The Role of Micronutrients in Neurological Disorders
Abstract
:1. Introduction
2. Consequences in Neuropathology
3. Micronutrients in Clinical Practice
3.1. Is it Necessary to Verify the Presumptive Decrease of Levels through Available Analysis?
3.2. If We Discover a Decrease in Levels, Is It a Real Deficiency or Purposeful Redistribution?
3.3. Will Therapeutic Equalization of Plasma Levels Positively Affect Patient Prognosis?
3.4. How Should the Potential Substitution Be Set Up? For Whom, What, How Much, and How?
4. The Groups of Patients for Whom the Fortification of Selected Micronutrients Is Recommended
5. Options for Micronutrient Administration
6. Special Indication Categories in Neurology
6.1. Alzheimer’s Disease
6.1.1. Micronutrients—Roles, Levels, Administration: Current Knowledge
6.1.2. What to Do?
6.2. Parkinson’s Disease and Other Parkinsonian Syndromes
6.2.1. Micronutrients—Roles, Levels, Administration: Current Knowledge
6.2.2. What to Do?
6.3. Amyotrophic Lateral Sclerosis and Other Forms of Motor Neuron Disease
6.3.1. Micronutrients—Roles, Levels, Administration: Current Knowledge
6.3.2. What to Do?
6.4. Wilson’s Disease
6.4.1. Micronutrients—Roles, Levels, Administration: Current Knowledge
6.4.2. What to Do?
6.5. Huntington’s Disease
6.5.1. Micronutrients—Roles, Levels, Administration: Current Knowledge
6.5.2. What to Do?
6.6. Myasthenia Gravis
6.6.1. Micronutrients—Roles, Levels, Administration: Current Knowledge
6.6.2. What to Do?
6.7. Multiple Sclerosis and Other Demyelinating Diseases
6.7.1. Micronutrients—Roles, Levels, Administration: Current Knowledge
6.7.2. What to Do?
6.8. Epilepsy
6.8.1. Micronutrients—Roles, Levels, Administration: Current Knowledge
6.8.2. What to Do?
6.9. Ischemic Stroke
6.9.1. Micronutrients—Roles, Levels, Administration: Current Knowledge
6.9.2. What to Do?
6.10. Myopathy
6.10.1. Micronutrients—Roles, Levels, Administration: Current Knowledge
6.10.2. What to Do?
6.11. Neuropathy
6.11.1. Micronutrients—Roles, Levels, Administration: Current Knowledge
6.11.2. What to Do?
6.12. Restless Leg Syndrome
6.12.1. Micronutrients—Roles, Levels, Administration: Current Knowledge
6.12.2. What to Do?
6.13. Injury of the Central Nervous System
6.13.1. Micronutrients—Roles, Levels, Administration: Current Knowledge
6.13.2. What to Do?
6.14. Peripheral Nervous System Injury
6.14.1. Micronutrients—Roles, Levels, Administration: Current Knowledge
6.14.2. What to Do?
Disease/Disorder | Supplementation with Proven Benefit; Pharmacological Dose, If Applicable * | Adjuvant Therapy | Deficiency Detection, Monitoring |
---|---|---|---|
Alzheimer’s disease (AD) | Vitamins A, D, E, C, B; selenium; zinc. FD vitamin B1 (cognitive impairment with dementia) | DRA | Hcy, 25-OH vitamin D, Cu, Zn |
Parkinson’s disease (PD) | Vitamins A, D, E, C, B1, B6; folic acid | DRA | B6, 25-OH vitamin D, vitamin E, Hcy |
Amyotrophic lateral sclerosis (ALS) | Vitamins E, D, B, C | DRA | 25-OH vitamin D, vitamin E |
Wilson’s disease (WD) | FD Zn | DRA | Cu, Zn, ceruloplasmin |
Huntington’s disease (HD) | Coenzyme Q10; vitamins A, D, E, C, B1, B3; biotin; Se; Zn (pyruvate) | DRA, MD | 25-OH vitamin D |
Myasthenia gravis (MG) | Vitamin D | DRA | AChRs, MuSK, 25-OH vitamin D, Fe (susp. anemia) |
Multiple sclerosis (MS) | Vitamins A, D, E, | DRA | 25-OH vitamin D, vitamin E, Hcy |
Epilepsy (Epi) | Vitamins E, D, B6, C; omega-3 PUFA; pyruvate | DRA | 25-OH vitamin D |
Ischemic stroke (IS) | Vitamins A, D, E, B6; folic acid; vitamin C; Mg; K | DRA, MD | Hcy |
Myopathy (MP) | Vitamins E, C; Se; Zn; coenzyme Q10 | DRA | Se, creatinine, myoglobin |
Neuropathy (NP) | Vitamins D, E, B1, B6, B12; folic acid; Cu | DRA | B12, Cu, B1 |
Restless leg syndrome (RLS) | Fe (in case of deficit) | DRA | Fe |
Injury central nervous system (ICNS) | Vitamin B3 (niacin) | DRA | |
Injury peripheral nervous system (IPNS) | Vitamins B1, B6, B12, D, E | DRA | Vitamin E, vitamin B12, 25-OH vitamin D |
Sarcopenia (SA) | B vitamins, vitamin D | DRA | Vitamin B1, 25-OH vitamin D |
7. Summary
8. Highlights
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berger, M.M.; Shenkin, A.; Schweinlin, A.; Amrein, K.; Augsburger, M.; Biesalski, H.K.; Bischoff, S.C.; Casaer, M.P.; Gundogan, K.; Lepp, H.L.; et al. ESPEN micronutrient guideline. Clin. Nutr. 2022, 41, 1357–1424. [Google Scholar] [CrossRef] [PubMed]
- Stevens, G.A.; Beal, T.; Mbuya, M.N.N.; Luo, H.; Neufeld, L.M.; Global Micronutrient Deficiencies Research Group. Micronutrient deficiencies among preschool-aged children and women of reproductive age worldwide: A pooled analysis of individual-level data from population-representative surveys. Lancet Glob. Health 2022, 10, e1590–e1599. [Google Scholar] [CrossRef] [PubMed]
- Plantone, D.; Pardini, M.; Caneva, S.; De Stefano, N. Is There a Role of Vitamin D in Alzheimer’s disease? CNS Neurol. Disord. Drug Targets 2023. ahead of print. [Google Scholar] [CrossRef]
- Holton, K.F. Micronutrients May Be a Unique Weapon Against the Neurotoxic Triad of Excitotoxicity, Oxidative Stress and Neuroinflammation: A Perspective. Front. Neurosci. 2021, 15, 726457. [Google Scholar] [CrossRef] [PubMed]
- Gillette-Guyonnet, S.; Secher, M.; Vellas, B. Nutrition and neurodegeneration: Epidemiological evidence and challenges for future research. Br. J. Clin. Pharmacol. 2013, 75, 738–755. [Google Scholar] [CrossRef] [PubMed]
- Huskisson, E.; Maggini, S.; Ruf, M. The influence of micronutrients on cognitive function and performance. J. Int. Med. Res. 2007, 35, 1–19. [Google Scholar] [CrossRef]
- Collie, J.T.B.; Greaves, R.F.; Jones, O.A.H.; Eastwood, G.; Bellomo, R. Vitamin C measurement in critical illness: Challenges, methodologies and quality improvements. Clin. Chem. Lab. Med. 2020, 58, 460–470. [Google Scholar] [CrossRef]
- Hampel, H.; Hardy, J.; Blennow, K.; Chen, C.; Perry, G.; Kim, S.H.; Villemagne, V.L.; Aisen, P.; Vendruscolo, M.; Iwatsubo, T.; et al. The Amyloid-beta Pathway in Alzheimer’s Disease. Mol. Psychiatry 2021, 26, 5481–5503. [Google Scholar] [CrossRef]
- Gruendler, R.; Hippe, B.; Sendula Jengic, V.; Peterlin, B.; Haslberger, A.G. Nutraceutical Approaches of Autophagy and Neuroinflammation in Alzheimer’s Disease: A Systematic Review. Molecules 2020, 25, 6018. [Google Scholar] [CrossRef]
- Birks, J.S.; Harvey, R.J. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst. Rev. 2018, 6, CD001190. [Google Scholar] [CrossRef]
- Finkelstein, Y.; Milatovic, D.; Aschner, M. Modulation of cholinergic systems by manganese. Neurotoxicology 2007, 28, 1003–1014. [Google Scholar] [CrossRef] [PubMed]
- Fei, H.X.; Qian, C.F.; Wu, X.M.; Wei, Y.H.; Huang, J.Y.; Wei, L.H. Role of micronutrients in Alzheimer’s disease: Review of available evidence. World J. Clin. Cases 2022, 10, 7631–7641. [Google Scholar] [CrossRef]
- Cilliers, K. Trace element alterations in Alzheimer’s disease: A review. Clin. Anat. 2021, 34, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Luzzi, S.; Cherubini, V.; Falsetti, L.; Viticchi, G.; Silvestrini, M.; Toraldo, A. Homocysteine, Cognitive Functions, and Degenerative Dementias: State of the Art. Biomedicines 2022, 10, 2741. [Google Scholar] [CrossRef]
- Li, B.; Xia, M.; Zorec, R.; Parpura, V.; Verkhratsky, A. Astrocytes in heavy metal neurotoxicity and neurodegeneration. Brain Res. 2021, 1752, 147234. [Google Scholar] [CrossRef] [PubMed]
- Rai, S.N.; Singh, P.; Steinbusch, H.W.M.; Vamanu, E.; Ashraf, G.; Singh, M.P. The Role of Vitamins in Neurodegenerative Disease: An Update. Biomedicines 2021, 9, 1284. [Google Scholar] [CrossRef]
- Aisen, P.S.; Schneider, L.S.; Sano, M.; Diaz-Arrastia, R.; van Dyck, C.H.; Weiner, M.F.; Bottiglieri, T.; Jin, S.; Stokes, K.T.; Thomas, R.G.; et al. High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: A randomized controlled trial. JAMA 2008, 300, 1774–1783. [Google Scholar] [CrossRef]
- Lu’o’ng, K.; Nguyen, L.T. Role of thiamine in Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen 2011, 26, 588–598. [Google Scholar] [CrossRef]
- Murdaca, G.; Banchero, S.; Tonacci, A.; Nencioni, A.; Monacelli, F.; Gangemi, S. Vitamin D and Folate as Predictors of MMSE in Alzheimer’s Disease: A Machine Learning Analysis. Diagnostics 2021, 11, 940. [Google Scholar] [CrossRef]
- Kang, J.; Park, M.; Lee, E.; Jung, J.; Kim, T. The Role of Vitamin D in Alzheimer’s Disease: A Transcriptional Regulator of Amyloidopathy and Gliopathy. Biomedicines 2022, 10, 1824. [Google Scholar] [CrossRef]
- Sasanian, N.; Bernson, D.; Horvath, I.; Wittung-Stafshede, P.; Esbjorner, E.K. Redox-Dependent Copper Ion Modulation of Amyloid-beta (1–42) Aggregation In Vitro. Biomolecules 2020, 10, 924. [Google Scholar] [CrossRef]
- Socha, K.; Klimiuk, K.; Naliwajko, S.K.; Soroczyńska, J.; Puścion-Jakubik, A.; Markiewicz-Żukowska, R.; Kochanowicz, J. Dietary Habits, Selenium, Copper, Zinc and Total Antioxidant Status in Serum in Relation to Cognitive Functions of Patients with Alzheimer’s Disease. Nutrients 2021, 13, 287. [Google Scholar] [CrossRef] [PubMed]
- Moynier, F.; Borgne, M.L.; Lahoud, E.; Mahan, B.; Mouton-Liger, F.; Hugon, J.; Paquet, C. Copper and zinc isotopic excursions in the human brain affected by Alzheimer’s disease. Alzheimer’s Dement. 2020, 12, e12112. [Google Scholar] [CrossRef]
- Vicente-Zurdo, D.; Romero-Sanchez, I.; Rosales-Conrado, N.; Leon-Gonzalez, M.E.; Madrid, Y. Ability of selenium species to inhibit metal-induced Abeta aggregation involved in the development of Alzheimer’s disease. Anal. Bioanal. Chem. 2020, 412, 6485–6497. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, B.R.; Braat, S.; Graham, R.M. Selenium Status Is Associated with Insulin Resistance Markers in Adults: Findings from the 2013 to 2018 National Health and Nutrition Examination Survey (NHANES). Front. Nutr. 2021, 8, 696024. [Google Scholar] [CrossRef]
- Bulk, M.; Abdelmoula, W.M.; Geut, H.; Wiarda, W.; Ronen, I.; Dijkstra, J.; van der Weerd, L. Quantitative MRI and laser ablation-inductively coupled plasma-mass spectrometry imaging of iron in the frontal cortex of healthy controls and Alzheimer’s disease patients. Neuroimage 2020, 215, 116808. [Google Scholar] [CrossRef]
- Madsen, S.J.; DiGiacomo, P.S.; Zeng, Y.; Goubran, M.; Chen, Y.; Rutt, B.K.; Born, D.; Vogel, H.; Sinclair, R.; Zeineh, M.M. Correlative Microscopy to Localize and Characterize Iron Deposition in Alzheimer’s Disease. J. Alzheimer’s Dis. Rep. 2020, 4, 525–536. [Google Scholar] [CrossRef] [PubMed]
- Meade, R.M.; Fairlie, D.P.; Mason, J.M. Alpha-synuclein structure and Parkinson’s disease—Lessons and emerging principles. Mol. Neurodegener. 2019, 14, 29. [Google Scholar] [CrossRef]
- Gomez-Benito, M.; Granado, N.; Garcia-Sanz, P.; Michel, A.; Dumoulin, M.; Moratalla, R. Modeling Parkinson’s Disease with the Alpha-Synuclein Protein. Front. Pharmacol. 2020, 11, 356. [Google Scholar] [CrossRef]
- Murphy, J.; McKernan, D.P. The Effect of Aggregated Alpha Synuclein on Synaptic and Axonal Proteins in Parkinson’s Disease-A Systematic Review. Biomolecules 2022, 12, 1199. [Google Scholar] [CrossRef]
- Al-Nasser, M.N.; Mellor, I.R.; Carter, W.G. Is L-Glutamate Toxic to Neurons and Thereby Contributes to Neuronal Loss and Neurodegeneration? A Systematic Review. Brain Sci. 2022, 12, 577. [Google Scholar] [CrossRef]
- Lopez Lozano, J.J.; Moreno Cano, R. Preparation of a levodopa/carbidopa solution in ascorbic acid (citridopa) and chromatographic and electrochemical assessment of its stability over 24 hours. Neurologia 1995, 10, 155–158. [Google Scholar]
- Miyaue, N.; Kubo, M.; Nagai, M. Ascorbic acid can alleviate the degradation of levodopa and carbidopa induced by magnesium oxide. Brain Behav. 2022, 12, e2672. [Google Scholar] [CrossRef]
- Nagayama, H.; Hamamoto, M.; Ueda, M.; Nito, C.; Yamaguchi, H.; Katayama, Y. The effect of ascorbic acid on the pharmacokinetics of levodopa in elderly patients with Parkinson disease. Clin. Neuropharmacol. 2004, 27, 270–273. [Google Scholar] [CrossRef]
- Sudha, K.; Rao, A.V.; Rao, S.; Rao, A. Free radical toxicity and antioxidants in Parkinson’s disease. Neurol. India 2003, 51, 60–62. [Google Scholar] [PubMed]
- Ide, K.; Yamada, H.; Umegaki, K.; Mizuno, K.; Kawakami, N.; Hagiwara, Y.; Matsumoto, M.; Yoshida, H.; Kim, K.; Shiosaki, E.; et al. Lymphocyte vitamin C levels as potential biomarker for progression of Parkinson’s disease. Nutrition 2015, 31, 406–408. [Google Scholar] [CrossRef]
- Murakami, K.; Miyake, Y.; Sasaki, S.; Tanaka, K.; Fukushima, W.; Kiyohara, C.; Tsuboi, Y.; Yamada, T.; Oeda, T.; Miki, T.; et al. Dietary intake of folate, vitamin B6, vitamin B12 and riboflavin and risk of Parkinson’s disease: A case-control study in Japan. Br. J. Nutr. 2010, 104, 757–764. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, E.F.; Busanello, E.N.; Miglioranza, A.; Zanatta, A.; Barchak, A.G.; Vargas, C.R.; Saute, J.; Rosa, C.; Carrion, M.J.; Camargo, D.; et al. Evidence that folic acid deficiency is a major determinant of hyperhomocysteinemia in Parkinson’s disease. Metab. Brain Dis. 2009, 24, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.M.; Hernan, M.A.; Chen, H.; Spiegelman, D.; Willett, W.C.; Ascherio, A. Intakes of vitamins E and C, carotenoids, vitamin supplements, and PD risk. Neurology 2002, 59, 1161–1169. [Google Scholar] [CrossRef]
- Pignolo, A.; Mastrilli, S.; Davì, C.; Arnao, V.; Aridon, P.; Dos Santos Mendes, F.A.; Gagliardo, C.; D’Amelio, M. Vitamin D and Parkinson’s Disease. Nutrients 2022, 14, 1220. [Google Scholar] [CrossRef]
- Knekt, P.; Kilkkinen, A.; Rissanen, H.; Marniemi, J.; Saaksjarvi, K.; Heliovaara, M. Serum vitamin D and the risk of Parkinson disease. Arch. Neurol. 2010, 67, 808–811. [Google Scholar] [CrossRef] [PubMed]
- Evatt, M.L.; DeLong, M.R.; Kumari, M.; Auinger, P.; McDermott, M.P.; Tangpricha, V.; Parkinson Study Group DATATOP Investigators. High prevalence of hypovitaminosis D status in patients with early Parkinson disease. Arch. Neurol. 2011, 68, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Ricciarelli, R.; Argellati, F.; Pronzato, M.A.; Domenicotti, C. Vitamin E and neurodegenerative diseases. Mol. Asp. Med. 2007, 28, 591–606. [Google Scholar] [CrossRef] [PubMed]
- Rozycka, A.; Jagodzinski, P.P.; Kozubski, W.; Lianeri, M.; Dorszewska, J. Homocysteine Level and Mechanisms of Injury in Parkinson’s Disease as Related to MTHFR, MTR, and MTHFD1 Genes Polymorphisms and L-Dopa Treatment. Curr. Genom. 2013, 14, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Saberi, S.; Stauffer, J.E.; Schulte, D.J.; Ravits, J. Neuropathology of Amyotrophic Lateral Sclerosis and Its Variants. Neurol. Clin. 2015, 33, 855–876. [Google Scholar] [CrossRef]
- Peters, O.M.; Ghasemi, M.; Brown, R.H., Jr. Emerging mechanisms of molecular pathology in ALS. J. Clin. Investig. 2015, 125, 2548. [Google Scholar] [CrossRef]
- Jankovska, N.; Matej, R. Molecular Pathology of ALS: What We Currently Know and What Important Information Is Still Missing. Diagnostics 2021, 11, 1365. [Google Scholar] [CrossRef]
- Trojsi, F.; Siciliano, M.; Passaniti, C.; Bisecco, A.; Russo, A.; Lavorgna, L.; Esposito, S.; Ricciardi, D.; Monsurrò, M.R.; Tedeschi, G.; et al. Vitamin D supplementation has no effects on progression of motor dysfunction in amyotrophic lateral sclerosis (ALS). Eur. J. Clin. Nutr. 2020, 74, 167–175. [Google Scholar] [CrossRef]
- Bull, P.C.; Thomas, G.R.; Rommens, J.M.; Forbes, J.R.; Cox, D.W. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat. Genet. 1993, 5, 327–337. [Google Scholar] [CrossRef]
- Dusek, P.; Litwin, T.; Czlonkowska, A. Neurologic impairment in Wilson disease. Ann. Transl. Med. 2019, 7 (Suppl. S2), S64. [Google Scholar] [CrossRef]
- Camarata, M.A.; Ala, A.; Schilsky, M.L. Zinc Maintenance Therapy for Wilson Disease: A Comparison Between Zinc Acetate and Alternative Zinc Preparations. Hepatol. Commun. 2019, 3, 1151–1158. [Google Scholar] [CrossRef] [PubMed]
- Rub, U.; Seidel, K.; Heinsen, H.; Vonsattel, J.P.; den Dunnen, W.F.; Korf, H.W. Huntington’s disease (HD): The neuropathology of a multisystem neurodegenerative disorder of the human brain. Brain Pathol. 2016, 26, 726–740. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Sanchez, M.; Licitra, F.; Underwood, B.R.; Rubinsztein, D.C. Huntington’s Disease: Mechanisms of Pathogenesis and Therapeutic Strategies. Cold Spring Harb. Perspect. Med. 2017, 7, a024240. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, C.C.; Demetriou, C.A.; Zamba-Papanicolaou, E. Dietary Intake, Mediterranean Diet Adherence and Caloric Intake in Huntington’s Disease: A Review. Nutrients 2020, 12, 2946. [Google Scholar] [CrossRef]
- Stascheit, F.; Chuquisana, O.; Keller, C.W.; Ambrose, P.A.; Hoffmann, S.; Gross, C.C.; Lehnerer, S.; Wiendl, H.; Willcox, N.; Meisel, A.; et al. Complement activation profiles in anti-acetylcholine receptor positive myasthenia gravis. Eur. J. Neurol. 2023, 30, 1409–1416. [Google Scholar] [CrossRef]
- Bonaccorso, G. Myasthenia Gravis and Vitamin D Serum Levels: A Systematic Review and Meta-analysis. CNS Neurol. Disord. Drug Targets 2023, 22, 752–760. [Google Scholar] [CrossRef]
- Sekiguchi, K.; Ishizuchi, K.; Takizawa, T.; Motegi, H.; Oyama, M.; Nakahara, J.; Suzuki, S. Anemia in female patients with myasthenia gravis. PLoS ONE 2022, 17, e0273720. [Google Scholar] [CrossRef]
- Gomes, A.; Adoni, T. Differential diagnosis of demyelinating diseases: What’s new? Arq. Neuropsiquiatr. 2022, 80 (Suppl. S1), 137–142. [Google Scholar] [CrossRef]
- Bitsch, A.; Schuchardt, J.; Bunkowski, S.; Kuhlmann, T.; Bruck, W. Acute axonal injury in multiple sclerosis. Correl. Demyelination Inflamm. Brain 2000, 123 Pt 6, 1174–1183. [Google Scholar]
- Allanach, J.R.; Farrell, J.W., 3rd; Mesidor, M.; Karimi-Abdolrezaee, S. Current status of neuroprotective and neuroregenerative strategies in multiple sclerosis: A systematic review. Mult. Scler. 2022, 28, 29–48. [Google Scholar] [CrossRef]
- Pierrot-Deseilligny, C. Clinical implications of a possible role of vitamin D in multiple sclerosis. J. Neurol. 2009, 256, 1468–1479. [Google Scholar] [CrossRef]
- Munger, K.L.; Levin, L.I.; Hollis, B.W.; Howard, N.S.; Ascherio, A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 2006, 296, 2832–2838. [Google Scholar] [CrossRef]
- James, E.; Dobson, R.; Kuhle, J.; Baker, D.; Giovannoni, G.; Ramagopalan, S.V. The effect of vitamin D-related interventions on multiple sclerosis relapses: A meta-analysis. Mult. Scler. 2013, 19, 1571–1579. [Google Scholar] [CrossRef] [PubMed]
- Smolders, J.; Torkildsen, O.; Camu, W.; Holmoy, T. An Update on Vitamin D and Disease Activity in Multiple Sclerosis. CNS Drugs 2019, 33, 1187–1199. [Google Scholar] [CrossRef]
- Salemi, G.; Gueli, M.C.; Vitale, F.; Battaglieri, F.; Guglielmini, E.; Ragonese, P.; Trentacosti, A.; Massenti, M.F.; Savettieri, G. Blood lipids, homocysteine, stress factors, and vitamins in clinically stable multiple sclerosis patients. Lipids Health Dis. 2010, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Staley, K. Molecular mechanisms of epilepsy. Nat. Neurosci. 2015, 18, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.E.; Cho, K.O. Functional Nutrients for Epilepsy. Nutrients 2019, 11, 1309. [Google Scholar] [CrossRef] [PubMed]
- Mehvari, J.; Motlagh, F.G.; Najafi, M.; Ghazvini, M.R.; Naeini, A.A.; Zare, M. Effects of Vitamin E on seizure frequency, electroencephalogram findings, and oxidative stress status of refractory epileptic patients. Adv. Biomed. Res. 2016, 5, 36. [Google Scholar]
- Woodruff, T.M.; Thundyil, J.; Tang, S.C.; Sobey, C.G.; Taylor, S.M.; Arumugam, T.V. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol. Neurodegener. 2011, 6, 11. [Google Scholar] [CrossRef]
- Sarkar, S.; Chakraborty, D.; Bhowmik, A.; Ghosh, M.K. Cerebral ischemic stroke: Cellular fate and therapeutic opportunities. Front. Biosci. 2019, 24, 435–450. [Google Scholar]
- Tang, X.; Liu, H.; Xiao, Y.; Wu, L.; Shu, P. Vitamin C Intake and Ischemic Stroke. Front. Nutr. 2022, 9, 935991. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.; Zhu, Y.; Tian, D.; Zhao, Y.; Zhang, C.; Mu, C.; Han, C.; Zhu, R.; Liu, X. Role of diet in stroke incidence: An umbrella review of meta-analyses of prospective observational studies. BMC Med. 2022, 20, 194. [Google Scholar] [CrossRef]
- Wang, D.; Li, X.; Jiang, Y.; Jiang, Y.; Ma, W.; Yu, P.; Mao, L. Ischemic Postconditioning Recovers Cortex Ascorbic Acid during Ischemia/Reperfusion Monitored with an Online Electrochemical System. ACS Chem. Neurosci. 2019, 10, 2576–2583. [Google Scholar] [CrossRef] [PubMed]
- Uesugi, S.; Ishihara, J.; Iso, H.; Sawada, N.; Takachi, R.; Inoue, M.; Tsugane, S. Dietary intake of antioxidant vitamins and risk of stroke: The Japan Public Health Center-based Prospective Study. Eur. J. Clin. Nutr. 2017, 71, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- Pinzon, R.T.; Wijaya, V.O.; Veronica, V. The role of homocysteine levels as a risk factor of ischemic stroke events: A systematic review and meta-analysis. Front. Neurol. 2023, 14, 1144584. [Google Scholar] [CrossRef]
- Ullegaddi, R.; Powers, H.J.; Gariballa, S.E. Antioxidant supplementation with or without B-group vitamins after acute ischemic stroke: A randomized controlled trial. JPEN J. Parenter. Enter. Nutr. 2006, 30, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Ullegaddi, R.; Powers, H.J.; Gariballa, S.E. B-group vitamin supplementation mitigates oxidative damage after acute ischaemic stroke. Clin. Sci. 2004, 107, 477–484. [Google Scholar] [CrossRef]
- Yokoyama, T.; Date, C.; Kokubo, Y.; Yoshiike, N.; Matsumura, Y.; Tanaka, H. Serum vitamin C concentration was inversely associated with subsequent 20-year incidence of stroke in a Japanese rural community. The Shibata study. Stroke 2000, 31, 2287–2294. [Google Scholar] [CrossRef]
- Tsamis, K.I.; Boutsoras, C.; Kaltsonoudis, E.; Pelechas, E.; Nikas, I.P.; Simos, Y.V.; Voulgari, P.V.; Sarmas, I. Clinical features and diagnostic tools in idiopathic inflammatory myopathies. Crit. Rev. Clin. Lab. Sci. 2022, 59, 219–240. [Google Scholar] [CrossRef]
- Gawey, B.; Tannu, M.; Rim, J.; Sperling, L.; Henry, T.L. Statin-induced necrotizing autoimmune myopathy: A systematic review. Reumatologia 2022, 60, 63–69. [Google Scholar]
- Simon, L.; Jolley, S.E.; Molina, P.E. Alcoholic Myopathy: Pathophysiologic Mechanisms and Clinical Implications. Alcohol. Res. 2017, 38, 207–217. [Google Scholar] [PubMed]
- Lauretta, M.P.; Melotti, R.M.; Sangermano, C.; George, A.M.; Badenes, R.; Bilotta, F. Homocysteine Plasmatic Concentration in Brain-Injured Neurocritical Care Patients: Systematic Review of Clinical Evidence. J. Clin. Med. 2022, 11, 394. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Huh, B.; Kim, H.K.; Kim, K.H.; Abdi, S. Treatment of Chemotherapy-Induced Peripheral Neuropathy: Systematic Review and Recommendations. Pain. Physician 2018, 21, 571–592. [Google Scholar]
- Yuen, R.C.; Tsao, S.Y. Embracing cancer immunotherapy with vital micronutrients. World J. Clin. Oncol. 2021, 12, 712–724. [Google Scholar] [CrossRef] [PubMed]
- Rendell, M.S. Current and emerging gluconeogenesis inhibitors for the treatment of Type 2 diabetes. Expert. Opin. Pharmacother. 2021, 22, 2167–2179. [Google Scholar] [CrossRef] [PubMed]
- Julian, T.; Glascow, N.; Syeed, R.; Zis, P. Alcohol-related peripheral neuropathy: A systematic review and meta-analysis. J. Neurol. 2019, 266, 2907–2919. [Google Scholar] [CrossRef] [PubMed]
- Wijnia, J.W. A Clinician’s View of Wernicke-Korsakoff Syndrome. J. Clin. Med. 2022, 11, 6755. [Google Scholar] [CrossRef] [PubMed]
- Pinzon, R.T.; Wijaya, V.O.; Veronica, V. The Benefits of Add-on Therapy of Vitamin D 5000 IU to the Vitamin D Levels and Symptoms in Diabetic Neuropathy Patients: A Randomized Clinical Trial. J. Pain Res. 2021, 14, 3865–3875. [Google Scholar] [CrossRef]
- Karonova, T.; Stepanova, A.; Bystrova, A.; Jude, E.B. High-Dose Vitamin D Supplementation Improves Microcirculation and Reduces Inflammation in Diabetic Neuropathy Patients. Nutrients 2020, 12, 2518. [Google Scholar] [CrossRef]
- Gossard, T.R.; Trotti, L.M.; Videnovic, A.; St Louis, E.K. Restless Legs Syndrome: Contemporary Diagnosis and Treatment. Neurotherapeutics 2021, 18, 140–155. [Google Scholar] [CrossRef]
- Liu, Z.; Guan, R.; Pan, L. Exploration of restless legs syndrome under the new concept: A review. Medicine 2022, 101, e32324. [Google Scholar] [CrossRef] [PubMed]
- Trotti, L.M.; Becker, L.A. Iron for the treatment of restless legs syndrome. Cochrane Database Syst. Rev. 2019, 1, CD007834. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, A.; Dyck, S.M.; Karimi-Abdolrezaee, S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front. Neurol. 2019, 10, 282. [Google Scholar] [CrossRef] [PubMed]
- Akter, F.; Yu, X.; Qin, X.; Yao, S.; Nikrouz, P.; Syed, Y.A.; Kotter, M. The Pathophysiology of Degenerative Cervical Myelopathy and the Physiology of Recovery Following Decompression. Front. Neurosci. 2020, 14, 138. [Google Scholar] [CrossRef]
- Masterman, E.; Ahmed, Z. Experimental Treatments for Oedema in Spinal Cord Injury: A Systematic Review and Meta-Analysis. Cells 2021, 10, 2682. [Google Scholar] [CrossRef]
- Khan, H.; Sharma, K.; Kumar, A.; Kaur, A.; Singh, T.G. Therapeutic implications of cyclooxygenase (COX) inhibitors in ischemic injury. Inflamm. Res. 2022, 71, 277–292. [Google Scholar] [CrossRef] [PubMed]
- Farkas, G.J.; Pitot, M.A.; Berg, A.S.; Gater, D.R. Nutritional status in chronic spinal cord injury: A systematic review and meta-analysis. Spinal Cord. 2019, 57, 3–17. [Google Scholar] [CrossRef]
- Gasperi, V.; Sibilano, M.; Savini, I.; Catani, M.V. Niacin in the Central Nervous System: An Update of Biological Aspects and Clinical Applications. Int. J. Mol. Sci. 2019, 20, 974. [Google Scholar] [CrossRef]
- Hussain, G.; Wang, J.; Rasul, A.; Anwar, H.; Qasim, M.; Zafar, S.; Aziz, N.; Razzaq, A.; Hussain, R.; de Aguilar, J.G.; et al. Current Status of Therapeutic Approaches against Peripheral Nerve Injuries: A Detailed Story from Injury to Recovery. Int. J. Biol. Sci. 2020, 16, 116–134. [Google Scholar] [CrossRef]
- Lopes, B.; Sousa, P.; Alvites, R.; Branquinho, M.; Sousa, A.C.; Mendonça, C.; Atayde, L.M.; Luís, A.L.; Varejão AS, P.; Maurício, A.C. Peripheral Nerve Injury Treatments and Advances: One Health Perspective. Int. J. Mol. Sci. 2022, 23, 918. [Google Scholar] [CrossRef]
- Yousefi, F.; Lavi Arab, F.; Nikkhah, K.; Amiri, H.; Mahmoudi, M. Novel approaches using mesenchymal stem cells for curing peripheral nerve injuries. Life Sci. 2019, 221, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.; Zhang, Y.; Gu, X.; Huang, L.; Zhang, K.; Qian, T.; Gu, X. Application of stem cells in peripheral nerve regeneration. Burn. Trauma. 2020, 8, tkaa002. [Google Scholar]
- Pellegatta, M.; Taveggia, C. The Complex Work of Proteases and Secretases in Wallerian Degeneration: Beyond Neuregulin-1. Front. Cell Neurosci. 2019, 13, 93. [Google Scholar] [CrossRef] [PubMed]
- Paez-Hurtado, A.M.; Calderon-Ospina, C.A.; Nava-Mesa, M.O. Mechanisms of action of vitamin B1 (thiamine), B6 (pyridoxine), and B12 (cobalamin) in pain: A narrative review. Nutr. Neurosci. 2023, 26, 235–253. [Google Scholar] [CrossRef] [PubMed]
- Baltrusch, S. The Role of Neurotropic B Vitamins in Nerve Regeneration. Biomed Res. Int. 2021, 2021, 9968228. [Google Scholar] [CrossRef]
PN Home and Long-Term A | PN High Requirements a B | EN in 1500 kcal b C | EN High Requirements in 1500 kcal c | DRI per Day Age 31–70 Years | Min–Max per 1500 kcal d | |
---|---|---|---|---|---|---|
Trace elements | ||||||
Chromium | 10–15 μg | 15 μg | 35–150 μg | 200 μg | 20–35 μg | 18.75–225 μg |
Copper | 0.3–0.5 mg | 0.5–1.0 mg | 1–3 mg | Same as C | 0.9 mg | 0.9–7.5 mg |
Fluoride | 0–1 mg | Same as A | 0–3 mg | 3–4 mg | 3–5 mg (AI) | 0–3 mg |
Iodine | 130 μg | Same as A | 150–300 μg | Same as C | 150 μg | 97.5–525 μg |
Iron | 1 mg | Same as A | 18–30 mg | 30 mg | 8 mg (18 mg F 19–50 years) | 7.5–30 mg |
Manganese | 55 μg | Same as A | 2–3 mg | Same as C | 1.8–2.3 mg | 0.75–7.5 mg |
Molybdenum | 19–25 μg | Same as A | 50–250 μg | 250 μg | 45 μg | 52.5–270 μg |
Selenium | 60–100 μg | 150–200 μg | 50–150 μg | 200 μg | 55 μg | 37.5–150 μg |
Zinc | 3–5 mg | 6–12 mg | 10–20 mg | 20 mg | 8–11 mg | 7.5–22.5 mg |
Lipo-soluble vitamins | ||||||
A Retinol e | 800–1100 μg | 1100 μg | 900–1500 μg | 1500 μg | 700–900 μg | 525–2700 μg |
D3 Cholecalciferol | 200 IU/5 μg | 800–1000 IU/20–25 μg | 25 μg | 30 μg | 15–20 μg | 7.5–37.5 μg |
E α-tocopherol | ≥9 mg | 20 mg | 15 μg | 40 mg | 15 mg | 7.5–45 mg |
K1 Phylloquinone | 150 μg | 1–10 mg f | 120 μg | Same as C | 90–120 μg | 52.5–300 μg |
Water-soluble vitamins | Provide at least g: | Provide at least g: | ||||
B1 Thiamine | 2.5 mg | 100–200 mg | 1.5 mg | 100 mg | 1.1–1.2 mg | 0.9–7.5 mg |
B2 Riboflavin | 3.6 mg | 10 mg | 1.2 mg | 10 mg | 1.1–1.3 mg | 1.2–7.5 mg |
B3 Niacin | 40 mg | Same as A | 18 mg | 40 mg | 11–16 mg | 13.5–45 mg |
B5 Pantothenic acid | 15 mg | Same as A | 5 mg | 7.5 mg | 5 mg | 2.25–22.5 mg |
B6 Pyridoxine | 4 mg | 6 mg | 1.5 mg | 7.5 mg | 1.5–1.7 mg | 1.2–7.5 mg |
B7 Biotin | 60 μg | Same as A | 30 μg | 75 μg | 30 μg (AI) | 11.25–112.5 μg |
B9 Folic acid | 400 μg | 600–1000 μg | 330–400 μg DFE | 500 μg | 400 μg DFE | 150–750 μg |
B12 Cyancobalamin | 5 μg | Same as A | >2.5 μg | 7.5 μg | 2.4 μg | 1.05–10.5 μg |
C Ascorbic acid | 100–200 mg | 200–500 mg | 100 mg | 200 mg | 75–90 mg | 33.75–330 mg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lahoda Brodska, H.; Klempir, J.; Zavora, J.; Kohout, P. The Role of Micronutrients in Neurological Disorders. Nutrients 2023, 15, 4129. https://doi.org/10.3390/nu15194129
Lahoda Brodska H, Klempir J, Zavora J, Kohout P. The Role of Micronutrients in Neurological Disorders. Nutrients. 2023; 15(19):4129. https://doi.org/10.3390/nu15194129
Chicago/Turabian StyleLahoda Brodska, Helena, Jiri Klempir, Jan Zavora, and Pavel Kohout. 2023. "The Role of Micronutrients in Neurological Disorders" Nutrients 15, no. 19: 4129. https://doi.org/10.3390/nu15194129
APA StyleLahoda Brodska, H., Klempir, J., Zavora, J., & Kohout, P. (2023). The Role of Micronutrients in Neurological Disorders. Nutrients, 15(19), 4129. https://doi.org/10.3390/nu15194129