic corpus was analyzed to produce
seven clusters of “thematic” content defined as documents that have similar word content.
Examples of publications from several of these clusters are then described in a manner
similar to a typical descriptive review. We propose that this machine-guided approach
facilitates a more objective and systematic review of the articles in this domain.

2. Materials and Methods
2.1. Querying and Document Parsing

The machine reading pipeline was essentially as described in [13] (excluding the
relation extraction module) but briefly, the initial step in the pipeline development was
to parse ~33 M citations in PubMed and ~2.4 M full-text records and annotate/index the
concepts of interest (Table 1). The NCBI e-utils API service was used to fetch articles
returned from the queries described in Table 1. The queries included both keywords and
MeSH terms, so as to not rely exclusively on a set of query terms (as is the case with
keyword search) but also to ensure inclusion of the latest articles (which are often missing
from MeSH term search, due to the time lag in MeSH indexing). Further, within the MeSH
term search, we queried using both the standard [MH] and [MAJR] tags, which restricts
to articles with primary importance of the queried MeSH term. This allows separate
assessment of the corpus sizes of these two searches. It is expected that the articles from the
[MAJR] search are a strict subset of those from the [MH] search. The articles returned from
the queries were parsed from XML to json using the PubMed parser Python library, and
then the abstract and full text were split into sentences using the scispaCy en_core_sci_sm
sentencizer model.

2.2. Document Annotation

The proteomic-nutrition corpus was annotated using various approaches, depending
on the entity type. The DNorm ([14] and https://www.ncbi.nlm.nih.gov/research/bionlp/
Tools/dnorm/(accessed on 20 June 2020)) annotation tool from NCBI was used for disease
annotations which provides integrated functionality for disease normalization to MeSH
IDs. The GNormPlus ([15] and https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/
gnormplus/(accessed on 20 June 2020)) annotation tool from NCBI was used to integrate
functionality for gene normalization to NCBI gene IDs. These results are discussed below
and provided in an interactive Supplementary File.

https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/dnorm/(accessed
https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/dnorm/(accessed
https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/gnormplus/(accessed
https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/gnormplus/(accessed
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Table 1. Machine Reading Search Terms.

Query PubMed Terms 1

protnutr_mh Proteomics [MH] AND “Diet, Food, and Nutrition” [MH] and
Human [MH]

protnutr_majr Proteomics [MAJR] AND “Diet, Food, and Nutrition” [MAJR] and
Human [MH]

protnutr_ab

(proteomics [TIAB] OR “DNA aptamer” [TIAB] OR Somascan [TIAB]) and
(“Nutrition” [TIAB] OR “Nutritional” [TIAB]) AND (Human [MH] OR
Human [TIAB] or individuals [TIAB] or patients [TIAB] or participants
[TIAB] or subjects [TIAB])

Query PubMed Central Terms

protnutr_mh Proteomics [MH] AND “Diet, Food, and Nutrition” [MH] AND Human
[MH] AND (open access [filter] OR author manuscript [filter])

protnutr_majr Proteomics [MH] AND “Diet, Food, and Nutrition” [MH] AND Human
[MH] AND (open access [filter] OR author manuscript [filter])

protnutr_ab

(proteomics [Abstract] OR “DNA aptamer” [Abstract] OR Somascan
[Abstract]) and (“Nutrition” [Abstract] OR “Nutritional” [Abstract]) AND
(Human [MH] OR Human [TIAB] or individuals [Abstract] or patients
[Abstract] or participants [Abstract] or subjects [Abstract]) AND (open
access [filter] OR author manuscript [filter])

1 [MH] refers to regular MeSH tag, [MAJR] refers to MeSH tag of primary importance to the paper (as designated
by National Library of Medicine analyst), [TIAB] refers to ‘title/abstract’. The [TIAB] query captures, and in
particular, articles that do not have MeSH tags. Subquery (open access [filter] OR author manuscript [filter]) is
added to each query, to limit to those articles freely available to commercial entities.

2.3. Co-Mention Analysis

An analysis was performed to identify sentences comentioning entity pairs of interest.
Each comention relation is summarized in a network and/or table (examples below) with
the following details: (i) the origin sentence and (ii) tagged entities (proteins or disease),
labeled as V1 and V1 (vertex 1 and 2). Because comentions are nondirected, there is no
semantic difference between V1 and V2. V1 and V2 are further described in terms of:
(i) text_found which is the exact text representing the given entity, (ii) preflabel for the
given entity (which serves to collapse synonyms for a common entity)—the preflabels (and
not text_found) are the nodes in the network, and (iii) type entity which in this case are
proteins or diseases. These results are discussed below with an interactive graph and a
table of comention statements provided in the interactive Supplement Files SB.

2.4. Document Clustering

To gain insight on the thematic content of proteomic-nutrition corpus identified by the
pipeline, we performed document clustering using the term-frequency-inverse document
frequency (tf-idf) metric. Briefly, this metric describes the importance of a given word
in each (and every) document within the context of a larger corpus. tf-idf is highest
when a word is common within a given document and rare in the rest of the corpus.
Words with high tf-idf in document are therefore loosely analogous to keywords. We then
used these numeric vectors to cluster the documents into thematic groups with K means
clustering. For the K means clustering, we used a plot of the within-cluster sum of squares
to decide on a suitable value for K. T-Distributed Stochastic Neighbor Embedding (t-SNE)
was used for dimensionality reduction [16] and visualization [17]. Tf-idf vectorization, K
means clustering, and t-SNE were all performed using the scikitlearn library for Python. An
interactive version of the t-SNE plot and a summary table are provided in File S1, Figure S7.

2.5. Disease Annotation

The Database for Annotation, Visualization, and Integrated Database (https://david.
ncifcrf.gov/list.jsp (accessed on 20 June 2020)) was used for disease annotation.

https://david.ncifcrf.gov/list.jsp
https://david.ncifcrf.gov/list.jsp
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3. Results

The information summarized in Section 3.1 through Section 3.5 is provided in more
detail in supplement files SA and SB.

3.1. Query Results

The combined queries (Table 1) analyzed by the machine reading pipeline yielded
965 unique abstracts (Figure 1, interactive Figure in SA) and 273 unique full-text records
(Figure 1). Only 39 of the 965 publications (4%) in this field are in journals with a SCImago
Journal Ranking (SJR—https://www.scimagojr.com/aboutus.php (accessed on 30 Septem-
ber 2022) of four or above since 2002 (Figure S2 in File S1).
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Figure 1. Venn diagram of unique abstracts with overlaps queries of nutrition proteomics. An
interactive version of this figure with links to the PubMed abstracts is in the File SA.

3.2. Document Annotation

Annotation of the proteomic-nutrition corpus by DNorm [14] and GNormPlus [15]
identified the diseases and gene/proteins, respectively, most often mentioned in the
nutrition-proteomic corpus (Figure 2A,B, Supplement SA, Section 4). Importantly, these
algorithms perform both tagging and normalization (i.e., collapsing of potentially long
lists of tagged synonyms to a common label) of terms in the corpus. GNormPlus does not
distinguish between genes and proteins in the document annotation.

3.3. Comention Analysis

Whereas Figure 2 provides an overview of the diseases and proteins studied in the
nutrition-proteomic corpus, comention analysis identifies a link between two entities, in
this case sentence-level comentions between proteins and diseases, which can be displayed
as a network (Figure 3A) or in tabular form (Figure 3B). The nutrition-proteomic corpus
consists of 5373 comentions between proteins and diseases (Table S5.2). Comentions have
no direction or specific semantic meaning—the mentioned protein could affect the disease
or conversely, the disease could over-express the protein—as two simple examples of many
types of possible semantic relationships.

https://www.scimagojr.com/aboutus.php
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Figure 2. Document annotation of proteomic-nutrition corpus. (A) Diseases with 50 or more articles
in the corpus. (B) Proteins with 20 or more articles. References for each disease or gene/protein can
be obtained by clicking the bars in each interactive graph in supplementary File SA. The proteins are:
ADIPOQ: adiponectin, C1Q and collagen domain containing; AKT1: AKT serine/threonine kinase 1;
ALB: albumin; APOA1: apolipoprotein A1; APOB: apolipoprotein B; APOE: apolipoprotein E; BBS9:
Bardet-Biedl syndrome 9; CRP: C-reactive protein; CXCL8: C-X-C motif chemokine ligand 8; EGFR:
epidermal growth factor receptor; IL6: interleukin 6; INS: insulin; LALBA: lactalbumin alpha; LEP:
leptin; LTF: lactotransferrin; MFGE8: milk fat globule EGF and factor V/VIII domain; MTOR: mech-
anistic target of rapamycin kinase; NFKB1: nuclear factor kappa B subunit 1; PPARA: peroxisome
proliferator activated receptor alpha; SERPINA1: serpin family A member 1; TF: transferrin; TNF:
tumor necrosis factor; TP53: tumor protein p53.

3.4. Document Clustering

An important step in many NLP analyses is the conversion of individual words and/or
documents to numeric vectors—aka vectorization—which allows for mathematic analysis
of the corpus by a variety of methods. For this analysis, we used the tf-idf metric as a
document-level vectorization and used K-means analysis to identify seven clusters of these
document vectors with increased similarity in keyword content within each cluster. Rather
than using MeSH terms group or categorize the documents in our corpus, tf-idf was used
because it is a purely data-driven and discovery-oriented approach that does not rely on a
pre-defined set of categories that may or may not adequately describe the corpus. From
the document clusters, we calculated the average tf-idf score per word within each cluster
to identify the top 10 terms per group (Table 2). This “theme” variable describes the main
topic of each cluster and provides a convenient filter for identifying publications of interest
(Figure 4; the interactive version is in Supplement SA, Figure S6.3). The trends in the topic
areas by year of publication is shown in Figure 5 (the interactive version is in SA, Figure 2).
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Figure 3. Protein–Disease Network and Protein–Disease Comention. (A) The protein–disease comen-
tion network from the nutrition–proteomic corpus, restricted to those protein–disease pairs with five
or more supporting references (for plotting clarity). Blue circles are proteins and orange diamonds
are diseases. The size of the symbols is proportional to the number of mentioning publications in the
corpus. The edges are similarly scaled to represent the number of unique publications comentioning
the two entities. An interactive network is in File SA, Figure S5.1. (B) Screenshot of File SA, interactive
Table S5.2 with the PubMed ID (pmid), the extracted sentence, publication date, the gene/protein,
and the disease. PMIDs retain links to the PubMed abstracts. Individual columns can be sorted
(arrows in column headings) and searched.
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Table 2. Themes of Nutrition Proteomic Research 1.

Cluster Theme Cluster Size Median SJR Median Year Earliest Latest

A
protein, liver, diet, mouse, fatty,
rat, disease, obesity,
plasma, muscle

112 1.189 2017 2001 2022

B

milk, protein, peptide, human,
infant, milk fat globule membrane,
colostrum, lactation,
bovine, membrane

101 1.189 2017 2006 2022

C protein, plant, seed, food, allergen,
gluten, wheat, soybean, crop, fruit 181 1.279 2018 2002 2022

D
gut, probiotic, microbiota, protein,
intestinal, cell, microbiome,
bacterial, human, host

158 0.934 2012 2000 2022

E

nutrition, nutritional, food,
research, nutrigenomics, health,
metabolomics, disease,
genomics, science

104 1.085 2017 2004 2022

F
cell, protein, cancer, meat,
colorectal, quality, proteomics,
fish, study, muscle

156 1.323 2017 2003 2022

G
protein, egg, salivary, plasma,
child, biomarkers, saliva, disease,
proteomics, proteome

133 1.189 2016 2003 2022

1 t-SNE derived clusters (A-G); theme is pipeline-derived keywords. Cluster size is number of proteins in cluster.
SJR is Scimago Journal Ranking. Median year of publication of all papers in the cluster with earliest and latest
publication in the cluster (as of August 2022). Visualization is in Figure 4 and the interactive version in Supplement
SA, Figure S2.
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Figure 4. t-SNE cluster and visualization of nutrition-proteomic research themes. Each dot refers to
a single article (click on dot in the interactive Supplement File SA, Figure S6.3 to open its PubMed
abstract) and documents with similar word content are in close proximity. The size of the dot refers
to the impact factor of the journal. The color of each dot refers to the cluster designation which in
the text will labeled with a letter: (A) dark blue: protein, liver, diet, mouse, fatty, rat, disease, obesity,
plasma, muscle; (B) light purple: milk, protein, peptide, human, infant, milkfat globular membrane
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(MFGM), colostrum, lactation, bovine, membrane; (C) orange: protein, plant, seed, food, allergen,
gluten, wheat, soybean, crop, fruit; (D) light orange: protein, egg, salivary, plasma, child, biomarkers,
saliva, disease, proteomics, proteome; (E) dark green: gut, probiotic, microbiota, protein, intestinal,
cell, microbiome, bacterial, human, host; (F) light green: nutrition, nutritional, food, research, nu-
trigenomics, health, metabolomics, disease, genomics, science; (G) red: cell, protein, cancer, meat,
colorectal, quality, proteomics, fish, study, muscle.
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Figure 5. Cluster topics by year from 2000 to 2022. The interactive version of this figure is in
Supplement SA, Figure S6.2.

3.5. Simple Quantitative Charactercistics of the Thematic Clusters

The publications in the clusters can be further analyzed for a variety of different
“thematic characteristics.” For example, the occurrence and statistical overrepresentation of
individual proteins (Table 3), disease associations (Table 4), or functional analysis using
DAVID [18], STRING [19], or KEGG [20], or their functional analysis tools. The same
proteins can be found in different clusters (see Supplement File SB for full list). The proteins
in each cluster are (of course) related to and help drive the thematic content.

Table 3. Protein Enrichment Per Cluster 1.

Cluster Protein_ID Name #/Cluster p-Value

A INS insulin 21 3.14 × 10−7

A ADIPOQ adiponectin, C1Q and collagen domain containing 5 7.43 × 10−3

A APOE apolipoprotein E 5 1.84 × 10−2

A HP haptoglobin 4 2.75 × 10−2

A Insr insulin receptor 3 4.03 × 10−2

A PRKAA2 protein kinase AMP-activated catalytic subunit a2 3 4.03 × 10−2

A Srebf1 sterol regulatory element bindingTF1transcription 3 4.03 × 10−2

A TNF tumor necrosis factor 5 4.88 × 10−2

A CLU clusterin 3 6.33 × 10−2

A TF transferrin 3 6.33 × 10−2

A VIM vimentin 3 6.33 × 10−2
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Table 3. Cont.

Cluster Protein_ID Name #/Cluster p-Value

A CRP C-reactive protein 4 7.67 × 10−2

A TTR transthyretin 4 7.67 × 10−2

A APOA4 apolipoprotein A4 3 9.10 × 10−2

A APOC3 apolipoprotein C3 3 9.10 × 10−2

A Apoa1 apolipoprotein A1 2 9.86 × 10−2

A B2M beta-2-microglobulin 2 9.86 × 10−2

A Irs1 insulin receptor substrate 1 2 9.86 × 10−2

A PON1 paraoxonase 1 2 9.86 × 10−2

A PUM3 pumilio RNA binding family member 3 2 9.86 × 10−2

A Slc2a4 solute carrier family 2 member 4 2 9.86 × 10−2

A VDR vitamin D receptor 2 9.86 × 10−2

B MFGE8 milk fat globule EGF with factor V/VIII domain 25 2.90 × 10−8

B LALBA lactalbumin alpha 9 7.72 × 10−4

B LYZ lysozyme 6 2.24 × 10−2

B CSN2 casein beta 5 1.29 × 10−2

B LTF lactotransferrin 4 2.66 × 10−2

B MfgE8 milk fat globule EGF with factor V/VIII domain 4 8.48 × 10−2

C IGHE immunoglobulin heavy episolon chain 4 2.57 × 10−2

C NT5C3A 5 prime-nucleotidase, cytosolic IIIA 3 2.77 × 10−2

C LOC112695262 2 7.67 × 10−2

D FGB fibrinogen beta chain 3 1.52 × 10−2

D LEP leptin 3 2.46 × 10−2

D FGG fibrinogen gamma chain 2 5.11 × 10−2

D Ldlr low density lipoprotein receptor 2 5.11 × 10−2

D NOS1 nitric oxide synthase 1 2 5.11 × 10−2

D Nos1 murine nitric oxide synthase 1 2 5.11 × 10−2

D TXN thioredoxin 2 5.11 × 10−2

D APOB apolipoprotein B 2 7.98 × 10−2

E ABCB1 ATP binding cassette subfamily B member 1 3 1.41 × 10−2

E ABCC2 ATP binding cassette subfamily C member 2 3 1.41 × 10−2

E ABCC3 ATP binding cassette subfamily C member 3 3 1.41 × 10−2

E ABCG2 ATP binding cassette subfamily G member 2 2 4.87 × 10−2

E CASP3 caspase 3 2 4.87 × 10−2

E Gusb glucuronidase beta 4 7.06 × 10-−3

E HSP90AA1 heat shock protein 90 a family class A member 1 2 7.61 × 10−2

E IL10 interleukin 10 2 4.87 × 10−2

E SLC15A1 solute carrier family 15 member 1 3 1.41 × 10−2

E SLCO2B1 solute carrier organic anion transporter 2B1 2 4.87 × 10−2

G AKT1 AKT serine/threonine kinase 1 3 2.95 × 10−2

G MTOR mechanistic target of rapamycin kinase 3 2.95 × 10−2

G Crtc1 CREB regulated transcription coactivator 1 2 5.79 × 10−2

G SOD1 superoxide dismutase 1 2 5.79 × 10−2

G TNFSF10 TNF superfamily member 10 2 5.79 × 10−2

1 Cluster is the same as Table 2 and Figure 4. #/cluster is the number of documents in the cluster containing the
protein. p-value cut-off was < 0.1. Cluster F had no proteins below this cut-off. Upper case proteins designations
are human, and first letter capital followed by lower case designate mouse proteins. The full list of proteins in
each cluster and enrichment values are in Supplement File B.
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Table 4. Disease Associations of Proteins in Thematic Clusters 1.

Cluster #Term ID Term Description Observed Protein
Count

Background
Protein Count

False Discovery
Rate

A

DOID:0060158 Acquired metabolic disease 42 320 4.98 × 10−27

DOID:0014667 Disease of metabolism 64 997 1.02 × 10−26

DOID:4 Disease 138 5921 4.54 × 10−20

DOID:9120 Amyloidosis 19 70 1.96 × 10−16

DOID:7 Disease of anatomical entity 109 4452 3.59 × 10−15

DOID:4194 Glucose metabolism disease 21 125 8.46 × 10−15

DOID:0050828 Artery disease 20 118 3.34 × 10−14

DOID:178 Vascular disease 24 223 2.44 × 10−13

DOID:9351 Diabetes mellitus 19 118 3.82 × 10−13

DOID:1287 Cardiovascular system disease 31 454 1.21 × 10−12

B

DOID:0014667 Disease of metabolism 32 997 7.14 × 10−11

DOID:0050161 Lower respiratory tract disease 16 206 1.24 × 10−9

DOID:1579 Respiratory system disease 17 263 2.40 × 10−9

DOID:0060158 Acquired metabolic disease 18 320 3.47 × 10−9

DOID:4 Disease 73 5921 1.42 × 10−8

DOID:0050828 Artery disease 12 118 2.09 × 10−8

DOID:850 Lung disease 13 172 8.18 × 10−8

DOID:326 Ischemia 7 23 2.91 × 10−7

DOID:77 Gastrointestinal system disease 19 510 3.18 × 10−7

DOID:552 Pneumonia 7 25 3.81 × 10−7

D

DOID:0014667 Disease of metabolism 32 997 6.28 × 10−13

DOID:4 Disease 71 5921 9.45 × 10−12

DOID:0050636 Familial visceral amyloidosis 9 21 4.70 × 10−11

DOID:0060158 Acquired metabolic disease 18 320 2.45 × 10−10

DOID:9120 Amyloidosis 11 70 4.55 × 10−10

DOID:0050828 Artery disease 10 118 1.19 × 10−6

DOID:7 Disease of anatomical entity 52 4452 1.31 × 10−6

DOID:178 Vascular disease 12 223 2.55 × 10−6

DOID:1247 Blood coagulation disease 8 76 7.61 × 10−6

DOID:0050161 Lower respiratory tract disease 11 206 1.00 × 10−5

E

DOID:178 Vascular disease 14 223 1.01 × 10−8

DOID:4 Disease 58 5921 1.01 × 10−8

DOID:7 Disease of anatomical entity 50 4452 1.01 × 10−8

DOID:326 Ischemia 7 23 5.33 × 10−8

DOID:77 Gastrointestinal system disease 16 510 9.92 × 10−7

DOID:2914 Immune system disease 17 611 1.37 × 10−6

DOID:0014667 Disease of metabolism 21 997 1.47 × 10−6

DOID:0050828 Artery disease 9 118 2.32 × 10−6

DOID:11162 Respiratory failure 5 10 2.32 × 10−6

DOID:552 Pneumonia 6 25 2.32 × 10−6

F

DOID:0060158 Acquired metabolic disease 10 320 1.43 × 10−7

DOID:10652 Alzheimers disease 6 35 1.43 × 10−7

DOID:9351 Diabetes mellitus 7 118 7.14 × 10−7

DOID:9352 Type 2 diabetes mellitus 5 29 9.97 × 10−7

DOID:10763 Hypertension 5 36 2.33 × 10−6

DOID:0014667 Disease of metabolism 12 997 5.77 × 10−6

DOID:0050828 Artery disease 6 118 1.19 × 10−5

DOID:4 Disease 24 5921 1.19 × 10−5

DOID:5844 Myocardial infarction 4 20 1.69 × 10−5
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Table 4. Cont.

Cluster #Term ID Term Description Observed Protein
Count

Background
Protein Count

False Discovery
Rate

G

DOID:18 Urinary system disease 16 315 1.36 × 10−7

DOID:4 Disease 65 5921 1.75 × 10−7

DOID:0050686 Organ system cancer 21 677 2.16 × 10−7

DOID:14566 Disease of cellular proliferation 25 1012 2.40 × 10−7

DOID:850 Lung disease 12 172 3.12 × 10−7

DOID:77 Gastrointestinal system disease 18 510 3.23 × 10−7

DOID:9120 Amyloidosis 9 70 3.23 × 10−7

DOID:162 Cancer 23 895 3.46 × 10−7

DOID:0060158 Acquired metabolic disease 14 320 1.61 × 10−6

DOID:0050687 Cell type cancer 15 406 3.51 × 10−6

1 Simplified output from DAVID Functional Annotation Tool (https://david.ncifcrf.gov/ (accessed on 30 Novem-
ber 2022). Observed protein counts are the number of proteins from a cluster that map to the term ID/term
description. Background is the number of terms in that term ID. The number of diseases with FDR ≤ 10−5 was 52,
26, 0, 19, 21, 9, and 25 for clusters A through G, respectively.

3.6. Disease Annotation

The DAVID Functional Annotation Tool [18] was used to analyze disease associations
of the proteins in each of the thematic clusters to provide more context on the key word
results used to define the clusters (Table 4). In general, the diseases found were consistent
with the keywords identified by top tf-idf keywords in each cluster. As expected, the larger
the cluster, the more diseases are associated with the proteins. Cluster C is an exception
because many of the publications in this theme are related to milk production in agricultural
animals and humans.

3.7. From Group Level Data to Individual Papers

Analyses of all articles in the nutrition-proteomic corpus (Figures 1–4 and Tables 1 and 2)
or characterizations of the publications grouped by the tf-idf cluster analysis (Tables 3 and 4)
provide a metaphorical ~30,000 foot or ~1000 ft view of the extracted articles. Individual
abstracts or publications can also be viewed and further analyzed by manual text mining
typical for preparing publications, systematic reviews, and meta-analysis. For illustrative
purposes, Table 5 compares the top words of the thematic cluster with the top words in the
document for all the publications described in the following section. By definition, the top
cluster words will also show more frequent use within most or all documents in the cluster.
However, it is not necessarily the case that top cluster words should also be top document
words for each document in the cluster. Selected articles from each cluster are discussed
to show the utility of the pipeline and subsequent data-driven cluster analysis. We did
not focus on a particular topic for each cluster, but selected articles based current interest
to clinical and research nutritionists interested in proteomic analysis of health, disease,
and treatments.

3.7.1. Cluster A—Protein, Liver, Diet, Mouse, Fatty, Rat, Disease, Obesity, Plasma, Muscle

Nutritional research is increasingly focused on measuring the effect dietary patterns
on health and disease processes rather than how specific foods or isolated nutrients alter
physiology.

Proteomic profiles in 1713 participants of the Framingham Heart Study were ana-
lyzed in three different dietary patterns, (i) Alternative Healthy Eating Index (AHEI),
(ii) the Dietary Approaches to Stop Hypertension (DASH) diet and (iii) the Mediterranean-
style (MDS) [21]. DNA-based aptamers (SOMAscan) were used to find unique asso-
ciations between dietary patterns and 17 plasma proteins with AHEI, 52 with DASH,
and 3 with MDS. Significant proteins enriched biological pathways involved in cellular
metabolism/proliferation and immune response/inflammation, providing insights into
the molecular mechanisms mediating diet-related disease. Although the specific proteins

https://david.ncifcrf.gov/
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may become biomarkers of these three dietary patterns, the results need replication in
independent populations.

Table 5. Thematic Cluster versus Documents Words of Selected Documents 1.

Ref Top Document Words Top Thematic Cluster Words Cluster

[21] pattern; dietary; dash; ahei; md; metabolomic; fdr;
metabolite; index; framingham

protein, liver, diet, mouse,
fatty, rat, disease, obesity,
plasma, muscle

A

[22] diet; score; mortality; cvd; association; p0; incident;
mediation; all cause; quality

[23] pnald; liver; mitochondrial; glycolipid; deps; parenteral;
oxidative; differentially; expressed; patient

[24] endothelial; ci; diet; mediterranean; cordioprev; lowfat;
coronary; patient; difference; dysfunction

[25] nonresponders; curve; responder; body; ketone; roc;
glycemic; weight; difference; baseline

[26] mfgm; bovine; ifs; specie; globule; fraction; milk; attempt;
proteome; fat

milk, protein, peptide, human,
infant, milk fat globule
membrane, colostrum,
lactation, bovine, membrane

B

[27] mfgm; milk; bovine; colostrum; nglycoproteomes;
nglycoproteins; mature; lactation; glycosylation; globule

[28] lipid; fat; mfgm; milk; globule; catabolic; membrane;
specie; enzyme; utilization

[29] phosphorylation; site; mfgm; milk; colostrum; mature;
protein; phosphoproteomics; phosphoprotein; globule

[30] milk; infant; proteome; ptms; human; expanded;
endogenous; mother; like; peptide

[31] atopic; glycopeptides; oom; milk; nglycoprotein; rochester;
lifestyle; york; mother; child

[32] wheat; spelt; bread; flour; ncws; heritability; differed;
celiac; protein; hypersensitivities; bread protein, plant, seed, food,

allergen, gluten, wheat,
soybean, crop, fruit

C
[33] tfps; editing; trait; food; plant; improvement; omics;

sustainable; nutritious; traditional

[34] ibsd; intestinal; irritable; bowel; patient; molecule; tissue;
syndrome; tmt; ingestion

gut, probiotic, microbiota,
protein, intestinal, cell,
microbiome, bacterial, human,
host

E

[35] fasting; intermittent; clock; sunset; day; circadian; dawn;
consecutive; neuropsychiatric; syndrome

cell, protein, cancer, meat,
colorectal, quality, proteomics,
fish, study, muscle

G

1 Mapping of specific references (first column) and their top document words to the cluster (last column) document
terms. Protein acronyms are defined in Table 3. Some abbreviated terms were left unresolved to provide examples
of the search results. In some cases, these terms are filtered for subsequent analysis. References for each paper in a
cluster can be obtained by clicking on a dot in Figure S4 of Supplementary file SA.

A separate study examined the AHEI and modified versions of the Mediterranean-
style Diet Score (mMDS) and mDASH in 6360 participants (mean age 50 years; 54% women)
in the same Framingham Heart Study [22]. The proteomic analysis used a modified sand-
wich ELISA method multiplexed on a Luminex xMAP (Sigma-Aldrich, St. Louis, MO,
USA). The associations between diet and 71 candidate cardiovascular disease (CVD)-related
proteins were examined in individuals against the three diet quality scores. Mediation anal-
ysis identified proteins that mediated the associations between diet and incident CVD and
all-cause mortality. The results indicated that a healthy diet is associated with circulating
cardiovascular disease-related protein biomarkers, largely representing regulators of inflam-
matory pathways in the group of middle-aged and older participants. Four proteins—B2M
(beta-2-microglobulin), GDF15 (growth differentiation factor 15), sICAM1 (soluble inter-
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cellular adhesion molecule 1), and UCMGP (uncarboxylated matrix Gla-protein)—may
mediate the association of diet with health outcomes.

The CORonary Diet Intervention with olive oil and cardiovascular PREVention [COR-
DIOPREV] study [24] evaluated the effect of two healthy dietary models (a Mediterranean
diet and a low-fat diet) on endothelial function, measured by flow-mediated dilation (FMD),
in patients with coronary heart disease (CHD). Patients with CHD following the Mediter-
ranean diet had higher FMD compared with those on a low-fat diet, regardless of the
severity of endothelial dysfunction. The Mediterranean diet also led to better endothelial
function, enhanced endothelial repair mechanisms, and a reduction in the mechanisms
associated with endothelial damage. Patients who consumed the Mediterranean diet had
lower miR181c-5p levels as compared with a low-fat diet, inhibiting the proapoptotic action
of this miRNA. miR181c-5p is also implicated in ROS synthesis, so the reduction in the
levels of this miRNA would lead to a decrease in GPx3, an enzyme that catalyzes the re-
duction in ROS, as was observed in another proteomic study [36]. The Mediterranean diet
may better modulate endothelial function compared with a low-fat diet and is associated
with a better balance of vascular homeostasis in CHD patients, even in those with severe
endothelial dysfunction.

Proteins from liver tissue samples from controls and patients with parenteral nutrition
(PN)-associated liver disease (PNALD) were analyzed with the Isobaric Tag for Relative
and Absolute Quantitation (iTRAQ)-based quantitative proteomics method [23]. A total of
112 proteins were found to be differentially expressed, of which 73 were downregulated,
and 39 were upregulated in tissues from the PNALD group. These proteins were associated
with mitochondrial oxidative phosphorylation, hepatic glycolipid metabolism (primarily
involved in glycogen formation and gluconeogenesis), and oxidative stress involved in
antioxidant change, such as, CYP2B6, DDAH1, and NDUFA1 that were significantly down-
regulated, and FABP5 and CAPG that were upregulated in the PNALD group, compared
to the control group. This study identified candidate proteins as future PNALD biomarkers
or therapeutic targets related to long parenteral nutrition therapy.

A follow-on study of the DioGENES weight maintenance study [37] analyzed
173 glycemic responders versus 201 glycemic nonresponders who had previously lost
>8% of their body weight on a 800 kcal/d for 8 week diet. The two groups were comparable
at baseline for body composition, glycemic control, adipose tissue transcriptomics, and
plasma ketone bodies, but they differed significantly in their response to LCD, including
improvements in visceral fat, overall insulin resistance (IR), and tissue-specific IR. Pro-
teomics analysis was conducted using DNA aptamers (version 1 of Somascan, SomaLogic,
Boulder, CO, USA) which revealed that total ApoE, ApoE2, ApoE3, and ApoE4 differed
significantly between responders and nonresponders. In addition, proteomic pathway
analyses highlighted other proteins involved in lipoprotein metabolism (APOA1, BMP1,
FABP3 and ANGPTL4) that are key markers in obesity and NAFLD (e.g., [38,39]). Given
the link between NAFLD, insulin resistance, and lipid metabolism, these markers, as well
as other adipo- and hepatokines deserve further investigation in the context of weight loss
and glycemic improvements following LCD intervention.

3.7.2. Cluster B—Milk, Protein, Peptide, Human, Infant, Milk Fat Globule Membrane,
Colostrum, Lactation, Bovine, Membrane

Milk fat globules (MFGs) are a mixture of proteins and lipids with nutraceutical
properties related to the milk fat globule membrane (MFGM). Given the similarities be-
tween the human and bovine MFGM and the bioactive properties of MFGM components
(rev. in [26]), several attempts have been made to supplement infant formulas (IFs) with
polar lipid and protein fractions of bovine. The most shared proteins across species were
involved in protein/vesicle-mediated transport, along with major MFGM proteins such as
BTN, ADPH, FABP, and MUC1. The main difference regarding human MFGM proteome
was a higher enrichment in enzymes involved in lipid catabolism [27] and in a set of
immune response proteins [28]. The similarities between human and cow MFGM proteome
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and molecular functions, suggesting that bovine milk, and more specifically bovine MFGM
proteins, could be used as a supplement in infant formulas (rev in [26]).

Phosphorylation is a widespread posttranslational protein modification involved in
regulation of many biological processes. Liquid chromatography mass spectroscopy (LC-
MS/MS) quantitatively analyzed phosphorylation sites in human milk and colostrum fat
globule membrane (MFGM) proteins [29]. A total of 71 phosphorylation sites in 48 human
MFGM proteins differed between stages. These 48 phosphoproteins were mainly associated
with immune-related processes. The majority of these phosphoproteins were involved
in 16 of KEGG pathways including insulin, AMPK, Ras, PI3K-Akt, ErbB, apelin, and
chemokine signaling pathways. SPRING functional protein association network analysis
suggested more immune system process-related phosphoproteins in human colostrum
MFGM than in mature MFGM, probably because of the important role that colostrum has
in building the immune system of newborns [29].

Different storage conditions, and particularly temperature variation may affect the
stability of the human milk proteome. More specifically, 22 of 110 quantifiable proteins
significantly decreased after 48 h at 4.9 and 6.0 ◦C (rev. in [30]). Pasteurization of human
milk changes milk components such as immunoglobulins and lactoferrin (rev. in [30]).
An additional variable in milk composition may be caused by environmental factors.
For example, children who grow up on farms are at lower risk of developing childhood
atopic disease, which is called the “farm effect” [40]. A quantitative glycoproteomics
analysis of 54 milk samples from Rochester urban/suburban and Old Order Mennonite
mothers identified differences in 79 N-glycopeptides from 15 different proteins, including
many involved in immune function [31]. These findings highlight the importance of
understanding and recording metadata such as storage conditions, processing, handling,
and origin of samples not only for proteome research, but also for nutritional content of
milk products.

3.7.3. Cluster C—Protein, Plant, Seed, Food, Allergen, Gluten, Wheat, Soybean, Crop, Fruit

The consumption of bread wheat (Triticum aestivum ssp. aestivum) products can
cause celiac disease (CD), allergic reactions, and nonceliac wheat sensitivity (NCWS)
(rev. in [32]). The proteomes of 15 representative varieties of the bread wheat flour and a
spelt subspecies spelt were analyzed using nano LC–ESI–MS/MS. Although 81 proteins
(e.g., alpha-amylase inhibitors, serpins, gliadins, glutenins, and Bowman–Birk trypsin
inhibitor) had high heritability, protein expression was largely driven by environmental
effects. Of the 3050 proteins expressed in spelt, 1555 proteins were differentially expressed
depending on field locations. Similarly, 1166 of 2770 proteins in bread wheat showed
differential expression, underlining the large environmental impact caused by type of
nitrogen fertilization, weather conditions, and soil types (rev. in [32]).

Traditional food plants (TFPs) typically consumed by rural indigenous communities
across the globe have been gaining increasing importance in maintaining genetic diversity
as climate changes alter local environments (rev. in [33]). Proteomic analysis of samples
of Manihot esculenta (cassava) obtained during cold or drought stress identified changes
in levels of protein such as ATP synthase subunit beta, rubisco activase (RCA), rubisco,
phosphoglycerate, chaperone peroxiredoxin, heat shock protein, glutathione transferase,
and the drought-induced Di19-like protein (rev. in [33]). In addition to improving sustain-
able growth characteristics, proteomic analysis can also identify processes for improving
the nutritional content of plants. For example, the expression of the phytoene synthase
(EutPSY) gene was found to be correlated with the higher accumulation of lycopene in the
silverberry (E. umbellate) (rev. in [33]). Understanding the proteomic changes caused by
climate stress or the pathways responsible for levels of nutritionally important metabolites
may allow for rapidly improving resilience and nutritional content in these and other plants
using modern genetic modification procedures (e.g., CRISPR).
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3.7.4. Cluster E—Gut, Probiotic, Microbiota, Protein, Intestinal, Cell, Microbiome, Bacterial,
Human, Host

No accepted diagnostic markers are known for the three subtypes (i.e., diarrheal, con-
stipation, or mixed) of inflammatory bowel syndrome (IBS). Tandem mass tag (TMT)-based
proteomics of samples were obtained from intestinal mucosa samples during colonoscopies
of IBS-diarrheal and controls [34]. Eighty differentially expressed proteins were with
relative expression levels of 48 up-regulated at 1.2 or greater (p < 0.05) and 32 down-
regulated at 1.2 or greater (p < 0.05). The identified proteins were significantly enriched
in the nutrient ingestion pathways related to immune molecules and to FODMAP (fer-
mentable oligosaccharides, disaccharides, monosaccharides, and polyols) metabolism
including methanethiol oxidase (SELENBP), V-Set, and immunoglobulin domain con-
taining 2 (VISG2), 7-dehydrocholesterol reductase (DHCR7), B cell receptor associated
protein 31 (BCAP31), peroxisome proliferator activated receptor alpha (PPARA) and delta
(PPARD), galactose mutarotase (GALM), carbonic anhydrase 2 (CA2), immunoglobulin
kappa variable 1–33 (IGKV1-33), and fatty acid binding protein (FABP1), among others.
These results confirmed changes in immune function pathways but also identified potential
new explanations for why low FODMAP diets are not tolerated by IBS-D patients.

3.7.5. Cluster G—Cell, Protein, Cancer, Meat, Colorectal, Quality, Proteomics, Fish,
Study, Muscle

Intermittent fasting has been linked to improved health outcomes, but the molecular
mechanisms are unknown. A mass spectroscopic proteomic analysis was conducted of
serum samples from 14 healthy subjects who fasted from dawn to sunset (i.e., greater than
14 h daily) for 30 consecutive days but otherwise were not calorically restricted [35]. The
untargeted serum proteomic profiling identified upregulation of key regulatory proteins
involved in glucose and lipid metabolism, circadian clock, DNA repair, cytoskeleton
remodeling, immune system, and cognitive function. The identified proteins are associated
with protective effects for cancer, metabolic syndrome, inflammation, Alzheimer’s disease,
and several neuropsychiatric disorders. For example, a 9-fold increase was found for the
large tumor suppressor kinase 1 (LATS1) and an 11-fold increase in NR1D1 nuclear receptor
subfamily 1 group D member 1 (NR1D1), with a significant reduction in the amyloid beta
precursor protein (APP), beta-1,4-galactosyltransferase 1 (B4GALT1), and ArfGAP with
SH3 domain, ankyrin repeat, and PH domain 1 (ASAP1) at the end compared to before the
30-day intermittent fasting period.

4. Discussions and Conclusions
4.1. Data-Driven Analysis and Organization of Literature

NLP methods have been rapidly adopted in the biomedical literature and, increasingly,
the Electronic Health Record space (e.g., [41]), particularly since the development of the
widely impactful transformer-based deep learning models [42]. A selection of applica-
tions of NLP for information extraction in biomedical/clinical text include: tagging [43],
normalization and linking of biomedical entities [14], relation extraction [44], and event
extraction [45]. To our knowledge, NLP has not been used for preparing narrative or sys-
tematic reviews although several reports compared ML approaches to guide initial selection
of the literature corpus rather than using ML for downstream information extraction from
the retrieved documents [46–48]. A PubMed knowledge graph connected (1) authors, their
educational background, funding data, and affiliation history with (2) the diseases, drugs,
genes, species, and mutations identified in their corpus of abstracts [49]. An alternative
approach to literature retrieval, which we have applied in the domain of whole-food and
nutrient effects on human disease [11], is to individually index all foods (to the extent
reasonably possible) and nutrients in all biomedical abstracts and full text, and retrieve all
articles referencing any food or nutrient.

Identification of the (in this case) nutrition-proteomic corpus presented here is natu-
rally specific to the exact search terms described in Table 1 and, therefore, some proteomic



Nutrients 2023, 15, 270 16 of 19

studies in PubMed/PMC will not be the identified by the pipeline if they do not match
the specific search terms (in this case, Table 1). As examples, our team previously used
samples from a micronutrient intervention in healthy children aged from 9 to 13 years
old [6] for three DNA-aptamer-based serum proteomic studies. One study explored the
relationship of 117 pro-inflammatory proteins with different levels of DNA damage and
EPA and DHA levels [50]. A second study explained levels of serum LTAH4 with plasma
levels of cobalamin, riboflavin, pyridoxal, and homocysteine [51]. The third study identi-
fied 20 differentially expressed proteins (with iTRAQ technology) between 10 individuals
with lower triglycerides, LDL, and VLDL compared to 10 individuals with higher lipid
profiles [52]. Although these reports described analysis of nutritional biomarkers in serum
(lipid profile, vitamin levels, and hundreds of other metabolites [6]), none of these papers
appeared in the nutrition-proteomic corpus because they did not include the terms “nu-
trition” or “nutritional” (or corresponding MESH term) in the abstract and publication.
Hence, they did not match our queries. Different search terms such as nutritional or serum
biomarkers, blood metabolite levels, or lipid profiles and proteomics would identify those
documents focused on those topics. However, for this review, we aimed to maintain a focus
on articles with explicit reference to the field of proteomics in nutrition, diet, and food
research. Our analyses did not assess the populations (e.g., description of participants in
study), intervention (e.g., diets, drugs, or other), comparator (e.g., diseased versus control,
or high fat group versus low fat group), or outcome (e.g., decreased biomarker or disease
symptom)—PICO [53]—for each study in the corpus, which was beyond the scope of the
topic for this review.

We used K-means cluster analysis to identify seven “themes” in the extracted nutri-
proteomic corpus. Others have reported methodological studies that compared various
analytical methods (i.e., tf-idf, latent semantic analysis, topic modeling, self-organizing
maps, and poison-based [46] or Gaussian mixture model [54]) to identify thematic cluster
documents extracted using MESH terms [46] or the BioBERT language model [54]. Regard-
less of the methodological approach, cluster analysis further contextualizes documents
identified by machine reading technologies.

4.2. Conclusions

The use of high-throughput quantification and analysis of proteins in response to
nutrition, food, or diet differences has been increasing rapidly with the development of
improved mass spectroscopic sample workflows (e.g., [8]), molecularly tagged antibody
technology (OLink [7]), and aptamer technologies [10]. The machine learning pipeline used
here identified 945 publications on proteomics in the domain of nutrition, food, and diet.
Reviewing this number of publications requires some ideally unbiased type of selection
method and criteria. Unlike manual sorting of this corpus, publications were grouped into
thematic clusters based on their word usage (i.e., tf-idf). Each cluster of publications could
be the basis of a narrative, systematic, or meta-analytic review.
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