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Abstract: Cancer is amenable to low-cost treatments, given that it has a significant metabolic com-
ponent, which can be affected through diet and lifestyle change at minimal cost. The Warburg
hypothesis states that cancer cells have an altered cell metabolism towards anaerobic glycolysis.
Given this metabolic reprogramming in cancer cells, it is possible to target cancers metabolically by
depriving them of glucose. In addition to dietary and lifestyle modifications which work on tumors
metabolically, there are a panoply of nutritional supplements and repurposed drugs associated with
cancer prevention and better treatment outcomes. These interventions and their evidentiary basis are
covered in the latter half of this review to guide future cancer treatment.

Keywords: cancer metabolism; Warburg effect; glycolysis; ketogenic diet; repurposed drugs; lifestyle
interventions

1. Introduction

Warburg’s hypothesis for cancer progression is that cancer cells undergo a two-step
transformation. First, there is irreversible failure of respiration, and secondly, the cell
survives by fermentation energy. Fermentation energy is far less efficient than aerobic
glycolysis, producing only 2 ATP for a glucose molecule as opposed to 38 via aerobic
glycolysis [1].

Cancerous cells shunt a majority of glucose through the anaerobic pathway [2], and
cancerous cells do have enhanced glycolysis [3]. This effect serves as the basis of radio-
labeled glucose positron emission tomography (PET) imaging of tumors [4]. Cancerous
tumors using anaerobic glycolysis produce waste products and acidify the intracellular
space [5,6], which necessitates the evolution of surrounding cells towards acid-resistant
phenotypes [7]. Additionally, the hypoxia-resistant phenotype of cancer cells is especially
useful for pre-malignant lesions growing further away from blood vessels [7].

To test the validity of the metabolic theory of cancer, nuclear transplantation exper-
iments were performed [8]. These experiments demonstrated that while inserting the
nucleus of a cancerous cell into a healthy cell was insufficient to induce the cancer pheno-
type, inserting the cytoplasm of a cancerous cell, which contains the mitochondria, was
sufficient to transform a previously healthy cell into a cancerous cell [8].

Until recently, the Warburg hypothesis had not received much attention for its treat-
ment implications for cancer. Case reports on the ketogenic diet for treatment in cancer were
published in the 1990s [9], and a pilot trial of 16 participants was published in 2011 [10].
Adherence to the diet is a common difficulty [10,11]. Given the profusion of interest in
ketogenic diets, there are now more keto-friendly foods and cookbooks available, which
can help with diet adherence.
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Metabolic approaches work systemically [12], as opposed to targeted therapies, which
require specific targeting towards an individual’s cancer genetics [13]. Given that the
Warburg effect is a hallmark of cancer [14], a reduction in the fuel available to cancer cells
can systemically shift the body environment to be more hostile to cancer [15].

There are multiple interventions that one can apply, each of which affects a less con-
ducive environment for cancer growth. Therapeutic combinations that stress the cancer
through multiple pathways can prevent cancer progression, encouraging reversal and
remission. Typically, therapeutic combinations are studied either in isolation or in combina-
tion with a few other (often complementary) therapeutic interventions.

Cancer fitness is a multidimensional landscape, and combinations of interventions can
be selected to reduce tumor fitness while maintaining the fitness of normal cells. Metabolic
reprogramming in cancer cells opens a significant number of therapeutic modalities. Not
only does dietary ketosis proportionately disfavor cancer cells from an energy availabil-
ity standpoint, but it also deprives the cancer cell of the vital building blocks for cell
replication [16], and ketones may act independently as anti-oncogenic factors [17–20].

The metabolic shift to glycolysis is also useful for the tumor microenvironment prior
to angiogenesis, which is a hypoxic condition [7]. The rapidly dividing nature of cancer
cells prioritizes glycolytic metabolism, and the Warburg effect enables faster glucose break-
down [21,22]. Glycolysis provides substrates for nucleic acid biogenesis in rapidly dividing
cancer cells [23], and can produce more energy per unit time compared to non-cancerous
cells, despite the inefficiencies [24].

Beyond anaerobic glycolysis (i.e., the Warburg effect), other metabolic shifts occur in
cancer cells. In a 2016 review, authors Pavlova and Thompson identified six metabolic hall-
marks: (1) deregulated uptake of glucose and amino acids, (2) use of opportunistic modes
of nutrient acquisition, (3) use of glycolysis/TCA cycle intermediates for biosynthesis and
NADPH production, (4) increased demand for nitrogen, (5) alterations in metabolite driven
gene regulation, and (6) metabolic interactions with the microenvironment [25]. That is to
say that the differences between cancer and healthy cell metabolism are not limited to the
Warburg effect. A more recent review adds the following emerging metabolic hallmarks of
cancer: an increased need for electron receptors and a greater reliance on oxidative stress
protection mechanisms. Additionally, the heterogeneity of metabolic reprogramming, even
within a single tumor, is worth considering, as well as the interaction of the tumor with
whole body metabolism [26].

The metabolic paradigm of cancer research is still novel and requires much more
fervent investigation. However, it demonstrates great therapeutic promise, both in terms of
mechanistic understanding and clinical data [27].

Several existing and investigational anticancer agents act on metabolic pathways.
Dichloroacetate, for example, inhibits pyruvate dehydrogenase kinase, in turn increasing
pyruvate flux into the mitochondria. This promotes glucose oxidation, as opposed to gly-
colysis [28], which is the primary source of energy for cancer cells [24], thereby decreasing
the energy available to cancer cells [29].

Metabolic approaches also demonstrate potential in the adjunctive setting, when
combined with other approaches. Combining chemotherapy with a ketogenic diet can
enhance the effect of chemotherapy [30–32]. Additionally, ketone body metabolism can
suppress reactive oxygen species and enhance antioxidant capability [12], which may be
a mechanism behind its positive impacts in cancer radiotherapy [33,34]. For the case of
immunotherapy, the ketogenic diet may be beneficial in the adjunctive setting [35–37].

The interventions covered in this review are summarized in Table 1 and the associated
infographic Figure 1. This review is not intended as a guide for treatment, but it may
inform cancer treatment using repurposed drugs in the future.
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Table 1. A summary table of repurposed drugs including their mechanism, evidence for treatment
efficacy, toxicity information and typical dosages. Italicized interventions are possible alternatives to
the above interventions.

Intervention Mechanism Evidence Toxicity Dosage Per Day

Metabolic and Lifestyle Interventions for Cancer Treatment

Glucose management
and ketogenic diet

Restricting carbohydrates
prevents their conversion to

glucose, impacting the body’s
metabolic and energy

functions [38,39].

Prevent the high glucose spikes
that fuel cancer [40].

Some possible complications
for select populations.

Ketogenic diet (<50 g
carbohydrates per day) in 8 h

eating window [41].

Exercise Multiple mechanisms [42]. Improved survival
outcomes [43–48]. Possible overuse. 30 min per day [49].

Stress Reduction Multiple mechanisms [50].
Stress is associated with higher
cancer risk and poorer survival

outcome [51–53].
No known fatalities. Daily mindfulness.

Sleep Multiple mechanisms [54]. Healthy sleep is essential for
metabolic regulation [55]. 7–8 h per night for adults [56].

Tier One Repurposed Drugs—Strong Recommendation

Vitamin D

Inhibiting angiogenesis [57].
Stimulating adherence of

cells [58]. Enhancing
intercellular

communication [59,60].

Statistically significant reductions
in cancer mortality [61].

More significant reductions in
cancer risk for those with normal

BMI (<25) [62].

Serum 25-hydroxyvitamin D
higher than 150 ng/mL are

hallmark of vitamin D toxicity
due to hypercalcemia [63].

20,000 to 50,000 IU
daily [64,65].

Melatonin Multiple mechanisms [66,67].

Low levels of melatonin increase
breast cancer risk [68].

Increases cancer remission and
survival rates [69].

Oral LD50 in mice:
1.25 g/kg [70].

Start at 1 mg and increase to
20–30 mg at night

(extended/slow release) [71].

Green tea catechins

Inhibition of mitochondrial
glutamate dehydrogenase by
epigallocatechin gallate [72].
Suppression of cancer stem

cells [73,74].

Green tea drinkers have lower risk
of breast cancer [75].

Lowers risk of multiple
cancers [76].

Lowers risk of non-Hodgkin’s
Lymphoma [77].

EGCG: Mouse oral LD50
2.2 g/kg.

500–1000 mg daily of green
tea extract [78].

Metformin

Blood glucose
stabilization [79].

Inhibition of AMPK/mTOR
pathway [80].

Lower incidence and higher
survivability [81] of colorectal

cancer [82].
Survival benefit for people with
prostate cancer and concurrent

diabetes [83].
Lower risk of cancer in people

with type 2 diabetes [84].

Oral LD50 in rats: 1 g/kg [85]. 1000 mg twice daily.

Curcumin
Inducing apoptosis

selectively in cancer cells [86].
Multiple mechanisms [87].

Significant heterogeneity in trials
depending on curcumin

formulation [88].

Oral LD50 in rats:
>5 g/kg [89].

400–600 mg daily [90] or as
per manufacturer’s
suggested dosing.

Mebendazole Inhibits cancer-associated
signaling pathways [91].

Case reports show
improvement [92,93]. Case series
with related drug fenbendazole

show promise in treating
genitourinary malignancies [94].

Oral LD50 in mice:
>1280 mg/kg [95]. 100–200 mg daily [96].

Omega 3

Modulation of
cyclooxygenase activity,

alteration of membrane and
cell surface receptor

function [97,98].

Protective against breast cancer in
Asian patients [99].

Lower levels of Omega 3 relative
to Omega 6 associated with higher

cancer mortality [100].

N/A
Possible heavy metal toxicity
from extreme overuse [101].

2–4 g/day [102].

Berberine Multiple
mechanisms [103,104].

Can reduce risk of colorectal
cancer [105].

Reduces tumor volume in animal
studies [106].

Mouse oral LD50:
329 mg/kg [107].

A daily dose of 1000–1500 mg
or 500–600 mg two or three

times daily [108].

Atorvastatin Multiple
mechanisms [109,110]. Improvement [111–118]. Oral LD50 in mice:

>5 g/kg [119]. 40 mg 2x/day [120].

Simvastatin Multiple mechanisms [109,110].

Case series shows simvastatin may
increase radiosensitivity of cancer

cells [121].
Statin use in US population
associated with lower cancer

mortality [114].

Oral mouse LD50: 3 g/kg [122]. 20 mg 2x/day as an alternative
to atorvastatin [123].

Disulfiram Multiple
mechanisms [124,125].

Reduces tumor activity in breast
cancer [126]. Oral rat LD50: 9 g/kg [127]. 80 mg 3x daily or 500 mg

once daily [128,129].
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Table 1. Cont.

Intervention Mechanism Evidence Toxicity Dosage Per Day

Cimetidine
Interferes with tumor cell

adhesion, angiogenesis, and
proliferation [130].

Improvement in gastric cancer
survivability [131].

Improvement in survivability of
surgical treatment of colorectal

cancers [132].

Oral rat LD50: 5 g/kg [133]. 400–800 mg twice daily [134].

Mistletoe
Protein synthesis interference,

cell-cycle inhibition, and
inducing apoptosis [135,136].

evidence of the efficacy of
mistletoe extracts in gastric and

female genital cancer [137].

Peritoneal rat LD50: 1–3 g/kg
for stem aqueous

extract [138].

Given subcutaneously by an
integrative oncologist.
Typical dose 600 mg

3x/week [139].

Ashwagandha

Modulates mitochondrial
function, facilitates
apoptosis, mitigates

inflammations [140–142].

Non statistically significant
increase in 24-month survival

rates [143].
A meta-analysis of 12 trials
demonstrated its significant

reduction of anxiety (p = 0.005)
and stress levels (p = 0.005)
compared to placebo [144].

Mice oral LD50: 2 g/kg [145]. 2 g daily [146].

Sildenafil Enhances drug
sensitivity [147]. N/A Increase in adverse events

above 200 mg [148]. 20 mg daily [149].

Itraconazole

Inhibits P-glycoprotein,
disrupts abnormal Hedgehog
and Wnt/β-catenin signaling,

hinders angiogenesis,
and triggers

autophagocytosis [150–160].

Phase II clinical study on
itraconazole demonstrated
significant improvement in

progression-free and overall
survival combined with

pemetrexed [151].

Rat oral LD50:
>320 mg/kg [161]. 400–600 mg daily [162].

Tier Two Repurposed Drugs—Potential Therapeutic Agents

Low dose naltrexone
(LDN)

Interfering with cell
signaling [163].

Immunomodulation [164].
Anti-inflammatory [165].

Improvement in tumors including
non-small cell lung cancer

(NSCLC) [166].
suppress human ovarian

cancer [167].

Oral mouse LD50:
1 g/kg [168]. 1–4.5 mg daily [169].

Doxycycline Inhibiting anti-apoptotic and
angiogenic proteins [170]. N/A Oral rat LD50: 2 g/kg [171].

100 mg daily (for cycles of
2 weeks—use

sparingly) [172].

Spironolactone

Effects the hallmarks of
immune protection, invasion,
and metastasis activation, and

cell death resistance [173].

Spironolactone dramatically
decreased the incidence of
prostate cancer in clinical
investigations [174–176].

Oral mouse LD50:
>1 g/kg [177]. 50–100 mg/day [175].

Resveratrol
Induction of apoptosis [178].

Inhibition of cancer stem
cells [179].

In vivo evidence for anti-cancer
effect, high heterogeneity in

humans [180].

Predicted oral rat LD50, 48 h:
870 mg/kg/day [181]. 500 mg, 2x daily [182].

Wheatgrass
Inhibition of metastasis and
angiogenesis. Induction of

apoptosis [183].
N/A

No observed toxicity at
>2 g/kg oral dose in mice for

14 days [184].

9 g fermented wheat germ
extract daily [185].

Captopril

Inhibits angiogenesis and
blocks neovascularization.

May play a role in the
decrease of metastases (741).

In vivo and in vitro anticancer
activity [186,187]. Rat oral LD50: 7 g/kg [188]. Unknown, but typical dose

12.5 mg [189].

Additionally, non-recommended interventions with a lower evidentiary basis for their
efficacy are included in Table 2 and the associated infographic Figure 2.
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Figure 1. An infographic of Tier 1 (strong recommendation) and Tier 2 (weak recommendation)
repurposed drugs.
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Table 2. An overview of potential anticancer agents with a weaker evidentiary basis (tier three),
and ones that are recommended against (tier four).

Intervention Mechanism Evidence Toxicity Dosage Per Day

Tier Three Repurposed Drugs-Equivocal Evidence

Aspirin Multiple mechanisms [190].
Protective effect on

esophageal cancer [191], and
other cancers [192].

Oral mouse LD50:
250 mg/kg [193]. 325 mg daily [194].

Diclofenac Multiple mechanisms [195].

Improved disease free
survival in breast cancer

surgery [196].
Normalizes skin lesions when

applied topically [197].
Case studies shows

improvement [198–202].

Mouse oral LD50:
170 mg/kg [203].

Diclofenac 75–100 mg daily as
alternative to aspirin [196].

Nigella Sativa
(thymoquinone)

p53, NF-κB, PPARγ, STAT3,
MAPK, and PI3K/AKT

signaling pathways [204].

Improved treatment outcome
in acute lymphoblastic

leukemia in children [205].

Oral mouse LD50: 29
mL/kg [206].

400–500 mg encapsulated oil
twice daily, avoid during

pregnancy [207].

Reishi Immunomodulation [208,209]. 50% increased effectiveness of
cancer chemotherapy [210].

Oral mouse LD50:
>10 g/kg [211].

6–12 g of Reishi extract per
day [212].

Ivermectin Regulates multiple signaling
pathways [213,214].

Case series showed
improvement in patient

symptoms when combined
with dichloroacetate [215].

Mouse oral LD50:
>27 mg/kg [216]. 12–60 mg 2x/week [215].

Dipyridamole Increases tumor
chemosensitivity [217].

Increases efficacy of other
anti-cancer agents [218–220]. Rat oral LD50: 8 g/kg [221]. 100 mg twice daily [222].

Intravenous Vitamin C
Targeted killing (through
intracellular generation of
H2O2) of cancer cells [223].

Improved life quality in
cancer patients [224], lowered

inflammation [225].

Rat intravenous LD50
>4 g/kg [226].

50–75 g IV as per
protocol [227–230].

Dichloroacetate

Inhibits dehydrogenase kinase
to inhibit metabolic

reprogramming by cancer
cells [231].

Greater treatment response,
but no impact on

survival [232].
Rat oral LD50 5 g/kg [233]. 500 mg two/three times

daily [234].

Cannabinoids
Induction of cancer cell death by

apoptosis and inhibition of
cancer cell proliferation [235].

Useful in treating refractory
chemotherapy-induced
nausea and vomiting.

Case studies show possible
benefit [236].

THC
Mouse oral LD50:
500 mg/kg [237]

CBD
Mouse oral LD50:
>100 mg/kg [238].

Daily doses range from 10 to
800 mg CBD and from 5 to

8 mg THC [239].

Fenofibrate
Stimulation of peroxisome

proliferator activated receptor α
(PPARα) [240].

No clinical data. Mouse oral LD50:
1.6 g/kg [241]. N/A

Pao Pereira Inhibition of NF kappa B
Signaling [242].

Effectiveness in prostate
cancer [243]. Limited information. N/A

Potential Adjunctive Therapies

Tumor Treating Fields
Multiple mechanisms,

induction of apoptosis and
autophagy [244].

N/A N/A

Photodynamic therapy

Direct cellular damage, vascular
shutdown and activation of

immune response against tumor
cells [245].

N/A N/A

Hyperbaric Oxygen
Elevates levels of reactive

oxygen species to signal cell
death in cancer cells [246].

N/A Possible adverse
reactions [247].

Tier Four Repurposed Drugs—Recommend Against

Shark cartilage

Inhibition of angiogenesis.
Sphyrnastatin 1 and 2 have
anti-angiogenic activity and

inhibit neovascularization [248].

N/A Gastric adverse events [249],
potential neurotoxicity [250].

Laetrile (amygdalin) Multiple mechanisms [251]. Produced few clinical side
effects [252]. Rat oral LD50: 0.9 g [253].
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2. Lifestyle Interventions for Preventing and Treating Cancer
2.1. Glucose Management and Ketogenic Diet

A carbohydrate-restricted diet, specifically a ketogenic diet, high in saturated fat and
Omega-3 fatty acids, is suggested for various health benefits, including its potential role
in cancer management [254]. The diet emphasizes avoiding processed foods, particularly
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those with high glycemic index values, and promotes the consumption of real foods such
as vegetables, nuts, fish, chicken, eggs, and certain fruits [254–256]. Continuous glucose
monitoring is recommended to track blood glucose levels, and a blood ketone meter is
advised to confirm the patient’s state of ketosis [257].

To flatten the blood glucose curve, various interventions are recommended, including
eating foods in the right order (starting with vegetables, followed by protein and fat, and
ending with starches), skipping breakfast, avoiding snacking, and incorporating vinegar or
fiber tablets before consuming starchy or sweet foods [258]. Establishing and restoring a
normal microbiome is highlighted as an essential aspect of regulating blood glucose levels
and improving insulin sensitivity, with suggestions including consuming a diverse range of
foods, fermented foods, and prebiotic fiber, and reducing stress and unnecessary antibiotic
use [259–265]. Avoiding seed oils high in linoleic acid is advised, while using healthy oils
such as olive oil, avocado oil, coconut oil, flaxseed oil, walnut, and pecan oils, and butter is
recommended [266–269].

Overall, these dietary and lifestyle recommendations aim to support health and
potentially impact cancer management positively by optimizing blood glucose levels,
promoting a favorable microbiome, and ensuring a balanced intake of fats and oils.

2.1.1. Mechanism

Restricting carbohydrates induces the body to adopt ketosis as its glucose fuel source
is restricted and it must necessarily meet energy demands through another mechanism.
This mechanism is ketosis, with which it is difficult to meet the metabolic demands of
cancers, as these cells have damage to the cellular respiration pathways and ferment glucose
preferentially. Ketones also have antitumor effects [17,18,20]. Therefore, being in a state of
ketosis is deleterious to the cancer cells while being neutral or even beneficial to the normal
cells [12,15].

Carbohydrate restriction upregulates ketone production in the liver, either in a state of
fasting or a ketogenic diet [270]. Cancer metabolism preferentially uses glucose [271].

The state of ketosis can also positively impact the immune targeting of cancer cells [272].
Reducing angiogenesis is also a promising therapeutic strategy for cancer [273], that is also
accomplished in ketogenic diets [274].

2.1.2. Clinical Evidence

Multiple trials have been performed in the last decade showing the clinical benefit of
ketogenic diets in the treatment of cancer, showing an antitumor effect in the high majority
of trials [275].

2.1.3. Dosing Recommendations

It typically takes two weeks to adjust to the state of ketosis when stating a ketogenic
diet [276]. Ketogenic diets (KDs) are very low-carbohydrate, as carbohydrate metabolism
will disrupt the onset of ketosis. While standards for the cutoff of carbohydrates vary,
keeping the daily intake of carbohydrates below 50 g (not including fiber) is important to
maintaining the state of ketosis [41].

Individuals with the following conditions should not embark on the ketogenic diet [277]:
primary carnitine deficiency, carnitine palmitoyltransferase deficiency, carnitine translo-
case deficiency, β-oxidation defects, pyruvate carboxylase deficiency, or porphyria. Other
relative contraindications are included in a recent review [278].

It is recommended to start at a higher level of carbohydrates and taper down grad-
ually [279]. Before starting on the KD, it is recommended to perform a consultation
which provides relevant information, sets expectations, and provides resources, including
cookbooks [278–280]. Moreover, 90% of experts recommend multivitamin and mineral
supplementation for those using a KD [278]. Specifically, these include calcium and vitamin
D3 [278]. Additionally, adequate fluid intake (30–35 mL/kg/d) is recommended, which
works out to 2.7 L to 3.2 L per day for a 90 kg person.
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These resources are useful, as adherence is often an issue [281], though development
on diet formulation helps with adherence, and is similar to a modified Mediterranean
diet [282]. A low-carbohydrate diet study managed to maintain 85% adherence over
2 years [283].

For this reason, we recommend the tools of a continuous glucose monitor and ke-
tone test strips, as the latter can demonstrate ketogenic diet adherence by testing β-
hydroxybutyrate (BHB) levels [284], which can provide a definite indication that one
is in a state of ketosis.

Recommendations for ketogenic diets are provided in the existing literature [277,285,286],
and require some tailoring to the individual’s needs. Nutrient deficiencies can manifest
over long periods of time on ketogenic diets, including vitamin D, selenium, magnesium,
iron, and carnitine [287]. Several practitioners recommend supplementation for nutrients
where there is an insufficient level in the diet [288]. Some supplements may also assist in
the metabolic shift to ketosis [289], as fatigue is common during the transition [290].

2.2. Exercise

Lifestyle modification is crucial for reducing the risk of death from cancer and im-
proving quality of life. This includes exercise, a healthy diet, and stress reduction [49,291].
Patients with cancer and metabolic syndrome face an increased risk of distant metastasis
compared to those without the syndrome [292]. Regular exercise, combining aerobic activity
and resistance training, is recommended during cancer treatment to improve cardiovascu-
lar fitness, cognition, and mood, and reduce fatigue, anxiety, and depression [44,293–297].
Resistance training also helps preserve muscle mass, reducing insulin resistance, improving
glucose control, and potentially increasing overall survival, as sarcopenia is a negative
prognostic factor in cancer patients [45].

The Combined Aerobic and Resistance Exercise (CARE) Trial demonstrated that a
combined dose of 50–60 min of aerobic and resistance exercise performed three times
weekly led to better patient-reported outcomes and health-related quality of life compared
to performing aerobic exercise alone during breast cancer chemotherapy [298]. Meta-
analyses have shown the benefits of exercise in various types of cancer, including breast
cancer treated with adjuvant chemotherapy and/or radiotherapy, colorectal cancer treated
with chemotherapy, lung cancer treated with chemotherapy, prostate cancer treated with
radiation therapy, and hematologic malignancies [293]. Engaging in at least 30 min of
moderate-intensity physical activity at least five days a week, or 75 min of more vigorous
exercise, along with two to three weekly strength training sessions, is encouraged for
patients [44,49]. There is evidence of an inverse dose–response effect between hours per
week engaged in physical activity and breast cancer mortality, indicating that more hours of
exercise have increased benefits [47,48]. Walking, particularly in the sunshine, is beneficial
for physical, emotional, and psychological well-being [299,300].

2.3. Stress Reduction and Sleep

Psychosocial stress is associated with a higher incidence of cancer and poorer survival
in cancer patients [51]. To reduce stress, patients are advised to engage in stress-reducing
activities like meditation, yoga, and mindfulness exercises, along with getting at least 8 h of
high-quality sleep [51,301–306]. Ashwagandha, an adaptogenic herb, has been proven to be
safe and effective in combating stress and improving sleep quality [307–309]. In randomized
controlled trials, Ashwagandha extract significantly reduced stress levels and cortisol
levels, and improved cognition and mood [310]. Meta-analyses also demonstrated that
Ashwagandha supplementation significantly reduced anxiety and stress levels compared to
placebo, with an optimal dosage of up to 12,000 mg daily for anxiety and 300–600 mg daily
for stress [144,311]. However, caution should be exercised as Ashwagandha can activate
the immune system and should not be used with immunosuppressive drugs or during
pregnancy and breastfeeding [310].
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Adequate and high-quality sleep is crucial for neural development, learning, memory,
and cardiovascular and metabolic regulation [55]. Disruptions in sleep are associated with
a greater cancer risk [312]. Additionally, in those receiving treatment for cancer, sleep
disruptions are common [54,313]. For healthy individuals, the National Sleep Foundation
recommends seven to nine hours of sleep for younger adults and seven to eight hours for
older adults [56]. Healthy sleep is characterized by good quality, indicated by factors such
as short sleep latency, minimal awakenings during the night, and high sleep efficiency [314].
Insomnia, defined as difficulty initiating or maintaining sleep, is associated with daytime
symptoms like fatigue, cognitive impairment, or depression [315]. Short sleep duration,
less than six hours per day, is associated with increased mortality [316]. Ashwagandha
supplementation has been found to improve sleep, particularly in adults with insomnia,
with positive effects on sleep quality, sleep onset latency, total sleep time, wake time after
sleep onset, and sleep efficiency [315]. The optimal treatment dosage is >600 mg daily for
more than 8 weeks [315].

3. Recommended Supplements and Medications for the Treatment of Cancer

This review summarizes the most promising repurposed drugs for treating cancer, in-
cluding their mechanism of action, clinical efficacy (if available), and dosing considerations,
including safety. These are summarized in Table 1.

For evidence, we include first meta-analyses of clinical trials. If these are not available,
we then include individual clinical trials. If these are not available, we include case series,
and then case studies. If human studies are not available, we rely on preclinical evidence.

The prices of the different compounds have been compiled in Table 1, which in-
cludes their prices through common bulk suppliers for natural products, supplements,
and nutraceuticals. For the case of drug prices, US prices are found using the website
https://www.pharmacychecker.com/ (accessed on 11 September 2023).

3.1. Vitamin D

Vitamin D is synthesized in the human skin through the influence of UV B radiation
and is then converted into the active form, 1,25-dihydroxyvitamin D3 (calcitriol), in the
kidney [317–319]. 25-hydroxyvitamin D3 (25(OH)D3) is considered the best indicator of
vitamin D status, with a level > 30 ng/mL considered normal, 20–30 ng/mL considered
insufficient, and <20 ng/mL considered deficient [318–320]. Recent data suggest that a
level > 50 ng/mL is desirable, and, ideally, targeting a level between 55 and 90 ng/mL is
preferable [317,321–323]. Adequate vitamin D supplementation is important to achieve
optimal levels in patients with low vitamin D levels, and using 50,000 IU D3 capsules in
divided doses over a few days is recommended [317,322,323] (Supplementary Table S1).

Vitamin D plays a critical role in various physiological pathways, including energy
metabolism, immunity, and cellular growth [324]. It has pleiotropic functions and regulates
over 1200 genes within the human genome, with a significant role in the modulation of the
immune system [317,325,326]. Observational and randomized controlled studies indicate
that a low vitamin D status is associated with higher mortality from conditions like cancer
and cardiovascular disease [327,328]. Vitamin D deficiency increases the risk of breast,
colon, prostate, and other cancers, while supplemental vitamin D intake has an inverse
relationship with cancer risk [318,329]. Higher latitudes are associated with increased risk
of vitamin D deficiency and various cancers, with vitamin D supplementation likely playing
a crucial role in cancer prevention [318,330]. Achieving a vitamin D level of 80 ng/mL may
reduce cancer incidence rates by 70% [331].

3.1.1. Mechanism

Vitamin D exhibits diverse antineoplastic activity through various pathways. It binds
to the vitamin D receptor and induces differentiation and apoptosis; it also inhibits cancer
stem cells, proliferation, angiogenesis, and metastatic potential [332]. It promotes apoptosis
of cancer cells, inhibits WNT-β catenin signaling, and has anti-inflammatory effects by

https://www.pharmacychecker.com/
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downregulating nuclear factor-Kβ and inhibiting cyclooxygenase expression [333–335].
Vitamin D also regulates cell cycle, growth factor pathways, and immune responses against
tumor cells [331,336]. It triggers autophagic death, promotes cell differentiation, and
exhibits anti-angiogenic effects [331,337,338]. These mechanisms collectively contribute to
vitamin D’s anticancer effects and may help reduce cancer incidence and mortality [330].

3.1.2. Clinical Evidence

Multiple studies indicate that a significant proportion of cancer patients are vitamin
D-deficient (level < 20 ng/mL) and that higher plasma 25-hydroxyvitamin D levels are
associated with improved survival in colorectal, breast, gastric, and lymphoma cancer
patients [328,332,339–345]. Meta-analyses and clinical trials demonstrate that vitamin D
supplementation may reduce cancer mortality and improve survival in cancer patients,
especially when used in combination with chemotherapy [346–352]. SUNSHINE, a clinical
trial on metastatic colorectal cancer patients, showed that “high-dose” vitamin D3 (aiming
for a level of >50 ng/mL) combined with standard chemotherapy resulted in improved
progression-free survival compared to standard-dose vitamin D3 [332]. Adequate vitamin
D dosing aiming for a level between 55 and 90 ng/mL may have additional benefits
in cancer patients [332]. Vitamin D supplementation is suggested to have additive or
synergistic effects when combined with conventional chemotherapy [353,354].

3.1.3. Dosing Recommendation

Vitamin D supplementation is likely beneficial for most types of cancers, especially
breast, colorectal, gastric, esophageal, lung, and prostate cancer, lymphomas, and melanoma.
Due to the severe vitamin D deficiency observed in most cancer patients, a high loading dose
of vitamin D is recommended, followed by dose titration aiming for a level of >50 ng/mL
(target 55–90 ng/mL). Some types of cancer may require higher levels, up to 150 ng/mL,
to halt growth and metastasis. Daily doses of 20,000 to 50,000 IU/day are suggested until
the desired vitamin D level is reached. It is important to monitor vitamin D levels to
ensure appropriate maintenance dosing, and daily dosing of vitamin D3 is preferred over
large intermittent bolus dosing. Vitamin K2 (menaquinone (MK4/MK7)) and magnesium
are recommended in conjunction with high vitamin D doses (>8000 IU/day). Measuring
parathyroid levels and calcium levels can help titrate the vitamin D dose according to the
Coimbra Protocol [64,65].

3.2. Melatonin

Melatonin, a lipophilic molecule synthesized by the pineal gland with a circadian
pattern, exhibits elevated levels at night and contributes to homeostatic metabolic rhythms
and disease protection [71]. It acts through MT1 and MT2 receptors found throughout the
body, functioning as a potent antioxidant and playing a crucial role in normal mitochondrial
function and oxidative phosphorylation [355]. Exposure to light at night can disrupt
melatonin production and the circadian rhythm, and melatonin levels decrease with age
after 40 [356]. Melatonin’s widespread biological effects are facilitated by its receptors, and
it is also produced in mitochondria under near-infrared irradiation, further adding to its
diverse properties [357,358].

3.2.1. Mechanism

Low melatonin levels have been associated with cancer development, and various
studies have shown reduced melatonin levels in cancer patients compared to healthy indi-
viduals of the same age [356]. Disruption of nocturnal melatonin secretion, as seen in night
shift workers, is linked to a modestly increased risk of breast and other cancers [359,360],
and a long-term study found elevated breast cancer incidence among female airline cabin
crew. Experimental models have demonstrated melatonin’s broad spectrum of anticancer
activity, involving cytotoxic, anti-mitotic, and pro-apoptotic actions in breast cancer cells,
primarily mediated by the MT1 membrane receptor [66,67]. Melatonin inhibits cancer
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stem cell proliferation, reduces Ki67 and matrix metalloproteinase 9 expression [361], and
switches cancer cells from anaerobic glycolysis to oxidative phosphorylation, slowing their
proliferation, reducing metastatic potential, and inducing apoptosis [362,363]. Addition-
ally, melatonin exhibits anti-angiogenic effects, modulates the PI3K and MAPK signaling
pathways [361], and stimulates T cell and natural killer cell production while reducing
regulatory T cells [364,365].

3.2.2. Clinical Evidence

In addition to case studies [366,367], the clinical benefit of melatonin in patients
with cancer is supported by the highest level of evidence, namely, meta-analyses of
RCTs [368,369]. Seely et al. systematically reviewed the effects of melatonin in conjunction
with chemotherapy, radiotherapy, supportive care, and palliative care on 1-year survival,
complete response, partial response, stable disease, and chemotherapy-associated toxici-
ties [369]. This analysis included 21 randomized studies all of which studied solid tumors.
The pooled relative risk (RR) for 1-year mortality was 0.63 (95% CI = 0.53–0.74; p < 0.001).
Improved effects were found for complete response, partial response, and stable disease.
In trials combining melatonin with chemotherapy, adjuvant melatonin decreased 1-year
mortality (RR = 0.60; 95% CI = 0.54–0.67).

3.2.3. Dosing

Melatonin may be active in several cancers including cancers of the breast, ovary,
pancreas, liver, kidney, mouth, stomach, colon/rectum, brain, lung, prostate, head and
neck, and various leukemias and sarcomas [66,67]. Providers should advise patients to
begin with 1 mg at night; a slow-release/extended-release preparation is suggested to
minimize REM sleep-induced nightmares (best taken an hour before retiring). The dose
should be increased up to 20–30 mg, as tolerated [71].

3.3. Green Tea
3.3.1. Mechanism

The biochemical impact of green tea on cancer is multifarious, as green tea is a com-
bination of many bioactive compounds. Of particular interest are catechins, of which
epigallocatechin gallate (EGCG) is the most abundant [370]. Green tea catechins (GTCs),
especially EGCG, have demonstrated anticancer effects in various experimental models
by inhibiting cancer growth and modulating multiple signal pathways involved in cancer
cells [371–373]. EGCG inhibits mitochondrial glutamate dehydrogenase (GDH) [374] and
interferes with the VEGF, STAT3, MAPK, and Wnt pathways, leading to the suppression of
angiogenesis and tumor cell proliferation [375]. It also suppresses invasion and metastasis
by inhibiting MMP activities and promotes the tissue inhibitor of MMP expression [375].
Moreover, GTCs alter the tumor microenvironment, enhancing anticancer immunity by
increasing active cytotoxic T lymphocytes and switching “cold” tumors to “hot”, with
improved anti-tumor immune therapeutics [376]. EGCG also downregulates the TLR-4
signaling pathway implicated in cancer cachexia [377]. Green tea extract has been shown
to suppress cancer stem cells [73,74]. GTCs may have synergistic anticancer activity when
combined with other phytochemicals, such as resveratrol [378].

3.3.2. Clinical Evidence

Numerous experimental models and epidemiological data support the anticancer ef-
fects of green tea catechins (GTCs). A meta-analysis showed an inverse association between
tea catechin intake and various cancers [370], and another meta-analysis demonstrated
that GTCs reduced the risk of gastrointestinal, breast, gynecological, leukemia, lung, and
thyroid cancers [379]. Case reports and clinical studies also observed positive outcomes in
patients with B cell malignancies and chronic lymphocytic leukemia (CLL) treated with
GTCs [380,381]. In a randomized trial, GTCs significantly reduced the risk of prostate
cancer [382,383]. Green tea catechins may be effective against various tumors, including
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prostate, breast, uterus, ovary, colorectal, glioma, liver, gallbladder, melanoma, and lung
cancers [370].

3.3.3. Dosing

Green tea catechins are recommended to be taken at a dose of 500–1000 mg/day
during or after a meal to minimize the risk of liver toxicity [78]. The US Pharmacopeia
Dietary Supplement Information Expert Committee has concluded that green tea extract is
safe when used and formulated appropriately, but regular liver function tests are advised
for those taking it, and caution should be exercised in patients with underlying liver
disease [384].

3.4. Metformin
3.4.1. Mechanism

Metformin exhibits anticancer activity through direct effects on cancer cells [385],
including inhibition of the AMPK/mTOR pathway [80], as well as indirect effects on the
host through blood glucose-lowering properties and anti-inflammatory effects. It inhibits
complex I of the electron transport chain, forcing cancer cells to rely on glycolysis for ATP
synthesis [79]. Metformin activates AMPK, leading to the suppression of protein synthesis
and cell development, ultimately reducing mTOR action [386]. Additionally, metformin
upregulates PGC-1, which is involved in mitochondrial biogenesis, and interacts with the
SIRT1 pathway, connecting metabolism with cell proliferation [387]. Moreover, metformin
regulates the EGFR and IGFR pathways, which play vital roles in cell growth, proliferation,
and metabolic processes, suggesting its potential to exert an antitumor effect [387]. Further-
more, metformin suppresses cancer stem cells, offering a unique approach in targeting the
root of cancer [388].

3.4.2. Clinical Evidence

Meta-analyses and observational studies have shown that metformin plays a signifi-
cant role in the primary prevention of cancer, reducing overall cancer incidence [389,390].
It has been associated with improved survival and reduced mortality in patients with
various cancers, including colorectal, lung, breast, and prostate cancer [391–393]. Moreover,
metformin demonstrated significant benefits as an adjunctive treatment for colorectal and
prostate cancer, especially in those undergoing radical radiotherapy [394].

3.4.3. Dosing

Metformin shows a broad spectrum of anticancer activity and may be beneficial in pre-
venting various malignancies, including breast, pancreatic, gastric, colorectal, endometrial,
prostate, non-small-cell lung cancer (NSCLC), and bladder cancers [387,392,394–399]. The
recommended dose is 1000 mg twice daily, and it is considered a safe drug with few side
effects [400]. However, prolonged use may lead to vitamin B12 deficiency [401], so supple-
mentation is suggested [402]. Caution should be exercised when combining metformin
with berberine, as it may cause very low blood glucose levels [403]. Close monitoring
is advised, and alternating metformin and berberine monthly may be considered if low
glucose occurs.

3.5. Curcumin

Curcumin, popularly called “curry powder” or turmeric, is a polyphenol extracted
from Curcuma longa. Curcumin has antioxidant, anti-inflammatory, antimicrobial, antiviral,
and anticancer properties [87].

3.5.1. Mechanism

Curcumin, a bioactive compound found in turmeric, exhibits a wide range of anti-
cancer effects by targeting multiple cell signaling pathways in cancer cells [87]. It interferes
with the cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis,
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and inflammation [404]. Curcumin suppresses the activity of NF-κB, a key regulator of
cancer-related processes, and inhibits STAT3 activation, which promotes cancer growth and
survival [405,406]. It downregulates HER2-tyrosine kinase and interferes with EGFR sig-
naling, inhibiting breast cancer cell growth and proliferation [407–409]. Curcumin induces
apoptosis and inhibits angiogenesis, even in the hypoxic tumor microenvironment, and also
shows activity against cancer stem cells [410]. It triggers apoptosis through ROS-mediated
ER stress and mitochondrion-dependent pathways and acts on the Wnt/-catenin path-
way [411]. Overall, curcumin demonstrates a promising potential as a natural anticancer
agent with multiple mechanisms of action [412].

3.5.2. Clinical Evidence

The clinical use of curcumin for its broad anticancer activities has been limited by
its poor bioavailability, attributed to low absorption, extensive biotransformation, and
rapid elimination [404]. Various curcumin analogs and drug delivery systems are being
investigated to enhance bioavailability [404]. Despite limited clinical studies, some have
shown promising results. In patients with multiple myeloma, the addition of curcumin to
standard treatment increased remission rates and reduced inflammatory markers [413]. In
metastatic colorectal cancer, curcumin as an adjunctive therapy to chemotherapy improved
overall survival. In advanced pancreatic cancer, a phytosome complex of curcumin showed
a response rate and disease control rate [414,415]. In advanced metastatic breast cancer,
intravenous curcumin in combination with paclitaxel resulted in a significantly higher
objective response rate [416]. Dose escalation studies demonstrated that daily doses of up
to 10 g of curcumin were well tolerated in patients with breast and prostate cancer.

3.5.3. Dosing

Curcumin (turmeric) may be beneficial for various types of cancers, including colorec-
tal, lung, pancreatic, breast, prostate, chronic myeloid leukemia, liver, gastric, brain tumors,
ovarian, skin, head and neck, lymphoma, esophageal cancer, and myeloma [87,415,416]. Its
clinical use has been limited by poor solubility, absorption, and bioavailability [412,417].
Formulating curcumin into nanocarrier formulations can overcome these limitations and
enhance therapeutic efficacy [418]. It is recommended to use USP-grade supplements to
ensure product quality. A common therapeutic dose is 400–600 mg per day [90]. Curcumin
is generally safe with doses of up to 8–10 g/day, but diarrhea may occur if the daily dose
exceeds 4 g [419]. Long-term use should be monitored for potential hepatotoxicity, and cur-
cumin may interact with certain drugs, including anticoagulants and antibiotics [417,420].

3.6. Mebendazole
3.6.1. Mechanism

Mebendazole (MBZ), originally developed to treat parasitic worms, disrupts cellular
microtubule formation in abnormal cancer cells, inhibiting tumor progression factors such
as tubulin polymerization, angiogenesis, pro-survival pathways, matrix metalloproteinases,
and drug resistance proteins [421,422]. It targets cancer stem cells, inhibits the Hedgehog
pathway, activates apoptosis through Bcl-2 inactivation and caspase activation, and modu-
lates the MAPK pathway [423,424]. MBZ interferes with cancer cells’ glycolysis-dependent
metabolism and inhibits mitochondrial oxidative phosphorylation. It crosses the blood–
brain barrier, slowing the growth of gliomas, and enhancing sensitivity to chemotherapy
and radiotherapy [425]. MBZ can also sensitize cancer cells to conventional therapy, making
it a potential adjuvant therapeutic in combination with traditional chemotherapy. When
combined with low-dose chemotherapy, MBZ may also help destroy tumor-associated
macrophage cells, creating an unfavorable environment for cancer growth [426].

3.6.2. Clinical Evidence

Clinical studies on the use of benzimidazoles in cancer are limited to a few case
reports [92,93] and a small case series [94]. Mebendazole is part of the multidrug cocktail
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used in the METRICS study [427]. The use of benzimidazoles, especially fenbendazole, has
gained attention as a repurposed drug for cancer, following the reported experience of Joe
Tippens, who achieved apparent remission from non-small-cell lung cancer with extensive
metastatic disease after taking fenbendazole and nanocurcumin [428]. However, further
research is needed to confirm the efficacy and safety of these treatments.

3.6.3. Dosing

Mebendazole has demonstrated potential benefits in a wide range of cancers, including
NSCLC, adrenocortical, colorectal, chemo-resistant melanoma, glioblastoma multiforme,
colon, leukemia, osteosarcoma/soft tissue sarcoma, acute myeloid sarcoma, breast (ER+
invasive ductal), kidney, and ovarian carcinoma [96,421,422,426]. A suggested dose of
Mebendazole is 100–200 mg/day, and it can be obtained at a more affordable cost from
international compounding pharmacies in India (27 c for a 100 mg tablet) [96].

3.7. Omega-3

Polyunsaturated fatty acids (PUFA), including alpha-linolenic acid (ALA), eicosapen-
taenoic acid (EPA), and docosahexaenoic acid (DHA), have been extensively studied for
their therapeutic effects against various human diseases, including cardiovascular and neu-
rodegenerative diseases, and cancer [96]. These studies have shown the clinical usefulness
and safety of these natural substances. Recent research has also demonstrated the potential
of omega-3 FAs in improving outcomes in certain types of cancer, enhancing the efficacy
and tolerability of chemotherapy, and improving quality of life indicators. Additionally,
omega-3 FAs have been found to have a positive impact on cancer cachexia [96].

3.7.1. Mechanism

Omega-3 fatty acids (omega-3 FAs) have been proposed to exhibit four main antineo-
plastic activities: modulation of cyclooxygenase (COX) activity, alteration of membrane
dynamics and cell surface receptor function, increased cellular oxidative stress, and the
production of novel anti-inflammatory lipid mediators such as resolvins, protectins, and
maresins [97,429]. Omega-3 FAs compete with omega-6 fatty acids (omega-6 FAs), par-
ticularly linoleic acid (LA), which is associated with a pro-inflammatory response. The
balance between omega-3 and omega-6 FAs in the diet influences cancer progression, with
omega-3 FAs promoting tumor cell self-destruction and limiting cancer expansion, while
LA supports tumor cell survival. Omega-3 FAs affect cancer cell replication, cell cycle,
and cell death, and have been shown to sensitize tumor cells to anticancer drugs [430].
They also modulate various signaling pathways, including NF-κB, Notch, Hedgehog,
Wnt, and mitogen-activated protein kinases (MAPKs), and suppress the formation of pro-
inflammatory prostaglandins, thereby influencing inflammatory response, cell growth,
apoptosis, angiogenesis, and metastasis [431,432]. Omega-3 FAs have been found to induce
apoptosis in breast cancer cells, block the activity of colon cancer stem cells, and exhibit
potential anticancer effects [433].

3.7.2. Clinical Evidence

Clinical studies have shown promising results regarding the beneficial effects of
omega-3 fatty acids (omega-3 FAs) in reducing the risk of developing cancer and improving
outcomes in cancer patients. Prospective randomized controlled trials (RCTs) and cohort
studies have demonstrated that the intake of omega-3 FAs is associated with a reduced
risk of breast cancer, colorectal neoplasia, and prostate cancer-related death [102,434–436].
Additionally, supplementation with omega-3 FAs, particularly eicosapentaenoic acid (EPA)
and docosahexaenoic acid (DHA), has been shown to enhance the efficacy of chemother-
apy in breast cancer and non-small-cell lung cancer patients [437], improve survival in
leukemia and lymphoma patients, and ameliorate cancer cachexia symptoms, leading
to an improvement in quality of life and duration of survival [438–440]. These findings
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suggest that omega-3 FAs may serve as a potential complementary or adjuvant therapy in
cancer management.

3.7.3. Dosing

Omega-3 fatty acids may be beneficial in breast cancer, colorectal cancer, leukemia,
gastric cancer, pancreatic cancer, esophageal cancer, prostate cancer, lung cancer, and head
and neck cancer when taken at a dose of 2–4 g daily, but caution should be exercised in
patients on anticoagulants due to the potential risk of bleeding [102].

3.8. Berberine
3.8.1. Mechanisms

Berberine exhibits multiple anticancer mechanisms, including reducing cancer cell
growth, preventing metastasis, and inducing apoptosis [441]. It may also enhance the effects
of other cancer treatments, by sensitizing cells to chemotherapeutic drugs via interactions
with DNA repair proteins [441]. It achieves these effects through various pathways, such
as upregulating miR-214-3p and downregulating SCT protein levels, inhibiting telomerase
activity, deactivating MAPK signaling, and modulating the AMPK-p53, PI3K/AKT/mTOR,
and miR19a/TF/MAPK pathways [442–444]. Additionally, berberine influences the gut
microbiota by increasing the Firmicutes/Bacteroidetes ratio and the relative abundance of
specific bacteria. These actions contribute to its antibacterial properties, which further im-
pact the tumor microenvironment [445]. Berberine’s ability to enhance radiation sensitivity
and the effects of anticancer drugs like cisplatin, 5-fluorouracil, doxorubicin, niraparib, and
icotinib highlights its potential as an effective adjunct therapy for cancer treatment [446].

3.8.2. Clinical Evidence

While there are limited clinical data on the benefits of berberine, a randomized, double-
blind study demonstrated that berberine in a dose of 300 mg twice daily significantly
reduced the risk of recurrent colorectal adenomas following polypectomy [447].

3.8.3. Dosing

Berberine demonstrates anticancer effects in various cancer types, including breast,
lung, gastric, liver, colorectal, ovarian, cervical, and prostate [441]. A suggested daily dose
of 1000–1500 mg is recommended, taken in divided doses throughout the day. Caution
should be exercised when using berberine with certain medications [448], and its use
should be avoided in combination with cyclosporine [449]. Regular monitoring of blood
glucose levels is important, especially when combined with other diabetes medications like
metformin [403]. Patients scheduled for surgery should inform their anesthesia team about
berberine use, as it may need to be discontinued one week before the procedure [442].

3.9. Atorvastatin
3.9.1. Mechanism

Statins exert direct anticancer effects by inhibiting the cholesterol-producing enzyme
HMG CoA, leading to reduced availability of cholesterol needed for cell membrane for-
mation in rapidly proliferating tumors [450,451]. This limitation of cellular proliferation
may hinder cancer growth and metastasis. Statins also modulate gene expression, promote
cancer cell death through caspase reactivation and upregulation of PPARγ, decrease cell
surface glucose receptors, and deplete isoprenoids critical for controlling cancer cell growth
and spread [452,453].

3.9.2. Clinical Evidence

Clinical studies have consistently shown that lipophilic statins, such as simvastatin,
reduce the incidence and mortality of various cancers, including prostate, breast, colorectal,
hepatocellular, and lung [111,116]. Statin use has been associated with improved recurrence-
free survival and reduced cancer-specific mortality in different cancer types [113,118].
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3.9.3. Dosing

Studies have used 40 mg 2x/day as a dosage for atorvastatin [326]. An alternative is
20 mg 2x/day as dosage for simvastatin [330].

3.10. Disulfiram

Disulfiram (DSF) inhibits aldehyde dehydrogenase, leading to acetaldehyde accumu-
lation and unpleasant effects when alcohol is consumed, making it an anti-alcoholism drug;
however, it has been repurposed as a potent cancer treatment, showing anti-tumor effects
in preclinical studies and recent success in treating seven types of cancer in humans [454].

3.10.1. Mechanism

Disulfiram (DSF) exhibits multiple anticancer pathways, including inhibition of NF-kB
signaling, proteasome activity, and ALDH, induction of ER stress and autophagy, and
targeting of cancer stem cells [454]. DSF’s cytotoxicity relies on copper (Cu), as DSF/Cu
induces ROS production and inhibits NF-κB, activating pro-apoptotic pathways while
downregulating anti-apoptotic pathways [124,455]. DSF also forms a complex with Cu,
leading to DNA repair pathway downregulation [456]. Clinical trials have shown that
DSF/Cu exerts antitumor effects in various cancers, such as head and neck squamous
cell carcinoma, glioblastoma, and others, effectively inducing apoptosis in cancer cells
and synergistically enhancing the efficacy of conventional chemotherapeutic drugs when
administered in combination [457,458].

3.10.2. Clinical Evidence

In a double-blind trial with breast cancer patients, treatment with sodium ditiocarb
(diethyldithiocarbamate) significantly improved overall survival (81% vs. 55%) and disease-
free survival (76% vs. 55%) compared to the placebo group [459]. A phase IIb clinical trial
showed that adding DSF to cisplatin and vinorelbine combination regimen prolonged sur-
vival in newly diagnosed non-small-cell lung cancer patients, and DSF plus copper added to
temozolomide appeared to prolong disease-free survival in glioblastoma patients [128,460].

3.10.3. Dosing

DSF may be beneficial in treating breast, lung, pancreatic, prostate, liver, and ovarian
cancer, as well as acute myeloid leukemia, glioblastoma, and melanoma, with a particular
role in glioblastoma patients [124,454]. The recommended dosing for DSF is generally
80 mg three times a day or 500 mg once daily, and copper should be added at a dose of
2 mg three times a day [128,129].

3.11. Cimetidine
3.11.1. Mechanism

Cimetidine, commonly used to treat ulcers and gastroesophageal reflux disease, ex-
hibits multiple anti-tumor effects [421], including anti-proliferative actions by blocking H2
receptors and inducing apoptosis, immunomodulation by decreasing immunosuppressive
cells and increasing natural killer cell activity, anti-cell adhesion effects, and anti-angiogenic
effects through the downregulation of angiogenesis-promoting factors [461,462].

3.11.2. Clinical Studies

The clinical benefits of cimetidine in cancer patients are not extensively studied, with
most research focusing on post-operative colorectal surgery patients [421]. However,
a Cochrane meta-analysis of five studies involving 421 patients prescribed cimetidine
as an adjunct to curative surgical resection of colorectal cancers showed a significant
improvement in overall survival (HR 0.53; 95% CI 0.32 to 0.87) [132]. In addition, two small
series of patients with melanoma treated with a combination of cimetidine and interferon
demonstrated positive clinical responses, including complete regression, partial regression,
and prolonged disease stabilization [463]. Furthermore, a report from Denmark found
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that oral cimetidine, given at a dose of 400 mg twice daily for 2 years, was associated
with increased median survival in gastric cancer patients compared to the placebo group
(450 days vs. 316 days, p = 0.02), and higher relative survival rates were observed in the
cimetidine-treated patients at 1 year (45% vs. 28%) [131].

3.11.3. Dosing

Cimetidine may be beneficial in patients with colorectal cancer, melanoma, gastric
cancer, pancreatic cancer, ovarian carcinoma, prostate cancer, Kaposi’s Sarcoma, salivary
gland tumors, renal cell carcinoma, breast cancer, glioblastoma, and bladder cancer [421].
The standard dosing of cimetidine is 400 mg twice daily, and it is generally well-tolerated,
with the most common side effect being gynecomastia [134].

3.12. Mistletoe

The European white-berry mistletoe (Viscum album L.) is commonly used in continental
Europe as an adjunctive treatment for cancer patients, with mistletoe extracts administered
subcutaneously or intravenously to reduce disease- and treatment-related symptoms and
improve quality of life [464].

3.12.1. Mechanism

Mistletoe extracts exhibit various anticancer effects, including antitumor, apoptotic,
anti-proliferative, and immunomodulatory activities. These effects are attributed to the
presence of biologically active molecules such as lectins, flavonoids, viscotoxins, and
polysaccharides, which mediate immunological activities, increase natural killer cytotoxic-
ity, induce apoptosis, and interfere with protein synthesis in cancer cells [135,465–467]. Ad-
ditionally, mistletoe has been found to enhance chemosensitivity in both cisplatin-sensitive
and resistant ovarian cancer cells and may possess anti-angiogenic properties [136,468].

3.12.2. Clinical Evidence

Over 50 prospective studies, including more than 30 randomized controlled trials
(RCTs), have investigated the role of mistletoe in cancer patients, showing benefits in terms
of improved quality of life, performance index, symptom scales, and reduced adverse effects
of chemotherapy [466]. A Cochrane review published in 2008, which included 21 studies,
demonstrated the positive impact of mistletoe on various aspects of patient well-being [469].
Subsequent meta-analyses have further supported these findings, revealing that mistle-
toe extracts significantly improve global quality of life (SMD = 0.61, 95% CI 0.41–0.81,
p < 0.00001) and may have a favorable effect on survival in cancer patients (HR = 0.81, 95%
CI 0.69–0.95, p = 0.01) when used as an adjunct to conventional treatments [470]. A phase I
trial of intravenous mistletoe extract in patients with advanced cancer showed a disease
control rate of 23.8% and improved quality of life indicators. Mistletoe is commonly used
by integrative oncologists to enhance quality of life, increase chemotherapy tolerability,
and potentially contribute to better tumor control and survival [139].

3.12.3. Dosing

Mistletoe has shown benefits in improving the quality of life in patients with various
types of cancers, including breast, bladder, gynecological (cervical, corpus uteri, and
ovarian), colorectal, gastric, pancreatic, glioma, head and neck, lung, melanoma, and
osteosarcoma. However, as mistletoe is administered parenterally (subcutaneously or
intravenously), it requires supervision by an integrative oncologist as part of a personalized
treatment protocol [471].

3.13. Ashwagandhia

Ashwagandha (Withania somnifera, WS), historically employed in Mediterranean and
Ayurvedic medicine, functions as both a functional food and medicinal plant with potential
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anticancer attributes [472]. Its active compounds, including withanolides and alkaloids,
underpin its pharmacological effects [140].

3.13.1. Mechanism

Preclinical investigations highlight Ashwagandha’s capacity to modulate mitochon-
drial function, facilitate apoptosis, and mitigate inflammation by targeting cytokines, nitric
oxide, and reactive oxygen species [140–142]. It significantly contributes to apoptosis induc-
tion, suppresses cell proliferation and migration [140–142], and prompts cell cycle arrest and
apoptosis in glioblastoma cells [473]. Notably, Ashwagandha’s impact extends to molec-
ular pathways like p53, insulin/IGF, STAT3, and Notch [474–476]. Its anti-inflammatory
potential can significantly alter the tumor microenvironment, curtailing angiogenesis and
metastasis [477]. An intriguing study proposes that combining Ashwagandha extract with
intermittent fasting could emerge as a promising approach for breast cancer treatment,
effectively curbing cell proliferation, inducing apoptosis, and ameliorating cisplatin-related
toxicity [142].

3.13.2. Clinical Evidence

In the context of cancer, Ashwagandha has been primarily investigated through
experimental models, with limited clinical data on its efficacy. Biswell et al. conducted an
open-label prospective nonrandomized trial involving breast cancer patients, administering
a combination of chemotherapy and Ashwagandha or chemotherapy alone. The study
group receiving Withania somnifera root extract exhibited significantly lower fatigue levels
and improved quality of life scores. Although the 24-month overall survival rates were
higher in the study group (72%) compared to the control group (56%), the difference was
not statistically significant [143]. Apart from its potential in cancer therapy, Ashwagandha
is recognized as a safe and effective adaptogen, supported by randomized controlled
trials showcasing its stress reduction, cognitive enhancement, mood improvement, and
sleep quality benefits [307–309]. A meta-analysis of 12 trials demonstrated its significant
reduction of anxiety (p = 0.005) and stress levels (p = 0.005) compared to placebo [144].
Although Ashwagandha’s impact on cancer outcomes remains unproven, its positive effects
on stress, sleep, and quality of life suggest its potential as a recommended therapy for
cancer patients.

3.13.3. Dosing

Ashwagandha may be effective against cancers such as breast, colon, lung, prostate,
glioblastoma multiforme, melanoma, and blood cancers [140,472]. Ashwagandha can be
used to treat cancer alone or in combination with other chemotherapeutic agents [472].

3.14. Phosphodiesterase 5 Inhibitors

Selective phosphodiesterase 5 inhibitors, including sildenafil, tadalafil, and varde-
nafil, are widely used in the treatment of erectile dysfunction and pulmonary arterial
hypertension [478]. These drugs may also be effective cancer treatments [479].

3.14.1. Mechanism

PDE5 inhibitors, such as sildenafil and tadalafil, have shown promising anticancer
effects in various types of cancers [432]. These inhibitors induce apoptosis and attenuate
Wnt/β-catenin-mediated transcription in breast tumor cells, affect HSP90 expression to
inhibit cancer cell proliferation, and reduce the development and progression of hepatocel-
lular carcinoma induced by aflatoxin B1 [480]. Additionally, PDE5 inhibitors alter epithelial
homeostasis, reduce polyp formation, and promote autophagy, leading to enhanced cell
death when combined with cytotoxic agents [479,481]. They have also been shown to
interact in a greater than additive fashion with NSAIDs, platinum-based chemothera-
peutic agents, and curcumin, increasing their efficacy in controlling colorectal and lung
tumors [482,483]. Moreover, PDE5 inhibitors can inhibit colonic tumorigenesis by block-
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ing the recruitment of MDSCs, reducing Tregs and cancer stem cells, and inducing PKA
signaling to eliminate cancer stem cells [479,484,485].

3.14.2. Clinical Evidence

Several studies have demonstrated the potential anticancer benefits of PDE5 inhibitors.
A large study involving 192,661 patients showed that PDE5 inhibitor use was associated
with a reduced risk of developing colon cancer, and in men with benign colorectal neo-
plasms, it was associated with a lower risk of colorectal cancer [486]. Clinical trials in
patients with head and neck squamous cell carcinoma revealed that tadalafil could enhance
immune responsiveness and tumor-specific immunity by reducing MDSCs and regulatory
T cells, and improving T-cell function [487,488]. In patients with colorectal cancer and
prostate cancer, the post-diagnostic use of PDE5 inhibitors was associated with a decreased
risk of cancer-specific mortality, metastasis, and biochemical recurrence [489,490].

3.14.3. Dosing

Phosphodiesterase 5 inhibitors, such as sildenafil and tadalafil, may be beneficial for
the treatment of prostate, breast, hepatocellular, colorectal, lung, and head and neck cancers,
glioblastoma, and leukemias [479]. The recommended dosing includes sildenafil 20 mg
daily or tadalafil 5 mg daily, but caution is advised in patients receiving nitrates or with
a history of non-arteritic anterior ischemic optic neuropathy due to potentially serious
cardiovascular side effects [149].

3.15. Itraconazole

Itraconazole, a well-established antifungal agent inhibiting lanosterol 14α-demethylase,
has demonstrated potential as an anticancer agent through mechanisms unrelated to its
antifungal effects.

3.15.1. Mechanism

Its anticancer activity involves the reversal of P-glycoprotein-mediated chemoresis-
tance, modulation of the Hedgehog, mTOR, and Wnt/β-catenin pathways, angiogenesis
and lymphangiogenesis inhibition, and potential interference with cancer-stromal interac-
tions [150]. Mechanistically, it impedes P-glycoprotein, disrupts abnormal Hedgehog and
Wnt/β-catenin signaling, hinders angiogenesis, and triggers autophagocytosis [150–160].
Itraconazole further suppresses the PI3K/AKT/mTOR/S6K pathway, affecting cancer cell
growth and proliferation [151,155,491], and inhibits HER2/Akt signaling by reducing HER2
phosphorylation [492]. Its induction of apoptosis is attributed to ROS pathway activation
and death receptor pathway stimulation [155]. The drug curbs angiogenesis by obstructing
VEGF/VEGFR2 interaction and endothelial cell cycle progression [158,491]. Itraconazole’s
multifaceted modes of action suggest its potential as an innovative anticancer therapy
beyond its antifungal properties [150–160,491].

3.15.2. Clinical Evidence

Itraconazole demonstrates potential anticancer efficacy either as a single agent or in
combination therapy based on preclinical and clinical data [151–154,156,157,159,160,493–499].
Notably, a phase II clinical study with lung cancer patients showed that itraconazole com-
bined with conventional chemotherapy (pemetrexed) significantly improved progression-
free and overall survival, which was attributed to its anti-angiogenic effects [151]. Ret-
rospective studies supported the survival advantage of itraconazole treatment in refrac-
tory malignancies, including ovarian clear cell, triple-negative breast, pancreatic, and
biliary tract cancer, compared to previous reports [493,497,498,500]. Clinical trials in-
volving progressive pancreatic cancer and metastatic castration-resistant prostate cancer
indicated positive outcomes with itraconazole-based combination treatments [156,497].
Moreover, itraconazole displayed concentration-dependent anticancer effects in non-small-
cell lung cancer patients [499]. The drug’s potential adjuvant role was identified in var-
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ious cancers, encompassing prostate, pancreatic, lung, breast, acute myeloid leukemia,
basal cell carcinoma, medulloblastoma, hepatocellular carcinoma, esophageal, and gastric
cancer [150,151,153–155,157,160,492,494,495,497].

3.15.3. Dosing

Itraconazole in a dose of 400–600 mg/day is recommended. Itraconazole is a con-
ventional antifungal drug that has received FDA approval and has an excellent safety
record [151]. However, several studies have suggested that itraconazole has some con-
traindications, particularly when it comes to interactions with other cancer medications
including rituximab or statins [501,502].

4. Potential Adjunctive Therapies

Adjunctive therapies demonstrate some potential for use in the treatment of cancer.
These are summarized in Table 2 and the associated infographic Figure 2.

4.1. Tumor Treating Fields

Tumor treating fields (TTF) are non-invasive alternating electric fields administered
via the Optune® system, utilizing transdermally transmitted 100–400 kHz AC electric fields
through orthogonal transducer arrays to disrupt mitosis [244,503]. This disrupts the mitotic
spindle assembly checkpoint and leads to cell-cycle arrest, cell death, or senescence, while
also promoting autophagy and immunological effects such as STING pathway activation
and enhanced dendritic cell and macrophage activity [244]. Although extensively studied
in glioblastoma multiforme (GBM), the use of TTF is being evaluated in NSCLC, pancreatic,
and ovarian cancer [244]. In GBM, TTF in combination with maintenance temozolomide
demonstrated significantly improved progression-free survival and overall survival [504].
The National Comprehensive Cancer Network (NCCN) recommends the use of TTF com-
bined with temozolomide for both newly diagnosed and recurrent glioblastoma patients,
suggesting it as an adjunctive treatment option [505,506]. Compliance is crucial as TTF’s
therapeutic effects are limited to actively dividing cancer cells during its application [503].

4.2. Photodynamic Therapy

Photodynamic therapy (PDT) involves tissue destruction through visible light when
combined with a photosensitizer and oxygen [507]. When exposed to light, sensitizer
molecules transition to high-energy states, interacting with oxygen to produce reactive
oxygen species that induce cell death through apoptosis, necrosis, and autophagy [508].
Historical use of light for therapeutic purposes dates back thousands of years, partic-
ularly combined with reactive chemicals to treat conditions like vitiligo, psoriasis, and
skin cancer. Sunlight, encompassing ultraviolet-B (UVB) and near-infrared (NIR) radia-
tion, offers significant health benefits including vitamin D synthesis and mitochondrial
melatonin production [509,510]. However, modern lifestyles lead to deficient NIR expo-
sure [510]. NIR-A radiation, with deep tissue penetration, demonstrated efficacy during
the 1918 influenza pandemic, and recent studies link sun avoidance to higher all-cause
mortality rates [511,512]. PDT, widely used by dermatologists for actinic keratoses and non-
melanoma skin cancers, holds potential for broader applications, including solid tumors,
achieved through preferentially accumulated sensitizers activated by light [507,508]. Topi-
cal photosensitizers such as 5-aminolevulinic acid or methyl aminolevulinate are commonly
employed for cutaneous indications, while visceral tumors require agents like porfimer
sodium [507,513]. PDT’s efficacy in experimental cancer cell destruction is proven, yet
clinical evidence supporting its benefits in non-cutaneous malignancies is limited [513–516].
PDT’s role in non-cutaneous cancer and photobiomodulation necessitates further assess-
ment. To enhance mitochondrial function, regular midday sun exposure is recommended
(at least three times a week), ideally through brisk walks [513].
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4.3. Hyperbaric Oxygen

Hypoxia is a critical hallmark of solid tumors, associated with enhanced cell survival,
angiogenesis, glycolytic metabolism, and metastasis [246]. Hyperbaric oxygen treatment
(HBOT) has been employed for centuries to address hypoxia-related disorders, enhancing
plasma oxygen levels and tissue delivery of oxygen [246]. HBOT induces hyperoxia and
elevated reactive oxygen species (ROS), overwhelming cancer cell defenses and triggering
cell death [517,518]. This process involves intricate signaling through protein kinases and
receptors such as RAGE, CXCR2, TLR3, and TLR4 [519]. Despite limited direct impact on
cancer growth, HBOT may synergize with other treatments; for instance, a ketogenic diet
combined with HBOT exhibited significant anticancer effects [12]. Hypoxia contributes to
chemoresistance, and HBOT as an adjuvant has demonstrated enhanced effects both in vitro
and in vivo, although certain chemotherapeutic agents might interact negatively [246].
Radiotherapy combined with HBOT serves therapeutic and radiosensitizing purposes,
particularly for head and neck tumors [246]. A recent Cochrane review cautioned that
while HBOT might improve local tumor control and mortality for head and neck tumors,
its benefits should be interpreted cautiously due to unusual fractionation schemes [520].
While HBOT holds promise as an anticancer intervention, particularly in combination with
other modalities, clinical data supporting its efficacy remain limited [246].

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/nu15194245/s1, Table S1: Cost of repurposed drugs for
cancer treatment.
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