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This Special Issue of Nutrients, “Influence of Maternal Diet and Environmental Fac-
tors on Fetal Development”, requests articles on the roles of maternal diet and environ-
mental factors such as microbiota, plastics, and endocrine disruptive chemicals impact
fetal development.

The maternal diet is critically important before and during pregnancy for the op-
timum development of the fetus [1]. The prenatal environment, such as maternal and
environmental factors, can significantly influence fetal and adult life. Maternal nutrition
supports adequate fetal development and reduces risks of possible health complications
for the offspring and adult life [2]. The placenta is the essential organ that affects these pro-
cesses by supplying maternal nutrients and environmental factors. The placenta provides
the fetus with maternal nutrients, hormones, and oxygen, contributing to fetal growth
and development throughout pregnancy [3]. Apart from maternal factors, several envi-
ronmental factors modulate the growth and development of the fetal-placental axis via
different mechanisms [4]. These maternal factors influence placental development and
thereby impact fetal growth. Therefore, the nutritional and environmental factors encoun-
tered throughout pregnancy can influence placental growth and function via endocrinal,
epigenetic, and other pathways [5,6].

Maternal n-3 and n-6 long-chain polyunsaturated fatty acids status are essential to
fetoplacental growth and development [2,7–10]. Maternal docosahexaenoic acid, 22:6n-3
(DHA) deficiency could affect fetal neurodevelopment, fetoplacental changes in epigenet-
ics, offspring growth, and lipogenic capacity [5]. Alterations in membrane phospholipid
fatty acid composition can affect the function of the neurons by changing the membrane
receptors, ion channels, enzymes, and fatty acid-derived second messengers. A high-
fat diet during pregnancy can increase the risk of neurological behaviors later in life in
offspring [11,12]. Mice studies showed that n-3 fatty acid deficiency during fetal devel-
opment impacted adipose browning and postnatal musculoskeletal development of the
offspring [13]; however, no such information is available in humans. Adipose tissue is a
target for signals of nutrients, hormones, and epigenetics that regulate fetal growth and
development [14,15]. Therefore, more information is required on whether disruptions in
the maternal nutritional, hormonal, epigenetic, and gut microbiota in obesity alter fetal
growth and later-life adiposity [14].

Various environmental chemicals, including endocrine-disrupting chemicals (EDCs),
can alter the cellular differentiation process and epigenome during the developmental
stages in the fetoplacental axis [16]. Exposure to EDCs in the early developmental stage can
also induce metabolic diseases [16,17]. More information is required on the mechanisms of
action of EDCs that lead to diseases later in life. An important role of epigenetic mechanisms
in the effects of EDCs and other environmental chemicals was reported [16–19]. Bisphenols
can affect placental development and fetal programming, but the mechanisms are yet to
be established [20]. Pesticide exposure, including organochlorine and organophosphorus
pesticides, and a risk of fetal development or pre-term birth are known. Yet more studies are
still needed with larger sample sizes, careful considerations of confounders, and accuracy
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of outcome measurements. Changes in endocrine status may alter the physiology and
metabolism of the developing fetus and contribute to several diseases in adult life.

During pregnancy, the composition of the maternal gut microbiota and changes have
significant consequences for fetal development and adult health [12]. Gut microbiota is
involved in fetal growth and development [12] and regulates pre-eclampsia by producing
short-chain fatty acids [18]. Gut microbiota also affects offspring’s metabolism and immune
system. Many factors, such as maternal diet, BMI, metabolic disorders, ethnicity, and
geographic and environmental factors, modulate the maternal–fetal microbiota [21]. A
healthy maternal diet is required to maintain healthy gut microbiota, contributing to the
fetus’s and newborn’s intestinal microbiota. Prenatal use of pro- and prebiotic treatment
on offspring’s health is known, although detailed studies regarding the type, dosage, and
timing of their intake during pregnancy are required. Despite the convincing results, some
critical points and significant evidence still need to be included.

The maternal nutritional and environmental factors can alter the epigenetic state of the
fetal genome and imprint gene expression [22]. Epigenetic alterations related to maternal
nutrition and environmental exposures may affect fetal growth [23]. Further information is
required linking maternal nutritional and environmental cues to fetoplacental pathology,
with consequences for fetal development and adult life.

This Special Issue invites articles on maternal nutrients, environmental factors, and
their impacts on fetal and neonatal development and adult health. In addition, articles are
invited on the maternal dietary factors and other potential modulators of the maternal–fetal
microbiota axis during pregnancy, impacting offspring’s microbiota and health.
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