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Abstract: NUTRIOSE® (Roquette, Lestrem, France) is a resistant dextrin with well-established prebi-
otic effects. This study evaluated the indirect effects of pre-digested NUTRIOSE® on host immune
response and gut barrier integrity. Fecal samples from eight healthy donors were inoculated in a
Colon-on-a-plate® system (ProDigest, Ghent, Belgium) with or without NUTRIOSE® supplemen-
tation. Following 48 h fermentation, colonic suspensions were tested in a Caco-2/THP1-Blue™
co-culture system to determine their effects on gut barrier activity (transepithelial electrical resistance)
and immune response following lipopolysaccharide stimulation. Additionally, changes in short-
chain fatty acid levels (SCFA) and microbial community composition following a 48 h fermentation
in the Colon-on-a-plate® system were measured. Across all donors, immune-mediated intestinal
barrier damage was significantly reduced with NUTRIOSE®-supplemented colonic suspensions
versus blank. Additionally, IL-6 and IL-10 levels were significantly increased, and the level of the
neutrophil chemoattractant IL-8 was significantly decreased with NUTRIOSE®-supplemented colonic
suspensions versus blank in the co-culture models following lipopolysaccharide stimulation. These
beneficial effects of NUTRIOSE® supplementation were likely due to increased acetate and propi-
onate levels and the enrichment of SCFA-producing bacteria. NUTRIOSE® was well fermented by
the colonic bacteria of all eight donors and had protective effects on inflammation-induced disruption
of the intestinal epithelial barrier and strong anti-inflammatory effects.

Keywords: anti-inflammatory; Colon-on-a-plate; immunomodulation; prebiotic; resistant dextrin;
short-chain fatty acid

1. Introduction

It is well-recognized that the gut microbiome has a strong influence on human health
and disease. Gut microbiome dysbiosis may lead to increased bowel permeability (i.e.,
‘leaky gut’) and an increase in lipopolysaccharides (LPS) and inflammatory molecules [1].
Dysbiosis is associated with several immune-related diseases [2–5] and metabolic disor-
ders [6–8]. Thus, much work has been carried out to understand how to achieve and
maintain a healthy gut microbiome. One approach to this is dietary supplementation with
probiotics and/or prebiotics. Prebiotics are defined as substrates that are “selectively uti-
lized by host microorganisms conferring a health benefit” [9]. These nutrients pass through
the small intestine poorly digested or undigested. Upon entering the large intestine, the
prebiotic fibers are fermented by gut microbes, resulting in partial or complete digestion.
Prebiotics are associated with several health benefits, including beneficial changes to the
gut microbiome composition and function, improvements in immune function, and in-
creased levels of short-chain fatty acids (SCFAs) (reviewed in Devani-Davari et al. [10]).
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SCFAs, including acetate, propionate, and butyrate, are a major product of prebiotic fer-
mentation [10,11] and provide many benefits to the host, including reduced intestinal
inflammation and improved intestinal barrier integrity [12].

NUTRIOSE® is a soluble fiber with prebiotic properties [13]. Approximately 15% of
consumed NUTRIOSE® is enzymatically digested in the small intestine, 75% is progres-
sively fermented in the colon and the remaining 10% is excreted [13–15]. NUTRIOSE®

supplementation increases SCFA production in rats and in humans [16] and exerts ben-
eficial changes in the gut microbiota composition of healthy human volunteers [17–19].
Additionally, NUTRIOSE® supplementation has been shown to have immunomodulatory
effects in mice, rats, piglets, and humans [20–24], and to have effects on genes involved in
membrane integrity in rats [23].

Colon-on-a-plate® is a high throughput biorelevant ex vivo simulation of the physiol-
ogy and microbiology of the colon. It has been optimized to perform short-term colonic
simulations (up to 48 h) using small volumes, while still allowing an extensive set of read-
outs, including relative and absolute changes in microbial community composition down to
the (sub)species level, impact on microbiome-host cell interactions using secondary human
cell assays, and alterations in metabolite production. Where the previous generation of
short-term in vitro models struggled with the enrichment of aerotolerant bacteria [25], the
Colon-on-a-plate® model has been adapted to ensure anaerobiosis in the reactors. The small
assay volumes facilitate the testing of a high number of individuals and/or test conditions,
thus enabling to account for interpersonal differences in terms of treatment responses. The
latter allows a more accurate prediction of the outcomes of intervention studies in a broad
human population, which is considered essential to build product claims.

The primary aim of this study was to assess the indirect effects of NUTRIOSE® on
both the host immune response, as measured by chemokine/cytokine release in response
to LPS stimulation, and the gut barrier integrity of the host, as measured by transepithelial
electrical resistance (TEER), using colonic suspensions obtained with the Colon-on-a-plate®

technology platform in an in vitro co-culture model. Secondary aims included the eval-
uation of fermentation-derived metabolites produced by the gut microbiota during the
colonic simulations and to evaluate changes to gut microbial community composition. To
assess interindividual variability, fecal samples from eight healthy donors were tested.

2. Materials and Methods

2.1. NUTRIOSE® Pre-Digestion

NUTRIOSE® FMHF, a soluble fiber produced from wheat starch, contains 97% of
fibers and a small fraction of digestible compounds that are converted to small molecules
and absorbed by the small intestine in vivo. Therefore, NUTRIOSE® FM HF was pre-
digested using a simulation of the upper gastrointestinal passage (oral, gastric, and small
intestine) [26]. For this, a NUTRIOSE® stock solution was prepared in water at 50 g/L.
After simulation of small intestinal conditions, the obtained solution was placed inside a
dialysis membrane (0.5 kDa pore size), sealed, and dialyzed (dialysis solution: 3.75 g/L
NaHCO3, pH 7.0) for 24 h at a low temperature (to prevent microbial growth). Dialysis
enabled the removal of monosaccharides and disaccharides from the intestinal solution.
The blank medium (water) was pre-digested and dialyzed in the same manner.

2.2. Colon-on-a-plate™

The Colon-on-a-plate® system is a miniaturized version of the short-term batch fer-
mentation model, which has proven its ability not only to provide detailed mechanistic
insights into the interplay of test products and the human gut microbiota but also to iden-
tify their direct and/or indirect effects on host response [27]. With the Colon-on-a-plate®

system, multiple test conditions can be simultaneously assessed, either by including a
high number of treatments, individuals (to account for interpersonal differences), or com-
binations thereof. This system utilizes deep well plates, allowing for a ten-fold lower
volume per test condition compared with traditional short-term batch fermentations. Its
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plate format enables the guarantee of identical physical conditions across the experiment,
therefore highly benefiting reproducibility.

At the start of the experiment, wells of the Colon-on-a-plate® (24-well plates with
10.4 mL volume-capacity; Thomson, Oceanside, Canada) were filled with 6.3 mL of nu-
tritional medium-fecal inoculum blend (nutritional medium PD001; ProDigest, Gent, Bel-
gium). Next, a single dose (0.7 mL) of pre-digested NUTRIOSE® or blank medium (water,
dialyzed according to the procedure described above) was added to each well, bringing the
total volume inside the wells to 7 mL, and the theoretical NUTRIOSE® concentration, i.e.,
not accounting for product losses during dialysis, to 5 g/L (corresponding with 3 g daily
administration in a healthy adult person). During each step, anaerobiosis was guaranteed
by working in an anaerobic chamber, where oxygen levels were carefully monitored. This
study utilized fecal material from 8 healthy individual donors (age range 20–40 years;
donors did not use antibiotics during the 3 months preceding stool collection; four partici-
pants were male and four were female). Plates were incubated in an anaerobic atmosphere
at 37 ◦C for 48 h. Each condition was tested in triplicate to account for technical variation
(8 donors, 1 treatment, 1 blank; each in triplicate). Samples were collected 48 h after the
start of the experiment and assessed for pH; community composition; levels of SCFAs
(acetate, propionate, and butyrate), lactate, branched SCFAs, and ammonium; and for use
in the co-culture experiments to study the effects on TEER and cytokine production.

2.3. Caco-2/THP1-Blue™ Co-Culture Model

Co-culture experiments were performed in technical triplicates using Caco-2 (HTB-37,
American Type Culture Collection) and THP1-Blue™ cells (InvivoGen, San Diego, CA,
USA), as described previously [28]. Briefly, a semi-permeable insert (pore size, 0.4 µM)
containing a Caco-2 cell monolayer (TEER > 300 Ω cm2 [Epithelial Volt-Ohm meter, Mil-
lipore, Burlington, MA, USA]) was placed into a well of phorbol 12-myristate 13-acetic
acid (PMA)-differentiated THP1-Blue™ cells (100 ng/mL, 48 h). The apical compartment
(Caco-2 cells) was filled with sterile-filtered (0.22 µM) colonic suspensions (diluted 1:5 v/v
in Caco-2 complete medium) or complete Caco-2 medium. The basolateral compartment
(THP1-Blue™ cells) was filled with a complete Caco-2 medium. Co-cultures were incubated
with humidity at 37 ◦C, 5% CO2 for 24 h, at which time the TEER of each well was measured.
The percent of the baseline value (0 h) for each well was calculated after subtracting the
empty insert value, using the following formula:

(24 h Ω cm2/0 h Ω cm2) × 100 (1)

Following the 24 h incubation, the basolateral media was discarded and replaced
with Caco-2 complete medium with 500 ng/mL ultrapure LPS (Escherichia coli K12, Invivo-
Gen). Basolateral supernatants were collected after 6 h. Human IL-6, IL-10, IL-1β, TNF-α,
CXCL10, MCP1, and IL-8 were measured according to the manufacturer’s instructions
using Luminex® multiplex (Thermo Fisher Scientific, Waltham, MA, USA).

2.4. Microbial Metabolic Activity Analysis

A Senseline F410 pH meter (ProSense, Oosterhout, The Netherlands) was used to
measure pH. Acetate, propionate, butyrate, and branched SCFAs (isobutyrate, isovalerate,
and isocaproate) were assessed using methods described by De Weirdt et al. [29]. A
commercially available enzymatic assay kit (R-Biopharm, Darmstadt, Germany) was used,
according to the manufacturer’s instructions, to measure lactate. Ammonium levels were
assessed according to the method described by Van de Wiele et al. [30].

2.5. Microbial Community Analysis

DNA was extracted as described by Boon et al. [31], implementing modifications as
reported by Duysburgh et al. [32]. DNA libraries were prepared using the Nextera XT DNA
Library Preparation Kit (Illumina, San Diego, CA, USA) and IDT Unique Dual Indexes with
a total DNA input of 1 ng. Genomic DNA was fragmented using a proportional amount
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of Illumina Nextera XT fragmentation enzyme. Unique dual indexes were added to each
sample, followed by 12 cycles of PCR to construct libraries. DNA libraries were purified
using AMpure magnetic beads (Beckman Coulter, Brea, CA, USA) and eluted in QIAGEN
EB buffer (Germantown, MD, USA). DNA libraries were quantified using a Qubit™ 4 flu-
orometer and the Qubit™ dsDNA HS Assay Kit (Thermo Fisher, Waltham, MA, USA).
Unassembled sequencing reads were directly analyzed for multi-kingdom microbiome
analysis and quantification of relative abundances as previously described [33–36]. Briefly,
curated genome databases combined with a high-performance data-mining algorithm were
used to disambiguate hundreds of millions of metagenomic sequence reads into the specific
microorganisms that contain the particular sequences in their DNA. Total cell counts in
the various samples were determined using a BD Accuri C6 Plus Flow Cytometer (BD
Biosciences, Franklin Lakes, NJ, USA) using the high flow rate setting with a threshold
of 700 on the SYTO channel. To account for differences in bacterial biomass across the
samples, relative abundances of each population in a sample were multiplied with the total
cell count obtained by flow cytometry for a given sample, to convert proportional values
obtained using shotgun sequencing to absolute quantities.

2.6. Statistical Methods

Metabolite production was compared between colonic suspensions from NUTRIOSE®-
supplemented and blank wells, using paired two-tailed student’s t-tests. To do so, averages
of technical replicates were calculated for each condition and per-donor measurements
were used as replicate values for the statistical tests. As eight donors were included,
eight replicates were considered, thus providing good statistical power. By applying this
methodology, an effect was considered significant only if it was observed across multiple
individuals. A p-value of <0.05 was considered statistically significant.

To evaluate differences in TEER and immune markers, per donor, data for NUTRIOSE®-
supplemented colonic suspensions were compared to their non-supplemented blank con-
trols using a two-way ANOVA with Sidak’s multiple comparisons test. Separately, the
average of all donor treatment samples was compared to the average of the blank controls,
using an unpaired, two-tailed student’s t-test.

For analysis of community composition, differential abundance analysis using treeclimbR [37]
was performed to identify the taxa most likely to explain differences between NUTRIOSE®-
supplemented and blank conditions. The resulting volcano plots show statistical signif-
icance (i.e., p-value) on the y-axis versus the magnitude of change (i.e., fold change) on
the x-axis. Thus, the scatterplot classifies taxa into the following four categories based
on abundance in compared treatments: (a) not significant and not biologically relevant,
(b) biologically relevant, but not statistically significant, (c) statistically significant, but not
biologically relevant, and d) biologically and statistically significant. For this analysis, a p-
value of <0.05 was considered statistically significant, and a >4-fold change was considered
biologically significant.

Statistical analyses to evaluate differences in metabolite production, as well as TEER
and immune parameters were performed using GraphPad Prism version 9.3.1 for Windows
(GraphPad Software, San Diego, CA, USA). Statistical analysis on community composition
was performed in R.

3. Results
3.1. Analysis of Host-Microbe Interactions
3.1.1. Transepithelial Electrical Resistance

Across all donors, TEER was significantly increased with NUTRIOSE® supplemented
colonic suspensions versus blank (p < 0.0001) (Figure 1), demonstrating protection of the
intestinal epithelial barrier from inflammation-induced disruption. For individual donors,
TEER was increased with NUTRIOSE® supplemented colonic suspensions versus blank for
each donor and reached significance in donors B, C, D, and F (Supplemental Figure S1).
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3.1.2. Immune Markers

Across all donors, there was a significant increase in the secretion of IL-6 (both
pro-and anti-inflammatory cytokine) and of the anti-inflammatory cytokine IL-10 with
NUTRIOSE®-supplemented colonic suspensions versus blank suspensions (p < 0.0001 for
both) (Figure 2a,b, respectively). For individual donors, a significant increase in IL-6 or
IL-10 was observed for five of eight or all donors, respectively (Supplemental Figure S2a,b,
respectively).

A significant increase in the pro-inflammatory cytokine IL-1β was observed with
NUTRIOSE®-supplemented colonic suspensions versus blank suspensions with all donors
combined (p < 0.05) (Figure 2c) and for a single donor (Donor H), though non-significant
increases were observed in five other donors (Supplemental Figure S2c). Across all
donors, levels of the pro-inflammatory cytokines TNF-α, CXCL10, and MCP1 were not
increased with NUTRIOSE®-supplemented colonic suspensions versus blank suspen-
sions (Figure 2d,e,f, respectively) and levels of IL-8 were significantly decreased (p < 0.01)
(Figure 2g). None of the individual donors demonstrated an increase in TNF-α (Supplemen-
tal Figure S2d), one donor (Donor B) had a significant increase in CXCL10 (Supplemental
Figure S2e), none had an increase in MCP1 (Supplemental Figure S2f), and one (Donor
h) had a significant decrease in IL-8 and non-significant decreases were observed for
three other donors (Supplemental Figure S2g) with NUTRIOSE®-supplemented colonic
suspensions versus blank suspensions.
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Figure 2. Effect of colonic suspensions on release of (a) IL-6, (b) IL-10, (c) IL-1β, (d) TNF-α,
(e) CXCL10, (f) MCP1, and (g) IL-8 by PMA-treated THP1-blue™ cells after LPS stimulation in
the Caco-2/THP1-blue™ co-culture model. * p < 0.05, ** p < 0.01, **** p < 0.0001 for differences
between the NUTRIOSE®-supplemented and blank samples. Data are plotted as mean (all 8 donors)
± standard error of the mean. LPS = lipopolysaccharide.

3.2. Microbial Community Analysis
3.2.1. Fermentation Activity and Changes in Metabolite Production

Decreases in pH indicate an increase in bacterial fermentation. pH measurements at
48 h indicated greater fermentation activity with NUTRIOSE® supplementation versus blank
(p < 0.0001) (Figure 3a). pH results for individual donors are shown in Supplemental Figure S3a.

SCFA levels (acetate, propionate, and butyrate), which represent carbohydrate metabolism
in the colon, were measured at 48 h. Across all donors, SCFA levels with NUTRIOSE® sup-
plementation versus blank were increased for acetate (p < 0.0001; Figure 3b) and propionate
(p < 0.0001; Figure 3c), and similar for butyrate (p = 0.487; Figure 3d). SCFA results for
individual donors are shown in Supplemental Figure S3b–d.
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Figure 3. Overall microbial community activity (acidification) and microbial metabolic activity shown
as (a) pH, (b) acetate, (c) propionate, (d) butyrate, (e) branched SCFA, and (f) ammonium at 48 h.
Measurements were collected in triplicate. **** p < 0.0001 for differences between the NUTRIOSE®-
supplemented and blank samples. Data are plotted as mean (all 8 donors) ± standard error of the
mean. SCFA = short-chain fatty acid.

Markers of protein metabolism were also measured. Across all donors, levels of
branched SCFAs were numerically decreased but did not reach statistical significance
(p = 0.09; Figure 3e) and levels of ammonium were lower (p < 0.0001; Figure 3f) with
NUTRIOSE® supplementation versus blank. Changes in branched SCFAs and ammonium
for individual donors are shown in Supplemental Figure S3e,f.

3.2.2. Changes in Microbial Community Composition

Jitter plots showing the effects of NUTRIOSE® supplementation on the microbial
abundances across all donors at different taxonomic levels are shown in Figure 4. The most
abundant phylum with both NUTRIOSE® supplementation and blank was Firmicutes,
followed by Bacteroidetes, Actinobacteria, and Proteobacteria (Figure 4a).
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Figure 4. Jitter plots showing average abundances (log2 abundances) at 48 h shown as (a) phylum and
(b) family (20 most abundant families; the sum of abundances of the remaining families is categorized
as ‘others’). Data for average values were derived using data from all 8 donors. Orange circles
represent NUTRIOSE®-supplemented colonic microbiota and the turquoise circles represent blank
colonic microbiota. UF, unidentified family. Asterisks indicate phyla/families that were differentially
abundant in blank and NUTRIOSE® condition, for which statistical significance was reached based
on treeclimbR.

Within the Firmicutes phylum, the most abundant families were Lachnospiraceae (com-
prising acetate-, propionate-, and succinate-producers) and Ruminococcaceae (comprising
acetate-, lactate-, succinate-, and butyrate-producers); levels of these families were higher
with blank than with NUTRIOSE® supplementation (Figure 4b). The Bacteroidetes phy-
lum included Bacteroidaceae (comprising acetate-, propionate-, and succinate-producers),
Rikenellaceae (comprising succinate-producers), and Tannerellaceae (comprising acetate-,
succinate-, and in some cases propionate-producers); Bacteroidaceae and Tannerellaceae were
significantly increased with NUTRIOSE® supplementation versus blank. Actinobacteria
were mostly represented by the families Eggerthellaceae (comprising acetate-producers) and
Bifidobacteriaceae (comprising acetate- and lactate-producers); for these families, abundances
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were higher with blank than with NUTRIOSE® supplementation. The Proteobacteria phy-
lum was mostly represented by Enterobacteriaceae and Desulfovibrionaceae; abundances were
higher with the blank than with NUTRIOSE® supplementation.

Differential abundance analysis revealed statistically significant (p < 0.05) and biolog-
ically significant (>4-fold) enrichment with NUTRIOSE® supplementation versus blank
for Parabacteroides distasonis (acetate- and succinate-producer), Alistipes shahii (succinate-
producer), an unidentified Parabacteroides species (acetate- and succinate-producing genus),
and an unidentified Blautia species (acetate-, lactate-, succinate-, and/or butyrate-producing
genus) (Figure 5). The enrichment of each of these bacteria was considered relevant from
a biological point of view and was observed across a multitude of donors (the threshold
for statistical significance for across-donor comparisons was reached). Biologically but not
statistically significant enrichment was observed for a member of the genus Porphyromonas
(acetate-, propionate-, butyrate-, and branched SCFA producers) and Bacteroides xylanisol-
vens (acetate-, succinate-, and propionate-producer) with NUTRIOSE® supplementation
versus blank, implying that due to interindividual differences, these enrichments were
not observed in all donors, but the magnitude of the enrichment (effect size) in at least
one donor was considered relevant from a biological point of view (on average, the fold
change was >4). There were also several enrichments that were statistically significant but
not biologically significant for NUTRIOSE® supplementation versus blank, meaning that
those enrichments were observed across multiple donors, but the sizes of the effect were
small. Hence, whether such enrichments would be translated into alterations in metabo-
lite levels is questionable. These enrichments included members of the genus Bacteroides
(acetate-, succinate-, and propionate-producers), particularly Bacteroides uniformis and an
unidentified Bacteroides species. In contrast, several bacteria were more abundant in blank
than NUTRIOSE® condition, involving members of bacterial genera Dorea, Oscillibacter,
and Dysosmobacter, meaning that these bacteria were not enriched upon treatment with
NUTRIOSE®.

3.2.3. Metabolite-Metagenomics Correlations

Correlations between metabolite production and taxa abundances were assessed using
heatmaps to generate metabolite-taxon correlation plots. At the genus level, there was a
strong correlation between the production of acetate and the enrichment of Blautia and
Parabacteroides (Figure 6). Additionally, there was a strong correlation between propionate
production and the enrichment of Parabacteriodes, Bacteroides, Porphyromonas, Blautia, Phas-
colarctobacterium, and Alistipes species. Finally, a positive correlation was found for the
production of BCFA and the growth of Escherichia, and for the production of ammonium
and the growth of Dorea.

Some of these correlations reveal direct effects of microbial enrichments on metabolite
levels in the reactors, including the acetogenic effect of Blautia and Parabacteroides, whereas
other positive correlations are indirect, including the propionogenic effect of Parabacteroides,
whereby Parabacteroides, through the production of succinate, promotes the propionate-
synthesis via the succinate pathway. Others, like the correlation between Dorea and the
production of ammonium, resulted from a cascade of interactions with intestinal bacteria,
as the bacterial genus Dorea does not encode the production of ammonium in its genome
(ammonium is produced by urease-producing bacteria).
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4. Discussion

Using pre-clinical models, colonic fermentation of NUTRIOSE® demonstrated protec-
tive effects on host functions by reducing inflammation-induced intestinal barrier damage
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and increasing the anti-inflammatory response to LPS with all eight donors. Mostly minor
effects were seen on the pro-inflammatory response, with the exception of IL-8 which was
decreased with four of the eight donors. The host-microbe interactions were facilitated by
the fermentation of NUTRIOSE® by the donor gut microbiota, which resulted in increased
acetate and propionate production and decreased ammonium production. The acetate and
propionate increases are likely explained by the enrichment of SCFA-producing bacteria
observed with NUTRIOSE® supplementation.

The intestinal epithelial barrier is formed by intercellular tight junctions and functions
to control the trafficking of molecules from the intestinal lumen to the lamina propria [38,39].
Dysregulation of this barrier can result in ‘leaky gut’, where molecules, including bacterial
products such as LPS, are inappropriately trafficked from the intestinal lumen to the lamina
propria, resulting in inflammation [39]. This dysregulation is associated with multiple
disorders, including obesity and metabolic syndrome [40,41], and autoimmune disor-
ders [42,43]. A significant increase in the expression of the genes encoding the tight junction
proteins occludin and ZO-1 was observed in the colons of rats who received NUTRIOSE®

supplementation versus those who did not [23,24,44], indicating that NUTRIOSE® may
improve the intestinal epithelial barrier. Those findings are supported by the present study,
which found that exposure to colonic fermentations following NUTRIOSE® supplemen-
tation resulted in higher TEER values (i.e., a stronger intestinal epithelial barrier) versus
blank colonic fermentations in the co-culture model. Thus, the fermentation products of
NUTRIOSE® provided protection against inflammation-mediated widening of tight junc-
tions. This not only shows the protective impact of NUTRIOSE® at the level of the intestinal
epithelial barrier but also the capacity of the Colon-on-a-plate® technology coupled with
the co-culture model to predict indirect treatment effects on the host that were obtained
during an animal trial. Using similar in vitro models, exposure of Caco-2/THP-1 cocultures
to colonic fermentations from other well-established oligosaccharide prebiotics including
arabinogalactan, arabinoxylo-oligosaccharide (AXOS), inulin, and a formulation including
fructo-oligosaccharides (FOS), xylo-oligosaccharide (XOS), and galacto-oligosaccharides
(GOS), has been reported to significantly increase Caco-2 cell TEER values versus blank
colonic fermentations in response to activated THP1 cells [28,45,46]. Similarly, it is reported
that direct exposure of Caco-2 cells to prebiotic oligosaccharides GOS or FOS resulted in
increased TEER values versus mock exposed Caco-2 cells (GOS: +33.62%, p = 0.00037; FOS:
+28.68%, p = 0.054) [47].

NUTRIOSE® also had an immunomodulatory effect on cytokine production. Lev-
els of IL-6 (both pro- and anti-inflammatory properties) and of the anti-inflammatory
cytokine IL-10 were increased (5/8 donors and 8/8 donors, respectively) and the levels
of the pro-inflammatory chemokine IL-8 were decreased (4/8 donors) with exposure to
NUTRIOSE®-supplemented versus blank colonic fermentations. The immune-related find-
ings reported in the present study are largely supported by previous studies of NUTRIOSE®

supplementation in humans, rats, and mice. Two clinical studies reported increased serum
levels of anti-inflammatory cytokines (IL-4 and IL-10) and decreased levels of TNF-α, IFNγ,
IL-12, and IL-6 in females with type 2 diabetes who received 8 weeks of daily NUTRIOSE®

supplementation (10 g/day) versus baseline levels [21,22]. A decrease (versus control) in
the expression of TNF-α or IL-1β in the colons of rats or mice, respectively, has also been
reported with NUTRIOSE® supplementation [23]. Together, these findings indicate that
NUTRIOSE® has strong anti-inflammatory effects, and further demonstrate the predic-
tivity of the Colon-on-a-plate® and the applied co-culture models for human and animal
trials. Immunomodulatory effects on cytokine production have also been reported for
other prebiotics using in vitro models. For example, Caco-2/THP1 cocultures exposed
to colonic fermentations of arabinogalactan or FOS produced significantly more IL-10
(arabinogalactan only) and significantly less IL-8 following LPS stimulation compared with
cocultures exposed to blank colonic fermentations [28]. Cocultures exposed to colonic
fermentations of inulin or AXOS produced significantly more IL-10 and IL-6 in response
to LPS stimulation versus blank colonic fermentations [45], as did cocultures exposed to
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colonic fermentations of a formulation including FOS, XOS, and GOS, as well as spore-
based probiotics, immunoglobulin A, and amino acids [46]. The similar in vitro findings
(increased TEER, increased production of IL-10 and IL-6, and decreased production of
IL-8) for NUTRIOSE® and well-studied prebiotics such as FOS, GOS, and inulin, which are
well described for their support of the immune system [48–52], indicate that NUTRIOSE®

supplementation will also provide immune system support.
To understand the underlying mechanisms by which NUTRIOSE® fermentation im-

parts these immunomodulatory effects, the outcomes of NUTRIOSE® supplementation
on the microbial community activity and composition were also evaluated. Changes in
pH with supplementation indicated that NUTRIOSE® was well fermented by the gut
microbiota of all eight donors. The production of acetate and propionate was consistently
increased with supplementation across all donors. Levels of butyrate production were not
apparently affected by NUTRIOSE® supplementation. A preclinical study of NUTRIOSE®

supplementation in rats demonstrated increased production of acetate, propionate, and
butyrate with supplementation versus without [16]. The difference in butyrate production
between these studies may be explained by the different experimental methods. Both
propionate and acetate have beneficial effects on the host. Propionate alters inflammatory
gene expression in colonic epithelial cells, downregulating IL-8 and MCP-1 expression and
potentially contributing to local containment of immune responses [53]. Additionally, it is
well established that propionate and acetate promote gut barrier function and intestinal
epithelial cell integrity [54–57], and that SCFAs induce the expression of tight junction
proteins, including occludin [56]. The enrichment of succinate- (an intermediate metabolite
in propionate synthesis [58]), acetate-, propionate-, and/or butyrate-producing bacterial
species, including P. distasonis, A. shahii, and members of the Bacteroidetes phylum with
NUTRIOSE® supplementation supports the metabolic findings. Indeed, metabolite-taxa
correlation analysis demonstrated a link between acetate production and the enrichment of
the strictly anaerobic Blautia and Parabacteroides genera, and between propionate production
and the enrichment of the Parabacteroides, Bacteroides, Porphyromonas, Blautia, Phascolarcto-
bacterium, and Alistipes genera. Similar changes in the microbial community composition
with NUTRIOSE® supplementation have been observed in clinical studies. For example,
NUTRIOSE® supplementation (8 g/day or 10 g/day for 14 days) in healthy volunteers
resulted in an increase (day 14 vs. baseline) in Bacteroides and propionate-producing bacte-
ria, as well as members of the Parabacteroides genus [17,18]. Additionally, a recent study
of healthy females who were supplemented with NUTRIOSE® (increasing doses of 5, 10,
and 20 g/day) or a control product for 6 weeks found a significant increase in P. distasonis
(NUTRIOSE® versus control) [19]. The significant enrichment of P. distasonis observed
across the various donors in the ex vivo simulation thus accurately reflects the result of a
clinical trial as detailed as the bacterial species level. The outcome of these clinical trials
therefore strongly correlates with the results obtained with the Colon-on-a-plate® technol-
ogy confirming the effects of NUTRIOSE® supplementation on the microbial community
composition, and the validity of the Colon-on-a-plate® as an accurate simulation of the gut
microbiota.

To make the connection between microbiota modulation and metabolite production
with the production of cytokines, it would have been interesting to study the toll-like
receptor signal transduction through different intracellular molecules such as MAP kinases
or nuclear factor kappa B (NFkB). As with any other in vitro/ex vivo study, our findings
are limited in that they cannot directly translate to a biological response. However, the data
presented herein further support the prebiotic properties of NUTRIOSE® for human gut
microbes.

5. Conclusions

This study demonstrated that the Colon-on-a-plate® technology accurately predicts
the outcome of clinical and animal trials with respect to direct prebiotic effects and indirect
effects on the host, including inflammatory response and epithelial integrity. Using this
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ex vivo methodology, the present study confirmed that NUTRIOSE® is well fermented by
members of the Bacteroidetes and Firmicutes phyla, inducing the production of bioactive
molecules, including acetate and propionate. It is these metabolites that interacted with
the colonic epithelial cells, likely explaining the protective effect of supplementation on
inflammation-induced disruption of the intestinal epithelial barrier. Supplementation was
also associated with immune-modulatory properties and strong anti-inflammatory effects.
This means that it was NUTRIOSE®’s fermentation products, rather than unfermented
NUTRIOSE®, that was responsible for the effects on barrier integrity and immune regula-
tion. Given these properties, NUTRIOSE® may be a promising candidate for increasing the
defense against pathogens and protecting against inflammation in the gastrointestinal tract.
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