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Abstract: Capsaicin is a phytochemical derived from plants of the genus Capsicum and subject
of intensive phytochemical research due to its numerous physiological and therapeutical effects,
including its important antimicrobial properties. Depending on the concentration and the strain of
the bacterium, capsaicin can exert either bacteriostatic or even bactericidal effects against a wide
range of both Gram-positive and Gram-negative bacteria, while in certain cases it can reduce their
pathogenicity by a variety of mechanisms such as mitigating the release of toxins or inhibiting biofilm
formation. Likewise, capsaicin has been shown to be effective against fungal pathogens, particularly
Candida spp., where it once again interferes with biofilm formation. The parasites Toxoplasma gondi and
Trypanosoma cruzi have been found to be susceptible to the action of this compound too while there
are also viruses whose invasiveness is significantly dampened by it. Among the most encouraging
findings are the prospects for future development, especially using new formulations and drug
delivery mechanisms. Finally, the influence of capsaicin in somatostatin and substance P secretion
and action, offers an interesting array of possibilities given that these physiologically secreted
compounds modulate inflammation and immune response to a significant extent.

Keywords: capsaicin; antibacterial actions; antifungal actions; antiparasitic actions; antiviral actions

1. Introduction

Antimicrobial resistance is an emerging threat identified by the World Health Organi-
zation and represents a global concern due to newly-acquired resistance mechanisms in a
multitude of pathogens [1]. Antimicrobial drugs misuse as well as clinical and non-clinical
pathogen transmission have contributed to the development of antimicrobial resistance,
therefore novel antimicrobials are actively researched to combat this menace [2].

In the last decades there has been an increasing interest in the development of new
antimicrobial substances from plants, as evidenced by a multitude of research on the
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subject (e.g., [3–16]). This renewed interest is based on the long-standing medical practices
of various traditional medical systems, where plants and their derived extracts have been
reported to have a host of applications. One important such substance is capsaicin, a
chemical compound derived from plants of the Capsicum species [17].

Capsaicin (8-methyl-N-vanillyl-6-nonenamide) is a nitrogen-containing substance
belonging to the lipids group [18]. While capsaicin was a term originally used to refer to
a host of compounds isolated from C. oleoresin, nowadays it is a substance-specific name,
while the rest of the originally associated substances are called capsaicinoids [19].

When isolated in its pure form, capsaicin (C18H27NO3) is a solid, colourless, hy-
drophobic, highly volatile, and highly pungent substance [20], which will produce toxic
fumes if heated to decomposition levels [21]. The naturally occurring form of capsaicin
is its trans form [22]. The biosynthetic pathway of capsaicin was originally described in
the 1960s [23–26]. A number of methods to artificially synthesize capsaicin have been
described [27].

Based on its properties, capsaicin is already used in a number of applications, as a
component of animal repellents [28–30], fragrances [31,32], pesticides [33,34], and also in
veterinary medicine [35,36]. A number of medical uses were reported, most notably as a
treatment for chronic pain [37–40] and pruritus [41–44]; other minor uses have also been
described by various researchers [45–52]. It should be noted that capsaicin is also capable
of inducing local inflammation [53], a process which can be objectively measured through
modern imaging applications [54,55].

In this paper, we will present a thorough and representative view of the studies regard-
ing the actions and effects of capsaicin against bacteria, fungi, protozoa, and viruses. For
this review, we carried an exploratory search using the Pubmed database from the National
Center for Biotechnology Information (NCBI) of the United States of America (available
at https://pubmed.ncbi.nlm.nih.gov/; accessed on 25 August 2023) which includes over
36 million citations for the biomedical literature from MEDLINE as well as other scientific
sources. We used “capsaicin”, “antimicrobial action”, “antibacterial”, “antifungal”, “an-
tiviral”, and “antiparasitic” as keywords, and included all relevant papers on the topic.
We further supplemented the search in other databases such Google Scholar and Scopus.
For each pathogen, we presented its relative importance in a clear and comprehensive
way, based on current clinical evidence. By also describing the molecular mechanisms
underlying the antimicrobial effects of capsaicin, we hope to depict a complete picture of
the current corpus of knowledge on the subject and point out promising future research
perspectives including the need to develop and test new capsaicin formulations.

2. Antibacterial Properties of Capsaicin

In the last decades, the use of plant metabolites against bacteria has been on the
foreground of phytomedical and microbiological research (e.g., [56–61]). Capsaicin in
particular has been the focus of recent research as a potential solution against antibiotic
resistance [62]. Apart from finding natural alternatives to antibiotics, this is important
both for those patients in which some antibiotics may be toxic—typical examples include
allergies [63–65], liver toxicity [66–69], and other side effects [70]—and also, and perhaps
more significantly, due to the increasing antibiotic resistance [71–77]. The rapid increase in
antibiotic resistance is mainly explained by the overuse of antibiotics [78–80] and the high
adaptability of bacteria in general, which may survive, depending on the species, even in
extreme environments such as hot springs (e.g., [81–83]). The research on the antibacterial
properties of capsaicin is extensive (Table 1) and this leaves open many potential choices
for new drug design. Minimum inhibitory concentration (MIC) represents the lowest
concentration of an antibacterial agent which, under in vitro conditions, totally prevents
the visible growth in the tested strain [84]. Assessing this value is relevant to ensure
the effectiveness of the antibiotic substance while limiting its administration to prevent
adverse effects.

https://pubmed.ncbi.nlm.nih.gov/
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Table 1. Antibacterial actions of capsaicin based on existing research.

Genus Species Extract from MIC (µg/mL) Year of Research Reference

Gram Positive

Staphylococcus S. aureus
Capsicum frutescens 1.2 2014 [85]

Capsicum chinense not specified 2018 [86]

Streptococcus S. pyogenes Capsicum spp. 64–128 2015 [87]

Enterococcus E. faecalis Capsicum frutescens 25 2014 [85]

Bacillus B. subtillis Capsicum frutescens 25 2014 [85]

Listeria L. monocytogenes Capsicum spp. not specified 2018 [88]

Gram Negative

Vibrio V. cholerae Capsicum spp. 100 2010 [89]

Acinetobacter A. baumanii Capsicum annuum L. 64 2011 [90]

Helicobacter H. pylori Capsicum spp. 25 2005 [91]

Salmonella S. typhimurium Capsicum chinense not specified 2022 [92]

Escherichia E. coli
Capsicum frutescens 5 2014 [85]

Capsicum chinese not specified 2018 [86]

Klebsiella K. pneumoniae Capsicum frutescens 0.6 2014 [85]

Proteus P. mirabilis Capsicum annuum L. 32 2011 [90]

Pseudomonas P. aeruginosa Capsicum frutescens 10 2014 [85]

Capsicum spp. not specified 2018 [93]

2.1. Antibacterial Activity against Staphylococcus aureus

Staphylococcus aureus is a bacterium that can frequently colonize the human body [94].
However, it is also known to cause a variety of diseases ranging from food poisoning to
infections of the skin, such as scalded skin syndrome [95], or in the most severe cases,
pneumonia and bacterial endocarditis [96,97]. Its biochemical arsenal comprises many
toxins such as its enterotoxin and its exfoliative toxins, which are responsible for the
aforementioned food poisoning and skin infections, respectively, and its hemolysin, called
α-toxin [98]. Regarding the enterotoxin of S. aureus, it should also be mentioned that it is
a super-antigen [98]. The emergence of Methicillin-resistant Staphylococcus aureus strains,
also known as MRSA, is an important factor of concern both in a medical setting and
from an economic point of view [99,100]. There are several types of MRSA such as the
healthcare-associated MRSA (HA-MRSA), the community-associated MRSA (CA-MRSA),
and the livestock-acquired MRSA (LA-MRSA) [101].

Capsaicin has potent action against S. aureus [102]. Specifically, it has been shown to
affect the cellular viability of staphylococcal cells, exhibiting partial to total bactericidal
effects, depending on the tested variety and the dilution level [88]. The extract of Bhut
Jolokia Red is particularly potent in this regard, exhibiting partial bactericidal action even
at 1:16 dilution [88]. Other studies have concluded that the effects on the growth in
S. aureus colonies are more pronounced in the variety Noga Bhut when compared with the
variety Roja Bhut [86]. When tested on mice, evidence suggests that capsaicin can have a
protective role in staphylococcal pneumonia, as it was found to suppress the production of
α-toxin and alleviate the inflammatory reaction [103].

2.2. Antibacterial Activity against Group A Hemolytic Streptococci

Streptococcal infections are associated with several pathologies such as skin infec-
tions, pharyngitis, pneumonia [104,105], and a critical condition known as toxic shock
syndrome (TSS) [98]. Furthermore, due to the nature of protein M, one of the bacterium’s
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major antigens, virulence is high and reinfection with different M strains is a possible
occurrence [105–107]. Other important parts of this bacterium’s antigenic structure are
its pyrogenic toxin and its erythrogenic toxin, which are classified as superantigens [108],
while it should also be mentioned that the species belonging to the category of group A
hemolytic streptococci, most notable of them being S. pyogenes, owe this trait of theirs
to their hemolysin, streptolysin O [109]. Perhaps the most notable trait of Streptococcus
are the so-called post-streptococcal diseases, a group of severe sequelae which includes
glomerulonephritis, rheumatic fever, and rheumatic heart disease, brought about due to dif-
ferent types of hypersensitivity reaction [104,106]. Macrolides, for example erythromycin,
are becoming less and less effective as resistant strains emerge, and this poses a problem in
the treatment of streptococcal infections in patients who are allergic to β-lactam antibiotics
to which the bacterium is still susceptible [87,106].

Capsaicin was found in vitro to affect the biofilm formation and epithelial cell adhesion
of species belonging to Group A hemolytic streptococci, reducing their invasiveness, while
also having bactericidal action [87]. Moreover, the hemolytic activity of these species was
diminished by a notable amount [87]. Apart from S. pyogenes, S. mutans has also been found
to be susceptible to capsaicin [102].

2.3. Antimicrobial Activity against Enterococcus Species

The most notable species of enterococci are E. faecium and E. faecalis [110]. In recent
years, enterococci have become the source of a considerable number of nosocomial infec-
tions [111] which can be of high severity [112,113]. The emergence of vancomycin-resistant
enterococci (VRE) is a source of concern which indicates that alternative treatment options
should be looked into [114].

Research results indicate that capsaicin can be used to inhibit the growth in E. faecalis,
although it should be mentioned that its MIC was among the higher ones during the tests
conducted by Nascimento et al. [85]. This can be possibly attributed to the fact that this
bacterium, like others inhibited by similar MIC values, such as B. subtilis and P. aeruginosa,
utilize capsaicin as a nutrient for growth [115]. However, dihydrocapsaicin exhibited lower
MIC values than capsaicin in the aforementioned study, while also presenting a selective
bactericidal effect related to cellular wall characteristics [85].

2.4. Antimicrobial Activity against Bacillus Species

Bacteria of the Bacillus genus are aerobic [116] and have a characteristic spore-forming
ability, becoming resistant to the action of disinfectants as well as unfavourable environ-
mental conditions [117,118]. Most species of the Bacillus genus are not pathogenic, the most
notable exceptions being B. anthracis and B. cereus which associate increased mortality [119].

B. subtilis is non-pathogenic but the study of the action of capsaicin against it could be
beneficial in understanding the action mechanisms against the aforementioned pathogenic
species. Evidence from different sources [85,120] suggests that capsaicin is capable of
inhibiting the growth in B. subtilis though at a comparatively higher MIC than most other
bacteria [85]. Conversely, the species B. thuringiensis did not seem to be nearly as susceptible
to the action of capsaicin [102]. Although B. thuringiensis is not pathogenic for humans, this
finding may be of relevance, given the use of B. thuringiensis as a biopesticide [121].

2.5. Antimicrobial Activity against Listeria monocytogenes

Listeria monocytogenes is a species of ubiquitous, intracellular bacteria responsible for
foodborne pathologies, capable of causing severe complications such as meningoencephali-
tis, especially in risk groups like immunosuppressed individuals, as well as pregnant
women and foetuses, where abortion and septic premature death/neonatal death can
occur [122–124]. The bacterium owes its intracellular nature to a variety of factors, most
notably its internalins, which enable it to enter the host cell, and its hemolysin, listeriolysin
O, which enables it to escape intracellular vacuoles [123].
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The response of L. monocytogenes when exposed to capsaicin varies in lab settings
depending on the extract with some displaying bactericidal action and others displaying
bacteriostatic action [88]. The extract of Bhut Jolokia Red seems to be among the most
effective ones, exhibiting partial bactericidal action even at 1:16 dilution [88].

2.6. Antimicrobial Activity against Vibrio cholerae

Vibrio cholerae is the causative agent of one of the oldest diseases known to man,
characterized by profuse diarrhoea, which can be commonly found in aquatic ecosys-
tems [125,126]. There are several biotypes which have pathogenic properties, featuring a
great number of virulence factors [127]. Resistant strains of Vibrio cholerae are causes of
concern [128,129] necessitating the search for alternative methods of treatment.

Capsaicin has been found to significantly reduce the release of cholera toxin by inter-
fering with the transcription of txA, tcpA, and toxT genes while at the same time enhancing
the transcription of the hns gene which, in turn, downregulates the transcription of the
former genes [89]. It should be mentioned that these results were noted along different
serogroups and biotypes of this bacterium [89]. This is an important finding since several
among them are responsible for pandemics and, as previously mentioned, some have also
developed resistance to conventional antimicrobial agents [130].

2.7. Antimicrobial Activity against Acinetobacter baumanii

Acinetobacter baumannii is implicated in pulmonary infections and septicaemia in
immunocompromised patients [131]. Its ability to resist the action of antibiotics and
survive in harsh environments [132–134] only serves to exacerbate its pathologic nature.
Based on the research of Ozçelik et al. [90], capsaicin is effective against A. baumannii at a
concentration of 64 µg/mL. Interestingly, the research of Guo et al. [135] showed a lack of
direct action of capsaicin against colistin-resistant strains of this bacterium but noted potent
synergistic action in the case of combinatory use of these substances in a dose-dependent
manner, where colistin MIC was greatly reduced.

2.8. Antimicrobial Activity against Helicobacter pylori

Helicobacter pylori is a causative agent of gastric ulcer and gastric cancer that displays
increased rates of resistance to previously effective antibiotics such as clarithromycin and,
to a lesser extent, metronidazole [136]; it is often characterised by multi-drug resistance
patterns [137].

Capsaicin has showed promising bacteriostatic results at in vitro testing [138]. Its
effects are exerted at concentrations as low as 25 µG/mL with the best results being
achieved at 50 µG/mL, indicating possible use as a treatment option [91]. The usefulness of
capsaicin as a treatment option for H. pylori also extends to the fact that it has demonstrated
the ability to downregulate the proinflammatory pathway NF-Kb when tested in vivo
on mice [139], a finding corroborated by other researchers [140], thereby reducing the
extent of the inflammatory response caused by the bacterium and the subsequent gastric
damage [139].

2.9. Antimicrobial Activity against Salmonella typhimurium

Salmonella is a common causative agent of foodborne pathologies, which is mainly
found in poultry, eggs, and dairy products, that threatens public health worldwide [141,142].
This bacterium displays a great serovariability with over 2600 serotypes having been
recorded [143] and with different strains exhibiting different degrees of antigenic variabil-
ity [144]. There are several strains which are resistant to the action of antibiotics [145,146]
and their number is increasing at an alarming rate [147] while, at the same time, the
increased virulence of said strains leads to a higher mortality [148].

Capsaicin has been documented as having partial bactericidal effects against Salmonella
typhimurium [88]. Pure capsaicin exhibits protein-inhibiting qualities while extract from
the plant Capsicum chinense (C. chinense) seems to be even more potent in that regard at the
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same doses while also preventing infection of Vero cells [92]. Based on the aforementioned
data, future studies will hopefully elaborate on the antibacterial actions of capsaicin against
other strains of the pathogenic Salmonella spp.

2.10. Antibacterial Activity against Escherichia coli

Escherichia coli is a commensal bacterium found in the gastrointestinal tract which can
cause opportunistic infections if it migrates to different locations or when the host becomes
immune-suppressed [149]. There have been recorded different types of E. coli, namely the
enteropathogenic E. coli (EPEC), the enterohemorrhagic E. coli (EHEC), the enterotoxigenic
E. coli (ETEC), the enteroaggregative E. coli (EAEC), the enteroinvasive E. coli (EIEC), and
the diffusely adherent E. coli (DAEC) [150]. The emergence of multi-drug resistant (MDR)
E. coli poses a problem that must be addressed in alternative ways such as new antibacterial
substances [151,152].

Capsaicin has been shown to have partial bactericidal effects on Escherichia coli
O157:H7 [88]. The inhibitory nature of capsaicin against E. coli has been confirmed by
another study [85] though other researchers’ findings indicate that capsaicin merely slows
down its growth [120]. At any rate, the effects of capsaicin on E. coli colonies are more
potent in the case of the variety Roja Bhut when compared with the variety Noga Bhut [86].

2.11. Antibacterial Activity against Klebsiella pneumoniae

Klebsiella pneumoniae is an opportunistic pathogen which infects people worldwide,
accounting for one-third of the total Gram-negative bacterial infections [153], and poses a
considerable threat particularly in the nosocomial environment [154] where it can cause
severe pathologies [155]. Due to strains which are resistant to antibiotics, including even
last-line antibiotics, alternative methods of treatment are a necessity [154,156].

There is research evidence which suggests that capsaicin can exert an inhibitory effect
on the growth in K. pneumoniae [85]. The usefulness of capsaicin’s action against K. pneu-
moniae is backed up by similar findings of other researchers [157]. Similarly, a formulation
containing honey/tripolyphosphate/chitosan nanofibers loaded with capsaicin and gold
nanoparticles was found to have inhibitory action against several bacteria, one of which
was a different strain of the bacterium in question called Klebsiella rhinoscleromatis [158].

2.12. Antimicrobial Activity against Proteus Species

Proteus mirabilis and Proteus vulgaris are the most notable species of their genus and
they are associated with urinary tract infections, like cystitis and pyelonephritis, while
there have also been recorded cases of asymptomatic bacteriuria in elderly patients as
well as patients with type 2 diabetes [159–161]. Urinary stone formation [162] and catheter
obstruction in catheterized patients [163] are also possible complications. The severity
of the pathologies caused by the aforementioned bacteria can be very severe [162,164],
especially given the fact that there is a risk of these urinary stones serving as a focal point
for other bacterial infections [164]. Bacteria of the Proteus genus have grown resistant to
the action of antibiotics [165,166] and there even exist some MDR Proteus strains [167–170].
P. vulgaris in particular has been implicated in resistant nosocomial infections [171].

Capsaicin is effective against P. mirabilis as shown by the research of Ozçelik et al. [90].
P. vulgaris on the other hand has shown resistance to the effects exerted by capsaicin in
tandem with other substances, which was attributed to its ability to elongate itself and
secrete a polysaccharide when in contact with surfaces [102].

2.13. Antimicrobial Activity against Pseudomonas Species

Pseudomonas aeruginosa is a bacterium which can cause localized as well as systemic
infections which are at times mild but can reach life-threatening severity [172], and is
also commonly associated with nosocomial infections [173]. Patients with cystic fibrosis
and COPD in particular are a risk group for P. aeruginosa infections [174–176]. There are
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P. aeruginosa strains which are becoming resistant to the action of antibiotics, meaning that
new treatment options must be sought [177,178].

Studies have demonstrated the inhibiting properties of capsaicin on the growth in
P. aeruginosa colonies even though the MIC is relatively high when compared to that of
the other bacterial species tested by Nascimento et al. [85]. Based on the research of
Kushwaha et al. [93], capsaicin along with 6-gingerol was able to inhibit the production of
rhamnolipids, phenazine, and quinolone among other compounds; this finding may be
important in dealing with resistant strains during biofilm formation. Capsaicin has also
been shown to slow down the growth in a different species, Pseudomonas solanacearum [120].

3. Capsaicin as an Antifungal Agent

Compared to bacteria, only a limited fraction of fungi are considered to be pathogenic
to humans [179]. While the majority of common fungal infections are not life-threatening,
some species, such as Candida albicans and Aspergillus fumigatus, can even cause life-
threatening infections under specific circumstances. While not as prominent as other
pathogens, still they represent a considerable threat [179] and the burden of disease is high
at least in specific regions [180–182]. Resistance to antifungal drugs is also a matter of
concern [183–185] as is their side effects in some cases [186–188].

The main focus of study for the antifungal effects of capsaicin has been two gena, Candida
and Aspergillus (Table 2), which are among the most common human fungal pathogens.

Table 2. Antifungal actions of capsaicin based on existing research.

Genus Species Extract from MIC (µg/mL) Year of Research Reference

Candida
C. albicans,
C. glabrata,
C. tropicalis

Capsicum frutescens 25 (MIC100) 2014 [85]

Capsicum chinense 187.5–1500 (MIC100) 2022 [189]

Apsergillus A. parasiticus Capsicum chinense
68 (MIC50) 2020 [190]

381 (MIC50) 2020 [191]

3.1. Antifungal Activity against Candida spp.

Candida spp. are usually benign but under certain circumstances, particularly in
the case of Candida albicans, they can cause several pathologies, for example in the oral
cavity [192] with many women also contracting vaginal candidiasis [193,194]. However,
they have also been implicated in systemic infections of life-threatening severity [195]; this
is dependent on the presence of risk factors [196,197]. Lately, the problem has become most
evident in the hospital setting [198,199].

There has been extensive research on the susceptibility of Candida spp. to capsaicin,
with satisfactory results. Capsaicin exhibits notable inhibiting properties against Candida
albicans [85]. This inhibition becomes evident at 1:4 and 1:8 dilutions, with the yeast cells
being killed, while the potency of the researched extracts was highlighted by the fact that
all of them achieved partial inhibition even at 1:16 and 1:32 dilutions [88]. Capsaicin has
also been shown to reduce the mature biofilm of C. albicans by 70–89% [200]. It has been
concluded that capsaicin exerts its effects on the yeast cells by preventing ergosterol biosyn-
thesis in the cell wall, thereby altering their shape and compromising their integrity [200].
Other species of Candida, like C. glabrata and C. tropicalis, were even more susceptible
than C. albicans with not only their biomass formation being inhibited, but likewise the
former’s biofilm-formation capacity being greatly diminished [189]. Indicatively, the MIC
of extracts from Capsicum chinense was 1500 µg/mL for C. albicans but only 187.5 µg/mL for
C. glabrata [189]. The hemolysis produced was similarly reduced by a significant de-
gree [189]. Another very important finding was the fact that the action of fluconazole
against yeast cells is enhanced when combined with capsaicin, which means that there
could be a viable way of preventing the development of resistance to the aforementioned
drug [200].
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3.2. Antifungal Activity against Aspergillus parasiticus

The species of Aspergillus which are most relevant from a medical point of view are
A. parasiticus and A. flavus, as they produce aflatoxins, secondary metabolites with harmful
effects on both humans and animals [201], most notably carcinogenesis, mutagenesis, and
teratogenesis [202]. Due to climate change, these species of Aspergillus can now be found
in the soil of many countries worldwide, including Europe [203,204]. Considering that the
use of harmful synthetic insecticides is common practice for eliminating A. parasiticus, the
need for more environment-friendly methods of eradication has emerged [205].

Nanoparticles containing capsaicin and chitosan were tested against A. parasiticus, and
the results were promising in that the incorporation of capsaicin in chitosan-containing
lipid nanoparticles maintained a good antifungal effect while reducing the toxicity of the
formulation [205]. Research results indicate that capsaicin not only has an inhibitory effect
on the growth in A. parasiticus, but it also interferes with the germination of its spores and
reduces the production of the aflatoxins [190,191] by suppressing the expression of the
relevant genes aflM, aflR, aflS, and especially aflD [190]. This means that capsaicin-based
compounds could be a useful source of non-synthetic fungicides [191].

4. Capsaicin as an Antiparasitic Agent

While most parasites are a danger to human health in the areas in which they are
endemic [206–208], a host of factors may facilitate their spreading [209,210]. Thus, it may
be imagined that the burden of disease is potentially considerable [211–213] and may
increase given the emerging resistance [214,215]; even more so, some antiparasitic drugs,
like antimonials, can have significant side effects [216]. Currently, the focus regarding the
antiparasitic properties of capsaicin is centred on two species (Table 3).

Table 3. Antiparasitic actions of capsaicin based on existing research.

Genus Species Extract from IC50 Year of Research Reference

Toxoplasma T. gondii Capsicum chinense 42.12 µg/mL 2022 [189]

Trypanosoma T. cruzi Capsicum spp. 0.26–6.26 µM 2020 [217]

4.1. Antiparasitic Activity against Toxoplasma gondii

Toxoplasma is an obligate intracellular eukaryotic parasite with a great spread; in
fact, it is estimated that it infects up to one-third of the world’s population [218,219].
Oftentimes, infections caused be this protozoon are mild or even asymptomatic [218,220].
Their severity can be life-threatening however in the case of immunocompromised patients
and newborns, the latter due to congenital transmission [218–220]. Pathologies of the
retina and of the central nervous system are the ones most commonly associated with
this microorganism [218]. A particularly common problematic finding is the development
of tissue cysts which can lead to relapses in case of rupturing when a robust immunity
is not present [221,222]. The parasite has a complex life cycle with many forms, namely
tachyzoites, bradyzoites, and sporozoites [221]. Regarding its vector, felines serve as its
definitive host and the oocysts developed within them are quite resistant when exposed
to environmental conditions [218]. Even though toxoplasma is highly antigenic [220],
it has at its disposal many proteins that enable it to evade the defences of our immune
system [218–220]. T. gondii in particular uses specialized secretory proteins which allow it to
invade and replicate within the host cell by modifying some of the latter’s factors [219]. This
is achieved by means of interfering with gene transcription and signalling pathways [220].
Pyrimethamine and trimethoprim are the main treatment options but, due to the fact that
they cannot distinguish between the enzymes of the parasite and the host, they should be
administered together with sulphonamides, most notably sulfadiazine [222]. The result is
severe side effects and subsequently, lower compliance rates [222]. There are also mentions
of drug-resistant T. gondii strains [223,224]. As such, searching for better alternatives is a
medical necessity.
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Research results have shown that T. gondii-infected BeWo cells show inhibited prolifer-
ation when treated with non-toxic concentrations of capsaicin in twofold serial dilutions,
with the half inhibitory concentration (IC50) against its tachyzoites being 42.12 µg/mL [189].
From a pharmacological point of view, combinatory use of pyrimethamine and sulfadiazine
alongside capsaicin yielded much better results than both of the two drugs combined or
capsaicin alone [189].

4.2. Antiparasitic Activity against Trypanosoma cruzi

The most notable species of Trypanosoma are T. brucei, T. gambiense and T. rhodesiense.
The main associated pathology is sleeping sickness, a disease endemic to African coun-
tries [225]. Its vectors are the Glossina flies, without excluding transmission by other
blood-sucking insects [226,227]. The drugs used for the treatment of this condition are
of two categories; the blood–brain barrier-crossing drugs, indicatively melarsoprol, eflor-
nithine and nifurtimox, and the non-blood–brain barrier-crossing drugs like pentamidine
and suramin [228]. Resistant strains are not prevalent but nor are they unheard of [229].
There is also T. cruzi, which is the causative agent of Chagas disease, which also has a
zoonotic transmission [229].

T. cruzi was found to be susceptible to the action of capsaicin, with its trypomastigotes
being affected more than its epimastigotes [217]. Although the research did not manage to
find the exact target of capsaicin, its efficacy is undeniable considering that it exerted its
effects in nanomolar concentrations with a potency many times higher than benznidazole,
the drug mainly used for treatment of Chagas disease [217]. Findings also suggested that
a capsaicin-based treatment could have an oral administration, another upside as far as
therapeutical considerations are concerned [217].

5. Capsaicin as an Antiviral Agent

There have been many studies in the last few years documenting the extensive burden
of disease from common viral pathogens [230–233]. Given that for many of the most
common viral pathogens, there is a pattern of increasing resistance to antiviral drugs and
recombinant strains emergence [234–239], and many viruses are associated with severe
persistent pathological features [240–245], the research on natural antiviral substances is
ever more important.

The emergence of the coronavirus disease 2019 (COVID-19) [246,247] highlighted
that despite the important progress in antiviral medicines, there are still significant gaps
in our antiviral arsenal. Given the existence of deadly viruses, which could be potential
pandemic-inducing agents, like the Marburg [248,249] and Ebola [250,251] viruses, and the
existence of other viruses where there is not any fully effective therapeutical scheme, like
the rabies virus [252,253], the need for novel antiviral agents becomes ever more evident.
Unfortunately, comparatively little research has been undertaken in the antiviral front, and
at the moment, it can be certainly said that capsaicin is definitively effective against only a
limited number of viral pathogens (Table 4).

Table 4. Antiviral actions of capsaicin based on existing research.

Family Genus Extract from EC50 (µmol/L) Year of Research Reference

Orthomyxoviridae Influenza Capsicum spp. n/a 2022 [254]

Arenaviridae Lassa Capsicum spp. From 6.1 to over 30 (strain-dependent) 2020 [255]

EC50 = Half maximal effective concentration.

5.1. Antiviral Activity against the Influenza Virus

The influenza virus is a highly contagious virus that affects mainly the respiratory
system and is characterized by high antigenic variability due to the genetic alterations
it often undergoes [256–258]. This is true especially for type A influenza which is prone
to causing pandemics [258]. Influenza’s antigenic variability comprises the antigenic
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shift and the antigenic drift it exhibits, the former being the cause of the aforementioned
pandemics [259] and the latter necessitating constant updating of the vaccines [257]. A
variety of medication is used for treatment, most notably the protein M-inhibiting drugs
amantadine and rimantadine, to which the virus is now greatly resistant [260], the cap-
dependent endonuclease-inhibiting drugs like baloxavir and marboxil [261,262], which
can also be used for prophylactic purposes [263], and neuraminidase-inhibiting drugs like
oseltamivir [257]. However, the available treatment loses a considerable part of its efficacy
if it is not administered within the first stages of the infection, with the first 24 h being the
optimal time frame, and 48 h being the end of the period during which drug administration
can be expected to reliably produce the desired outcome [258]. A very serious possible com-
plication is Reye’s syndrome, a pathology with diverse symptomatology which occurs in
children that are infected with a virus, the causes of which are not yet clear, but it is thought
to be caused by consuming acetylsalicylic acid in the context of the viral infection [264].

A case study showed that capsaicin may be used effectively to affect the viral neu-
raminidase, which is integral in the cellular invasion process [254]. Interestingly, a type
of capsaicin-sensitive neurons of the respiratory tract may be instrumental in combating
influenza infections, after they have been activated by capsaicin [265], but this is still the
subject of further research.

5.2. Antiviral Activity against the Lassa Virus

Lassa virus (LASV) is an endemic pathogen in West Africa responsible for causing a
haemorrhagic fever by the same name [266]. The reservoir of the virus are the rodents Mas-
tomys nataliensis [267,268]. The pathogen has been recently recorded outside of its endemic
radius [268], a reason for concern among the healthcare professionals. The World Health
Organization (WHO) has incentivized the development of a vaccine against Lassa [268],
which should come as no surprise given its high morbidity and mortality [268] as well as
the limited therapeutic options currently available [255].

Capsaicin has been found to be able to inhibit the entry of Lassa virus into permissible
cells by blocking the LASV-GP mediated fusion and by binding directly to the LASV
pseudovirions [255]. The inhibition of entry is made possible due to the fact that capsaicin
affects the stable signal peptide-GP2 transmembrane region of the virus’ glycoprotein [255].
Despite Lassa’s great genetic diversity, capsaicin proved to be effective in comparable rates
against multiple different strains [255].

6. Discussion

The rapid development of phytochemistry during the last decades offers new possibili-
ties and opportunities in the fight against numerous different pathogens. The approaches of
phytomedicine are based both in traditional medicine practises—there is extensive research
on ethnobotany (e.g., [269–274])—and modern biochemical research. Capsaicin is just one
of the numerous phytochemicals, such as kaempferol (e.g., [6,13,14]), quercetin [4,5,9],
curcumin [275–278], coumarin (e.g., [3,7,279]) and allicin (e.g., [8,12,280]), which have been
under research for quite some time for their antimicrobial properties.

As presented in the paper, there is much evidence to suggest that a host of mechanisms
exists offering promise that capsaicin, alone or in combination with other compounds, can
be, albeit sometimes in high concentrations, effective in an antimicrobial role. As mentioned,
most of the pathogens against which capsaicin has been tested, are not only dangerous,
especially in immunocompromised hosts or in nosocomial settings, but exhibit an even
increasing resistance to existing therapies.

It must be noted that capsaicin has a variety of proven health-related properties, namely
analgesic, [281,282], antioxidant [283], anti-inflammatory [284,285], anti-cancer [286–292],
cardio-protective [293], vasculomodulatory [294], and metabolic modulation [283,295,296]
effects; more organ-specific effects have been also mentioned [297]. Apart from these
actions, an extensive number of traditional applications of capsaicin have been reported
from Central and South America [298,299] where the red chili peppers where first cultivated,
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and even India [300] and Eritrea [301]. Of particular note, the native chilli of India, ‘Bhoot
Jolokia’ (Capsicum chinense Jacq.), is regarded as the hottest chilli in the world, and has a
host of applications in Ayurveda, the traditional Indian medicine [302].

On another aspect, repeated administration of capsaicin was proved by numerous
researchers to inhibit the production and/or action of substance P [38,282,303–309] at least
when locally applied. This is important, because apart from the other actions of substance
P [310–313], it is implicated in the negative effects of infection-associated inflammation in
animal models [314,315] and in teeth [316]; a recent review, also examined the association
between the defensive capacity of the respiratory system and substance P in the context of
the COVID-19 infection [317]. Therefore, in theory, for a patient suffering from a pathogen
susceptible to capsaicin, the compound could exert a dual action, both a direct inhibition of
the pathogen and a lessening of the associated inflammation.

We would also like to note that capsaicin-sensitive neurons can release somato-
statin [285,318] and it is already well known that somatostatin promotes anti-inflammatory
and anti-nociceptive effects [319–321]; recently, capsaicin was shown to be able to in-
duce the release of somatostatin from such nerve endings when applied in transdermal
patches [322]. Somatostatin is also important in its immunomodulatory role in cases of
infection-induced inflammation; despite some positive effects, the secretion of somatostatin
seems to downregulate the immune system [323–326]. Therefore, we could hypothesise
that a capsaicin-derived antimicrobial drug could, at least in sufficient concentration, both
act directly against the pathogen itself and also modulate the immune response by pro-
moting somatostatin activity. However, another aspect we should consider here is that
somatostatin and its analogues are evaluated as anticancer agents [327–332] and this can
have implications in the case of viral-induced cancers [333–336].

Another important aspect related to the antimicrobial properties of capsaicin are its
applications in neuropathy. Peripheral neuropathy may arise due to various causes such as
type 2 diabetes, metabolic disorders or due to a considerable number of infectious agents
as discussed by Brizzi et al. [337] and De León et al. [338]. On the other hand, a number
of antimicrobial agents may also cause peripheral neuropathy themselves [338]; as such
it is important to consider the potential applications as an alternative in the treatment
of infections where the antimicrobials have this particular complication. Furthermore,
capsaicin can be used to treat neuropathic pain [339,340] and therefore we may propose
that capsaicin preparations can be used to treat both infection-induced peripheral neu-
ropathy and the original infection itself. The effectiveness of such a treatment regarding
the neuropathy could be monitored by a number of blood tests as suggested by a recent
study [341]. Metabolic and systemic imbalances may aggravate the condition and should
be taken into consideration [342,343].

Nonetheless, some constraints must be mentioned at this point, regarding the phar-
macokinetics and pharmacotoxicity of capsaicin. As a compound, it is liposoluble and can
be consequently administered locally, orally, and systemically [344]. The gastrointestinal
absorption of capsaicin varies from 50% to 90% via a passive mechanism [345]; its rapid
metabolization yields a number of active metabolites [346,347]. The half-life of capsaicin
differs based on its application, from 25 min in systemic administration [348] to about 24 h
in local administration [349,350]. It has been proven that it is possible to prolong capsaicin
release and thus effective half-life using a carbopol-based formulation [351] specifically for
antimicrobial applications. The metabolic pathways of capsaicin, which are important from
a pharmacological perspective have been the subject of extensive research [352–354]. The de-
velopment could lead to various applications, including perioperative care of complicated
surgical cases or long-term treatment of infections in areas where antibiotic permeation is
reduced [355–358].

While capsaicin has current and potential clinical applications, its side effects, which can
be severe depending on the dose and application site are not negligible; pulmonary [359,360],
gastrointestinal [361,362], cardiovascular [363,364], and even CNS [365,366] adverse effects
have been reported. The adverse effect of capsaicin when it comes into contact with the
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eyes are even more rapid and pronounced [367]. This is of even greater importance in
patients with impaired judgment or vision deficit that may mistakenly apply or consume
capsaicin outside of the recommended use [368–370]. Another possibility is the use of
composite creams containing capsaicin, along with other materials like coconut oil, which
preserve medicinal capsaicin properties, while having a lower cost [371], and perhaps less
side effects; the beneficial synergistic effects of coconut oil and capsaicin have also been
noted by Trbojević Ivić et al. [372]. The antimicrobial effects of coconut oil have already
been studied by a number of researchers (e.g., [373–377]) and it has been proposed that
it can be a realistic antibacterial solution, at least for local infections of mild-to-medium
severity [378]; its combination with capsaicin may further enhance its potential.

The aforementioned data raise some serious issues, namely as to how capsaicin, in a
medicinal formulation, can be used in an antimicrobial role, reaching, in the affected tissues,
concentrations sufficient enough to be effective, but not as high as to cause unbearable
or even life-threatening side effects. This issue is further compounded by the fact that
capsaicin is toxic for children in lower doses compared to adults [379]; this is even more
problematic when considering that typically, most pathogens are more dangerous for
children than for immunocompetent adults. Finally, in potential overdose cases, there is
no way to speed up the elimination of capsaicin. Rather, the only option is to treat the
intoxication symptoms until it is excreted [380].

A possible answer to the limitations of systemic administration—local administration
with patches, creams, and other methods being an easier matter—could be the use of
nanoparticles to deliver capsaicin to its target tissues, in sufficient quantities. Nanoparti-
cles are already considered as a potential effective carrier of antibiotics (e.g., [381–383]),
while other nanoparticles themselves are being considered as theoretically useful antivi-
ral agents [384–386]. The delivery of antifungal agents via nanoparticles is also possi-
ble [387–389], and lately nanoparticles are being considered in the research for antiparasitic
drugs [390–392]. While most of this research deals with metal nanoparticles, lipid nanopar-
ticles are also a potential solution as discussed by Date et al. [393]. Another potential
option for external applications could be the lipid nanoparticles used in wound care [394].
Successful applications of capsaicin-laden nanoparticles in vitro have also been included in
our paper [171,205].

Overall, capsaicin’s use as an antibacterial agent covers a wide spectrum of pathogens;
namely bacteria, both Gram positive and Gram negative, belonging to Staphylococcus,
Streptococcus, Bacillus, Listeria, Vibrio, Acinetobacter, Helicobacter, Salmonella, Escherichia,
Klebsiella, Proteus, and Pseudomonas species, in addition to fungal species like Candida
and Aspergillus, as well as the parasites Toxopasma and Trypanosoma and the Influenza
and Lassa viruses. This is important because most of the aforementioned microorganisms
are commonly encountered in clinical practice. Moreover, the rising resistance noted in
some strains alongside the side effects associated with the usual antimicrobial agents
highlights the need for auxiliary treatments.

7. Conclusions

We conclude that capsaicin has a number of demonstrable antibacterial, antifungal,
antiparasitic, and antiviral actions, and at least in its antibacterial role it is also considered
as a promising perspective. Although significant research has been performed on this
subject, more experiments are required in order to determine the effects of capsaicin on a
wider host of pathogens and to elucidate whether there are any undiscovered mechanisms
of action.

Experiments with the aim to determine the capsaicin-induced inflammation in the
cases of infections with capsaicin-susceptible pathogens should also be performed, the end
goal being the designing of dual-purpose drugs; those having both an antimicrobial and
an anti-inflammatory potential. Indeed, in most of the cases examined in this paper, the
antimicrobial concentrations are reasonably low, and even in cases when they are on the
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high end, capsaicin may still be useful due to a lack of resistance, especially in the case
of bacteria.

An overview of the antimicrobial actions of capsaicin may contribute to multiple
fields, including chemistry, medicine, homeopathy, traditional medicine, as well as other
areas. This may further serve as a starting point to additional research, especially in this
era marked by the increase in antimicrobial resistance.

Future research perspectives on this topic may include the closer examination of
antimicrobial actions of capsaicin reported by traditional medicine as well as the exploration
of more efficient nanoparticle carriers for antimicrobial capsaicin formulations. However,
in any case, the most important research effort should be directed towards the applications
of capsaicin against pathogens which are resistant to currently available medications.
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75. Rafila, A.; Talapan, D.; Dorobăţ, O.M.; Popescu, G.A.; Piţigoi, D.; Florea, D.; Buicu, F.C. Emergence of Carbapenemase-producing
Enterobacteriaceae, a Public Health Threat: A Romanian Infectious Disease Hospital Based Study/Emergenţa Enterobacteri-
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medium-chain length capsinoids from coconut oil catalyzed by Candida rugosa lipases. Food Chem. 2017, 218, 505–508. [CrossRef]

373. Tangwatcharin, P.; Khopaibool, P. Activity of virgin coconut oil, lauric acid or monolaurin in combination with lactic acid against
Staphylococcus aureus. Southeast Asian J. Trop. Med. Public Health 2012, 43, 969–985.

374. Shilling, M.; Matt, L.; Rubin, E.; Visitacion, M.P.; Haller, N.A.; Grey, S.F.; Woolverton, C.J. Antimicrobial effects of virgin coconut
oil and its medium-chain fatty acids on Clostridium difficile. J. Med. Food 2013, 16, 1079–1085. [CrossRef]

375. Peedikayil, F.C.; Remy, V.; John, S.; Chandru, T.P.; Sreenivasan, P.; Bijapur, G.A. Comparison of antibacterial efficacy of coconut oil
and chlorhexidine on Streptococcus mutans: An in vivo study. J. Int. Soc. Prev. Community Dent. 2016, 6, 447–452. [CrossRef]

376. Widianingrum, D.C.; Noviandi, C.T.; Salasia, S.I.O. Antibacterial and immunomodulator activities of virgin coconut oil (VCO)
against Staphylococcus aureus. Heliyon 2019, 5, e02612. [CrossRef]

377. Hariyadi, D.M.; Fitri, A.; Sudarma, S.; Purwanti, T.; Erawati, T. Optimization of microspheres containing virgin coconut oil and
hydrolyzed virgin coconut oil as antimicrobial. J. Adv. Pharm. Technol. Res. 2022, 13, 238–242. [CrossRef] [PubMed]

378. Elmore, L.K.; Nance, G.; Singleton, S.; Lorenz, L. Treatment of dermal infections with topical coconut oil. Nat. Med. J. 2014, 6.
Available online: https://www.naturalmedicinejournal.com/journal/treatment-dermal-infections-topical-coconut-oil (accessed
on 12 September 2023).

379. Lassen, C.L.; Meyer, K.; Bredthauer, A.; Klier, T.W. Facial and Oral Cross-Contamination of a 3-Year-Old Child with High
Concentration Capsaicin: A Case Report. A A Pract. 2020, 14, e01258. [CrossRef] [PubMed]

380. Yeung, M.F.; Tang, W.Y. Clinicopathological effects of pepper (oleoresin capsicum) spray. Hong Kong Med. J. 2015, 21, 542–552.
[CrossRef]

381. Nirmala Grace, A.; Pandian, K. Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—A brief study.
Colloids Surf. A Physicochem. Eng. Asp. 2007, 297, 63–70. [CrossRef]

https://doi.org/10.1080/14656566.2022.2077101
https://doi.org/10.1001/jamadermatol.2016.3131
https://doi.org/10.3892/etm.2020.9346
https://www.ncbi.nlm.nih.gov/pubmed/33149780
https://doi.org/10.1016/j.addr.2021.03.019
https://doi.org/10.1152/ajpregu.1988.254.5.R845
https://www.ncbi.nlm.nih.gov/pubmed/2452577
https://doi.org/10.1124/jpet.110.178491
https://doi.org/10.1016/j.ejphar.2013.07.029
https://doi.org/10.3390/nu13072461
https://www.ncbi.nlm.nih.gov/pubmed/34371974
https://doi.org/10.1080/01902148.2016.1271481
https://doi.org/10.1111/pace.14146
https://www.ncbi.nlm.nih.gov/pubmed/33368435
https://www.ncbi.nlm.nih.gov/pubmed/3310520
https://doi.org/10.1002/cne.902960310
https://www.ncbi.nlm.nih.gov/pubmed/2358547
https://doi.org/10.1080/15563650.2021.1966028
https://www.ncbi.nlm.nih.gov/pubmed/34402691
https://doi.org/10.1136/bmjopen-2016-011945
https://www.ncbi.nlm.nih.gov/pubmed/27466242
https://doi.org/10.3390/medicina58091277
https://doi.org/10.1016/j.jamda.2021.04.024
https://doi.org/10.47227/jsppharm.v7i1.3
https://doi.org/10.1016/j.foodchem.2016.09.049
https://doi.org/10.1089/jmf.2012.0303
https://doi.org/10.4103/2231-0762.192934
https://doi.org/10.1016/j.heliyon.2019.e02612
https://doi.org/10.4103/japtr.japtr_99_22
https://www.ncbi.nlm.nih.gov/pubmed/35935685
https://www.naturalmedicinejournal.com/journal/treatment-dermal-infections-topical-coconut-oil
https://doi.org/10.1213/XAA.0000000000001258
https://www.ncbi.nlm.nih.gov/pubmed/32633926
https://doi.org/10.12809/hkmj154691
https://doi.org/10.1016/j.colsurfa.2006.10.024


Nutrients 2023, 15, 4097 27 of 27

382. Turos, E.; Shim, J.-Y.; Wang, Y.; Greenhalgh, K.; Reddy, G.S.K.; Dickey, S.; Lim, D.V. Antibiotic-conjugated polyacrylate nanopar-
ticles: New opportunities for development of anti-MRSA agents. Bioorganic Med. Chem. Lett. 2007, 17, 53–56. [CrossRef]
[PubMed]

383. Saha, B.; Bhattacharya, J.; Mukherjee, A.; Ghosh, A.; Santra, C.; Dasgupta, A.K.; Karmakar, P. In Vitro Structural and Functional
Evaluation of Gold Nanoparticles Conjugated Antibiotics. Nanoscale Res. Lett. 2007, 2, 614. [CrossRef]

384. Galdiero, S.; Falanga, A.; Vitiello, M.; Cantisani, M.; Marra, V.; Galdiero, M. Silver Nanoparticles as Potential Antiviral Agents.
Molecules 2011, 16, 8894–8918. [CrossRef]

385. Milovanovic, M.; Arsenijevic, A.; Milovanovic, J.; Kanjevac, T.; Arsenijevic, N. Chapter 14—Nanoparticles in Antiviral Therapy.
In Antimicrobial Nanoarchitectonics; Grumezescu, A.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 383–410. [CrossRef]

386. Gurunathan, S.; Qasim, M.; Choi, Y.; Do, J.T.; Park, C.; Hong, K.; Kim, J.-H.; Song, H. Antiviral Potential of Nanoparticles—Can
Nanoparticles Fight against Coronaviruses? Nanomaterials 2020, 10, 1645. [CrossRef]

387. Trombino, S.; Mellace, S.; Cassano, R. Solid lipid nanoparticles for antifungal drugs delivery for topical applications. Ther. Deliv.
2016, 7, 639–647. [CrossRef]

388. Soliman, G.M. Nanoparticles as safe and effective delivery systems of antifungal agents: Achievements and challenges. Int. J.
Pharm. 2017, 523, 15–32. [CrossRef]

389. Nami, S.; Aghebati-Maleki, A.; Aghebati-Maleki, L. Current applications and prospects of nanoparticles for antifungal drug
delivery. EXCLI J. 2021, 20, 562.

390. Elmi, T.; Gholami, S.; Fakhar, M.; Azizi, F. A review on the use of nanoparticles in the treatment. J. Maz. Univ. Med. Sci. 2013,
23, 126–133.

391. Rahul, S.; Chandrashekhar, P.; Hemant, B.; Bipinchandra, S.; Mouray, E.; Grellier, P.; Satish, P. In vitro antiparasitic activity of
microbial pigments and their combination with phytosynthesized metal nanoparticles. Parasitol. Int. 2015, 64, 353–356. [CrossRef]
[PubMed]

392. Sun, Y.; Chen, D.; Pan, Y.; Qu, W.; Hao, H.; Wang, X.; Liu, Z.; Xie, S. Nanoparticles for antiparasitic drug delivery. Drug Deliv.
2019, 26, 1206–1221. [CrossRef]

393. Date, A.A.; Joshi, M.D.; Patravale, V.B. Parasitic diseases: Liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv.
Drug Deliv. Rev. 2007, 59, 505–521. [CrossRef] [PubMed]

394. Matei, A.-M.; Caruntu, C.; Tampa, M.; Georgescu, S.R.; Matei, C.; Constantin, M.M.; Constantin, T.V.; Calina, D.; Ciubotaru, D.A.;
Badarau, I.A. Applications of nanosized-lipid-based drug delivery systems in wound care. Appl. Sci. 2021, 11, 4915. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.bmcl.2006.09.098
https://www.ncbi.nlm.nih.gov/pubmed/17049850
https://doi.org/10.1007/s11671-007-9104-2
https://doi.org/10.3390/molecules16108894
https://doi.org/10.1016/B978-0-323-52733-0.00014-8
https://doi.org/10.3390/nano10091645
https://doi.org/10.4155/tde-2016-0040
https://doi.org/10.1016/j.ijpharm.2017.03.019
https://doi.org/10.1016/j.parint.2015.05.004
https://www.ncbi.nlm.nih.gov/pubmed/25986963
https://doi.org/10.1080/10717544.2019.1692968
https://doi.org/10.1016/j.addr.2007.04.009
https://www.ncbi.nlm.nih.gov/pubmed/17574295
https://doi.org/10.3390/app11114915

	Introduction 
	Antibacterial Properties of Capsaicin 
	Antibacterial Activity against Staphylococcus aureus 
	Antibacterial Activity against Group A Hemolytic Streptococci 
	Antimicrobial Activity against Enterococcus Species 
	Antimicrobial Activity against Bacillus Species 
	Antimicrobial Activity against Listeria monocytogenes 
	Antimicrobial Activity against Vibrio cholerae 
	Antimicrobial Activity against Acinetobacter baumanii 
	Antimicrobial Activity against Helicobacter pylori 
	Antimicrobial Activity against Salmonella typhimurium 
	Antibacterial Activity against Escherichia coli 
	Antibacterial Activity against Klebsiella pneumoniae 
	Antimicrobial Activity against Proteus Species 
	Antimicrobial Activity against Pseudomonas Species 

	Capsaicin as an Antifungal Agent 
	Antifungal Activity against Candida spp. 
	Antifungal Activity against Aspergillus parasiticus 

	Capsaicin as an Antiparasitic Agent 
	Antiparasitic Activity against Toxoplasma gondii 
	Antiparasitic Activity against Trypanosoma cruzi 

	Capsaicin as an Antiviral Agent 
	Antiviral Activity against the Influenza Virus 
	Antiviral Activity against the Lassa Virus 

	Discussion 
	Conclusions 
	References

