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Abstract: Fortified balanced energy–protein (BEP) supplementation is a promising intervention for
improving maternal health, birth outcomes and infant growth in low- and middle-income countries.
This nested biospecimen sub-study aimed to evaluate the physiological effect of multi-micronutrient-
fortified BEP supplementation on pregnant and lactating women and their infants. Pregnant women
(15–40 years) received either fortified BEP and iron–folic acid (IFA) (intervention) or IFA only (control)
throughout pregnancy. The same women were concurrently randomized to receive either a fortified
BEP supplement during the first 6 months postpartum in combination with IFA for the first 6 weeks
(i.e., intervention) or the postnatal standard of care, which comprised IFA alone for 6 weeks postpar-
tum (i.e., control). Biological specimens were collected at different timepoints. Multi-omics profiles
will be characterized to assess the mediating effect of BEP supplementation on the different trial arms
and its effect on maternal health, as well as birth and infant growth outcomes. The mediating effect of
the exposome in the relationship between BEP supplementation and maternal health, birth outcomes
and infant growth were characterized via biomonitoring markers of air pollution, mycotoxins and
environmental contaminants. The results will provide holistic insight into the granular physiological
effects of prenatal and postnatal BEP supplementation.

Keywords: balanced energy–protein supplementation; metabolomics; proteomics; metagenomics;
exposome; MISAME-III

Nutrients 2023, 15, 4056. https://doi.org/10.3390/nu15184056 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu15184056
https://doi.org/10.3390/nu15184056
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0003-0880-1462
https://orcid.org/0000-0002-2729-6994
https://orcid.org/0000-0002-6151-5126
https://orcid.org/0000-0003-3982-5408
https://orcid.org/0000-0002-5267-327X
https://orcid.org/0000-0001-9907-594X
https://orcid.org/0000-0001-9802-5078
https://orcid.org/0000-0002-1521-0532
https://orcid.org/0000-0002-6817-2699
https://orcid.org/0000-0003-4124-5218
https://orcid.org/0000-0001-7401-9546
https://orcid.org/0000-0002-3068-2853
https://orcid.org/0000-0002-4615-5388
https://orcid.org/0000-0002-1389-8855
https://orcid.org/0000-0002-0504-2205
https://orcid.org/0000-0002-2160-7253
https://orcid.org/0000-0002-8204-4925
https://doi.org/10.3390/nu15184056
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu15184056?type=check_update&version=1


Nutrients 2023, 15, 4056 2 of 20

1. Background

In many low- and middle-income countries (LMICs), pregnant women struggle to meet
the nutritional requirements for sustaining healthy fetal development [1] (UNICEF-WHO,
2019); left unmet, these crucial needs can result in miscarriage [2] (Benammar et al., 2012)
and stillbirth [3] (McClure et al., 2009). Born alive, these infants are often of low birth
weight (LBW), small for gestational age (SGA) and/or preterm, and they experience
severe health and developmental disadvantages, resulting in undue costs to society [4]
(Almond et al., 2004).

In 2016, to reduce the risk of stillbirths and SGA births, the WHO published antenatal
care guidelines recommending balanced energy–protein (BEP) supplementation during
pregnancy for all pregnant women in the context of high prevalenceof population-level
undernutrition [5] (WHO, 2016). This recommendation, however, was based on evidence
of “moderate certainty” and suggests that BEP supplementation “probably” reduces the
rates of stillbirth and SGA birth [5,6] (Ota et al., 2012; WHO, 2016). In an LMIC, any costly
antenatal intervention (like BEP supplementation) supported by evidence of “moderate
certainty” is unlikely to be prioritized, at least until more robust research and evidence-
based data can demonstrate a return on investment. As a result, the Bill & Melinda Gates
Foundation (BMGF) built and funded a large-scale multi-centric consortium of seven
intervention studies aimed at evaluating the effectiveness of BEP supplementation during
pregnancy and lactation [7] (Gernand et al., 2023).

The protocol of the MISAME-III main trial was published previously [8] (Vanslam-
brouck et al., 2021). The study was a community-based, non-blinded, individually random-
ized 2 × 2 factorial randomized controlled trial (RCT) involving directly observed daily
supplement intake (Figure 1). The primary outcomes were the prevalence of SGA at birth
(<10th percentile of the newborns size standards of the International Fetal and Newborn
Growth Consortium for the 21st Century (INTERGROWTH-21st) [9] (Villar et al., 2013))
and the length-for-age z-score (LAZ) at 6 months of age (calculated using the WHO’s
2006 growth reference at 6 months of age [10] (de Onis and Branca, 2016)). These results
have been published [11–13] (de Kok et al., 2022; Argaw, de Kok, et al., 2023; Argaw,
Toe, et al., 2023).
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(gestational weight gain and anemia [16] (Hanley-Cook, Toe, et al., 2022)) as well as infant 
development and growth (Figure 2). 

Figure 1. MISAME-III efficacy trial timeline: intervention and control arms. BEP, micronutrient-
fortified balanced energy–protein; IFA, iron–folic acid.

The secondary and exploratory biological outcomes of the prenatal BEP intervention
were maternal and newborn body compositions and newborn relative telomere length
(TL), with mitochondrial DNA content (mtDNAc) a non-declared outcome that was con-
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sidered relevant for the trial at the time at which the samples were analyzed. The former
has been published [12] (Argaw, Toe, et al., 2023), and the latter is under review [14]
(Hanley-Cook et al., no date).

Anthropometry serves as a valuable metric, enabling the comparison of an individual
child to a growth reference derived from a healthy population [15] (Perumal, Bassani and
Roth, 2018). However, these are relatively crude metrics, and biomarkers are required to
fully characterize the physiological changes hypothesized to result from maternal perinatal
BEP supplementation [12,13] (de Kok et al., 2022; Argaw et al., 2023).

Thus, this dedicated biospecimen sub-study (BioSpé), which was nested within the
larger MISAME-III trial, aimed to evaluate the physiological effects of multi-micronutrient-
fortified BEP supplementation on 309 pregnant and lactating women (PLW) and their
infants (Table 1).

Table 1. List of biospecimens collected for the BioSpé study.

tri2 tri3 Birth pn0.5–0.75 pn12 pn34 pn56

1. Plasma (metabolome and proteome) M M M M
2. Whole blood (exposome and metabolome) M M I I I D
3. Cord blood (relative TL, mtDNAc and black carbon) I
4. Breast milk (metabolome, metagenomics and proteome) M M M
5. Urine (exposome) M M
6. Feces (calprotectin, SCFAs and TAC analysis) M M D I D

D—dyad; I—infant; M—mother; mtDNAc—mitochondrial DNA content; pn0.5–0.75—14–21 days after delivery;
pn12—postnatal, 1–2 months; pn34—postnatal, 3–4 months; pn56—postnatal, 5–6 months; SCFAs—short-chain
fatty acids; TAC—TaqMan array card; TL—telomere length; tri2—trimester 2; tri3—trimester 3.

Due to a dearth of evidence on maternal and infant physiology during maternal
BEP supplementation, we adopt an unbiased, hypothesis-generating approach aimed to
uncover biological pathways and discover novel biomarkers for assessing maternal health
(gestational weight gain and anemia [16] (Hanley-Cook, Toe, et al., 2022)) as well as infant
development and growth (Figure 2).
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were guided to the health center for a urine pregnancy test, and pregnancies were confirmed 
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supplementation on maternal health, infant birth and infant growth outcomes through an analysis
of multi-omics profiles, the human biomonitoring of contaminants and measurements of relative
telomere length (TL) and mitochondrial DNA content (mtDNAc).

2. Methods: Study Design, Biospecimen Collection and Rationale
2.1. Study Setting, Participants and Enrolment Procedures

The MISAME-III trial was implemented in 6 rural health-center catchment areas in
Burkina Faso. The usual diet during pregnancy is predominantly maize-based, with the
addition of leafy vegetables [17] (de Kok, Argaw, et al., 2021). The transmission of malaria
is continual with seasonal variations [18] (Hanley-Cook, Argaw, et al., 2022).

PLW aged between 15 and 40 years who lived in the study villages were identified
through a census conducted in the research area (n = 10,165). Community support staff
visited all eligible participants at their residences every five weeks to identify early preg-
nancy by screening for self-reported amenorrhea. Women who were suspected of being
pregnant were guided to the health center for a urine pregnancy test, and pregnancies were
confirmed via ultrasounds. The participants excluded from the study included those who
planned to leave the study area during pregnancy or deliver outside the study area and
individuals who had a peanut allergy because BEP is an energy-dense peanut paste.

After written informed consent was provided, the participants were randomly as-
signed to the prenatal intervention arms receiving either the fortified BEP supplements
and iron–folic acid (IFA) tablets (i.e., intervention) or the IFA tablets alone (i.e., control),
which is the standard of care during pregnancy. The same participants were concurrently
randomized to one of two of the postnatal intervention arms, either receiving fortified
BEP supplementation during the first 6 months postpartum in combination with IFA for
the first 6 weeks (i.e., intervention), or IFA alone for 6 weeks postpartum (i.e., control).
Therefore, the participants were randomized into one of the 4 study groups: (1) both pre-
and postnatal BEP and IFA supplementation (BEP/BEP); (2) prenatal BEP supplementation
and postnatal IFA supplementation only (BEP/IFA); (3) prenatal IFA supplementation and
postnatal BEP and IFA supplementation (IFA/BEP); or (4) both pre- and postnatal IFA
supplementation (IFA/IFA).

Trained village-based project workers visited the pregnant participants to observe
their intake of the BEP supplement and IFA tablets. When the participants were absent
from home, the BEP and IFA were provided in advance (thus counting as non-observed
intakes). The participants were encouraged to attend scheduled antenatal care (ANC) visits
every seven weeks per national policy [19] (Ministère de la Santé—Burkina Faso, 2010).

2.2. Study Supplements

A formative study was conducted to establish a preferred and suitable supplement
according to the Burkinabè population [20] (Jones et al., 2021). The chosen supplement was
an energy-dense peanut paste fortified with multiple micronutrients. Table 2 [21] (Bill &
Melinda Gates Foundation, 2017) provides the nutritional composition of the BEP.

The PLW in the intervention group received a daily BEP supplement and an IFA tablet
(Sidhaant Life Sciences, Delhi, India) containing 65 mg of iron (in the form of FeH2O5S)
and 400 µg of folic acid (in the form of C19H19N7O6; the tolerable upper intake level from
fortified food or supplements, not including folate from food, is 1000 µg/d [22] (Allen,
Carriquiry and Murphy, 2020), whereas those in the control group received a daily IFA
tablet only, in accordance with the standard of care in Burkina Faso. Following Burkinabè
guidelines, during ANC visits, all participants received malaria prophylaxis (three oral
doses of sulfoxide–pyrimethamine).
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Table 2. Nutritional values of the BEP supplement for pregnant and lactating women 1.

Mean for 72 g (Serving Size)

Total energy (kcal) 393
Lipids (g) 26

Linoleic acid (g) 3.9
α-Linoleic acid (g) 1.3

Proteins (g) 14.5
Carbohydrates (g) 23.3

Calcium (mg) 500
Copper (mg) 1.3

Phosphorus (mg) 418
Iodine (µg) 250
Iron (mg) 22

Selenium (µg) 65
Manganese (mg) 2.1
Magnesium (mg) 73
Potassium (mg) 562

Zinc (mg) 15
Vitamin A (µg RE) 2 770

Thiamin (mg) 1.4
Riboflavin (mg) 1.4

Niacin (mg) 15
Vitamin B5 (mg) 7
Vitamin B6 (mg) 1.9
Folic acid (µg) 400

Vitamin B12 (µg) 2.6
Vitamin C (mg) 100

Vitamin D (µg cholecalciferol) 3 15
Vitamin E (mg α-tocopherol) 4 18

Vitamin K (µg) 72
1 Ingredients: vegetable oils (rapeseed, palm and soy in varying proportions), defatted soy flour, skimmed
milk powder, peanuts, sugar, maltodextrin, soy protein isolate, vitamin and mineral complex, stabilizer (fully
hydrogenated vegetable fat; mono- and diglycerides). BEP—balanced energy−protein; IU—international unit;
RE—retinol equivalent. 2 Vitamin A RE, 1 µg = 3.333 IU vitamin A. 3 Cholecalciferol, 1 µg = 40 IU vitamin D.
4 α-Tocopherol, 1 mg = 2.22 IU vitamin E.

2.3. Biospecimen Collection
2.3.1. Whole Blood (Mother–Infant Dyads)

A total of 60 µL (2 × 10 µL and 2 × 20 µL) of whole blood was collected via capil-
lary sampling, using a volumetric absorptive microsampling (VAMS) device. The VAMS
technology wicks a small, fixed volume of biofluid, which is beneficial for newborns and
anemic participants, and poses fewer challenges in the handling, storage and transportation
of samples [23] (Vidal et al., 2021). Both 10 µL Mitra Clamshell (2-sampler) and 20 µL Mitra
Clamshell (2-Sampler) devices (item numbers: 10,109 and 20,109), namely MitraTM, were
obtained from Neoteryx (Torrance, CA, USA).

Samples were collected via the VAMS device at the following timepoints: trimester
2 (19–24 weeks of gestation), trimester 3 (30–34 weeks of gestation) and 5–6 months
(147–175 days) postpartum in the PLW participants. In infants, 60 µL of whole blood
was collected via the VAMS device at birth and 1–2 months (28–56 days of life), 3–4 months
(84–112 days of life) and 5–6 months (140–168 days) postnatally.

The VAMS technology wicks a small, fixed volume of biofluid, which is beneficial for
newborns and anemic participants, and poses fewer challenges in the handling, storage and
transportation of samples [23] (Vidal et al., 2021). Untargeted metabolomics and mycotoxin
analyses were performed on 10 µL and 20 µL VAMS devices, respectively. The VAMS
devices (MitraTM) were obtained from Neoteryx (Torrance, CA, USA). To preserve the
integrity of the metabolites for the metabolomics analyses, the PLW were asked to not
eat breakfast on the morning of the sample collection via the VAMs device. The samples
collected via the VAMS device were stored in Mitra Autoracks (96-Sampler, item number:
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108) inside a storage solution, using a 96-well plate packed with desiccant bags (item
number: AC-SS02); both items were obtained from Neoteryx (Torrance, CA, USA) for
long-term storage at −80 ◦C.

2.3.2. Plasma (Mothers)

A total of 500 µL of whole blood was collected via capillary sampling, using plastic BD
microtainer whole-blood tubes which were spray-coated with K2 potassium salt of ethylene
diamine tetra acetic acid (EDTA) (BD, Franklin Lakes, NJ, USA). Following centrifugation
using a microcentrifuge (VWR International, Leuven, Belgium), 100 µL of plasma was
aliquoted into sterile cryotubes (Biosigma, Cona, VE, Italy) via single-channel pipettes
(Thermo Fisher Scientific, Merelbeke, Belgium) before it was flash-frozen in 12 L liquid
nitrogen storage vessels (Cryopal, Air Liquide, Paris, France) and transferred to a −80 ◦C
freezer. In the PLW, the plasma samples were collected in trimester 2 (19–24 weeks of
gestation) and trimester 3 (30–34 weeks of gestation) and 1–2 (28–56 days) and 5–6 months
(140–168 days) postnatally.

Plasma was collected as it encompasses a broad spectrum of proteins often utilized
as biomarkers to detect the biological pathways influenced by supplementation [24,25]
(Weissinger et al., 2006; Chakrabarti et al., 2020).

2.3.3. Cord Blood

Within 30 min of birth, arterial umbilical cord blood was collected in 4 mL BD
Vacutainer® plastic whole-blood tubes which were spray-coated with K2 potassium salt of
EDTA (BD, Franklin Lakes, NJ, USA). These tubes were gently inverted at least 10 times
to thoroughly mix the blood with the anticoagulant. Using micropipettes (Thermo Fisher
Scientific, Merelbeke, Belgium), the blood samples were aliquoted into sterile cryotubes
and flash-frozen before they were transferred to a −80 ◦C freezer.

Umbilical cord blood demonstrates lower biovariability and excellent DNA yield and
quality [26] (Lin et al., 2019). Consequently, the impact of the BEP and environmental
contaminants on newborn relative TL and mtDNAc and the presence of black carbon (BC)
particles will be analyzed using the whole arterial blood collected from the umbilical cord.

2.3.4. Urine (Mothers)

First-morning-void urine samples were collected from the participants in sterile 60 mL
polypropylene containers (Corning Gosselin SAS, Borre, France) and aliquoted into 5 mL
sterile cryotubes (VWR International, Leuven, Belgium), using 1 mL Pasteur pipettes
(Deltalab, Heusden-Zolder, Belgium), before they were flash-frozen and stored at −80 ◦C.
The first morning voids were collected to standardize urine collection between participants.
The urine samples were collected in trimester 2 (19–24 weeks of gestation) and trimester 3
(30–34 weeks of gestation).

Urine is the most appropriate biological matrix for measuring acute, nonpersistent
chemical exposures with rapid half-lives [27,28] (Barr et al., 2005; Esteban and Castaño,
2009); thus, analyses of the prenatal concentrations of pesticides, insecticides and herbicides
will be performed on these samples.

2.3.5. Breast Milk (Mothers)

Using an electric breast pump (Medela, Baar, Switzerland), a total of 7.2 mL of breast
milk was aliquoted into 4 × 2 mL sterile cryotubes. This sample was drawn from a full
expression of the breast adjacent to the breast last used to feed the infant, and the samples
were gently inverted to homogenize fore- and hindmilk. Milk samples were collected at
the following timepoints: 14–21 days after delivery and 1–2 months (28–56 days of life) and
3–4 months (84–112 days of life) postpartum.

In addition to macronutrients and micronutrients, breast milk also provides numerous bioac-
tive components, including antibacterial peptides, antibodies, cells and microbes [29,30] (Walker
and Iyengar, 2014; Ma et al., 2020). These components have an influence on the growth of the new-
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born and on the development of organs and systems [31–36] (Bardanzellu, Fanos and Reali, 2017;
Bardanzellu et al., 2018, 2019; Congiu et al., 2019; Bardanzellu, Peroni and Fanos, 2020; Bardanzellu,
Reali, et al., 2020). The milk proteome is composed of proteins and endogenous peptides [37]
(Dallas et al., 2013). Proteomic studies have reported almost 3000 proteins in human milk [38] (Van
Herwijnen et al., 2016).

In this study, breast milk will be analyzed to assess the multi-omics profiles between
different arms of the trial [39,40] (Kisuse et al., 2018; Nguyen et al., 2021).

2.3.6. Feces (Mother–Infant Dyads)

Maternal fecal samples (8 g) were collected in a fecal pot and then aliquoted into sterile
cryotubes (Biosigma, Cona, VE, Italy), flash-frozen and transferred to a −80 ◦C freezer.
Infant feces (8 g) were collected using a 38 × 50 cm sterile protection sheet (Kimberley-
Clark, Irving, TX, USA) which is used like a diaper and wrapped around the newborn,
before they were transferred to a OMNIgene•GUT OM-200 collection kit and then sterile
cryotubes for storage at −80 ◦C. The collected feces were assessed for consistency based on
the visual Bristol scale. For liquid feces, thorough homogenization was performed using a
plastic spoon so that the solid and liquid components were mixed well.

Fecal samples were collected from the PLW in trimester 2 (19–24 weeks) and trimester
3 (30–34 weeks) and 1–2 (28–56 days) and 5–6 months (147–175 days) postpartum, and
fecal samples were collected from the infants 1–2 months (28–56 days of life), 3–4 months
(84–112 days of life) and 5–6 months (140–168 days) postnatally. Since feces are non-
invasive, biologically rich matrixes containing host, microbe and dietary proteins [41]
(Gonzalez, Zhang and Elias, 2017), these samples will be analyzed to assess the gut micro-
biota profiles of the participants and markers of inflammation.

2.4. Rationale for the Analysis of Biospecimens with Related Bio-Measurements

We will apply integrated multi-omics approaches to comprehensively characterize the
metabolome, microbiome and proteome of the whole blood, plasma, breast milk and feces
during pregnancy and the period of exclusive breastfeeding in both mothers and infants. A
summary of the analyses and the laboratories used are shown in Table 3.

Table 3. Multi-omics profiles investigated in the BioSpé Study (excluding breast milk analyses—see
Table 4).

Analysis Sample Matrix Volume
Collected Analysis Analytical

Technique Laboratory Methodology

Metabolome Capillary whole
blood 10 µL via VAMS Untargeted rLC-MS

Sapient Bioanalytics,
California,

United States
[42] (Villar et al., 2022)

Microbiome
profile

Feces 1.8 mL Untargeted

Quantitative
shotgun

metagenomics

Stanford University,
Stanford,

California,
United States

[43] (Olm et al., 2021)

KofamKOALA [44] (Aramaki et al., 2020)

Proteomics Plasma 100 µL Untargeted LC-MS/MS

Cedars-Sinai Medical
Center,

California,
United States

[45] (Mc Ardle et al., 2022)

LC-MS/MS, liquid chromatography–tandem mass spectrometry; rLC-MS, rapid liquid chromatography–mass
spectrometry; VAMS—volumetric absorptive microsampling.

The multi-omics approaches applied will compare postnatal maternal and infant data
among and between supplementation groups to identify any differences in the compositions
associated with the pre- and postnatal supplementation of BEP. In addition, these analyses
will aim to identify maternal and infant features are associated with infant phenotypes
of adverse birth outcomes (i.e., LBW, neonatal mortality, SGA, preterm birth, stunting,
underweight, wasting and underweight), as well as those correlated with continuous
metrics of birth anthropometry (i.e., birth length and weight and chest, head and mid-
upper arm circumferences) and with continuous metrics of growth (i.e., infant length
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and weight and chest, head and mid-upper arm circumference) throughout the period of
postnatal follow-up (from birth to 6 months of age).

This section describes selected analyses and the rationale and specific analytical tech-
niques that will be employed.

Table 4. Summary of the analyses performed on breast milk.

Analysis Sample
Matrix

Volume
Collected Analysis Analytical

Technique Laboratory Methodology

Macronutrients and
fat-soluble vitamins

Breast
milk 7.2 mL Untargeted

NIR analysis

University of California
Davis,

United States

[46] (Smilowitz et al., 2014)

LC-MS/MS [47] (Hampel, Dror and Allen, 2018)

Water-soluble
vitamins

LC-MS/MS [47] (Hampel, Dror and Allen, 2018)

UPLC-MS/MS [48] (Hampel, York and Allen, 2012)

Automated
immunoassay [47] (Hampel, Dror and Allen, 2018)

Minerals ICP-MS [47] (Hampel, Dror and Allen, 2018)

HMOs LC-MS/MS Bode Lab, University of
California San Diego,

United States

[49] (Kellman et al., 2022)

Proteins ECL [50] (Ju, Lai and Yan, 2017)

Metabolomics rLC-MS Sapient Bioanalytics,
United States [42] (Villar et al., 2022)

Proteomics LC-MS/MS
Precision Biomarker

Laboratories,
United States

[45] (Mc Ardle et al., 2022)

Microbiome 16S rRNA

Baylor College of Medicine,
Alkek Center for

Metagenomics and
Microbiome Research,

United States

[51] (Ramani et al., 2018)

Metabolomics
(small molecules) Targeted LC-MS/MS

Biocrates,
Innsbruck,

Austria
[52] (Langsdorf et al., 2023)

Metabolomics
(lipids and hexoses) Targeted FIA-MS/MS

Biocrates,
Innsbruck,

Austria
[52] (Langsdorf et al., 2023)

ECL, electrochemiluminescence; HMO, human milk oligosaccharide; HPLC, high-performance liquid chro-
matography; ICP-MS, inductively coupled plasma mass spectrometry; LC-MS, liquid chromatography–mass
spectrometry; NIR, near-infrared; QTRAP, quadrupole ion trap; rLC-MS, rapid liquid chromatography–mass
spectrometry; rRNA, ribosomal RNA; UHPLC, ultra-high-performance liquid chromatography.

2.4.1. Metabolomics

Metabolomics identifies and characterizes changes in the metabolites in a biofluid (e.g.,
blood). Previously, a targeted metabolomics approach was used to measure essential amino
acids and other metabolites in 313 Malawian children. The results reported that sixty-two
percent of Malawian children with stunting had lower serum concentrations of all essential
amino acids in contrast with non-stunted children, as well as lower serum concentrations
of conditionally essential amino acids, non-essential amino acids and six sphingolipids and
variations in the concentrations of glycerophospholipids [53] (Semba et al., 2016). Likewise,
a study by Hemp et al. (2019) [54] found that the breast milk of mothers with stunted
infants, in comparison to milk from mothers with a body mass index higher than 18.5, was
lower in 6 amino acids/biogenic amines [54] (Hampel et al., 2019).

In the present study, we will apply untargeted metabolomics approaches to analyze
maternal and infant blood, as well as targeted and untargeted metabolomics approaches
to analyze breast milk. The untargeted metabolomics analyses will be conducted via
rapid liquid chromatography–mass spectrometry (rLC-MS), using a previously developed
method [42] (Villar et al., 2022), and targeted metabolomics analyses will be conducted
using LC-MS-MS and FIA-MS/MS [52] (Langsdorf et al., 2023).

2.4.2. Metagenomics

Early life is a period during which the infant gut microbiome is established, ultimately
influencing health and disease later in life [55] (Tanaka and Nakayama, 2017). An impor-
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tant factor affecting the development and composition of the infant gut microbiome is
nutrition [56–58] (Marques et al., 2010; Bäckhed et al., 2015; Gritz and Bhandari, 2015).
Human milk has been demonstrated to induce differences in the composition of the mi-
crobiota [58,59] (Marques et al., 2010; Gomez-Llorente et al., 2013). It is established that
an inadequate maturation of the gut microbiome can lead to the development of child
malnutrition, both moderate and severe [60] (Vray et al., 2018).

To understand this, inStrain will be used to profile fecal metagenomes recovered by
shotgun sequencing maternal and infant samples [10] (Olm et al., 2021), and KofamKOALA
will be used to obtain functional annotations [44] (Aramaki et al., 2020). Similarly, we will
assess differences in the microbiome compositions of milk samples. Within the framework
of the International Milk Composition Consortium, the milk microbiome will be analyzed
via 16S rRNA sequencing. An additional comparison will be performed to determine
the associations of the microbiome with maternal health, adverse birth outcomes and
infant growth.

2.4.3. Proteomics

The field of proteomics is a high-throughput approach employed to identify the
full spectrum of proteins in an organism, tissue, cells or bodily fluid. This approach
investigates the functional states of proteins, including protein–protein interactions and
posttranslational modifications [61] (Adeola et al., 2017). Navarro et al. (2015) [62] noted
that several pathways differed between interventions with glucosamine and chondroitin
supplementation and a placebo (Navarro et al., 2015) [62].

In the present study, the untargeted quantification of proteins and peptides in pre-
natal maternal plasma and breast milk samples will be conducted according to a stan-
dardized liquid chromatography–tandem mass spectrometry (LC-MS/MS) workflow [45]
(Mc Ardle et al., 2022).

2.4.4. Breast Milk Characterization

Numerous components from breast milk influence the infant microbiota by enhancing
the growth of specific bacteria or limiting the growth of others [63] (Boudry et al., 2021).
Human milk oligosaccharides (HMOs) interact with gut microbiota by supporting the
growth of beneficial bacterial and providing anti-pathogenic effects [64] (Zhang et al., 2021).
Another example is lactoferrin, a non-heme iron-binding protein that plays an important
role in iron absorption and protection against bacteria [65] (Demmelmair et al., 2017). The
impact of maternal supplementation on the interplay of macronutrients, micronutrients
and bioactive compounds in human milk is not yet fully understood, highlighting the need
for further investigation.

Breast milk samples were distributed to and will be analyzed at multiple laboratories
for macronutrients, micronutrients, oligosaccharides, growth factors, immunoglobulins,
cytokines, metabolites and microbes. The analyses to be performed on the breast milk and
the laboratories employed are summarized in Table 4.

2.5. Human Biomonitoring

Dietary and environmental contaminants, specifically those common in rural, low-
income settings (e.g., smoke pollution from cooking, mycotoxins, herbicides, insecticides
and pesticides) play important mediating roles and must be considered. The totality of
these exposures is the “exposome” [66,67] (Wild, 2005; Miller and Jones, 2014), the study
of which is an emerging field with great potential to advance human health research. A
biomonitoring analysis will provide insight to determine if the aforementioned exposures
act as effect modifiers in the relationship between the provision of BEP and maternal health,
birth outcomes and infant growth, as well as any association between the exposure and the
relative TL and mtDNAc. A summary of the analyses and the laboratories used are shown
in Table 5.
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Table 5. Environmental contaminants investigated in the BioSpé study.

Analysis Sample Matrix Volume
Collected Analysis Analytical

Technique Laboratory Methodology

Telomere length
and mitochondrial

DNA content

Whole arterial
blood from

umbilical cord
200 µL Targeted Real-time PCR

method

Centre for Environmental
Sciences, Hasselt University,

Belgium

[68–72] (Cawthon, 2002, 2009;
Janssen et al., 2012;

Martens et al., 2016, 2020)

Black carbon
particles

Whole arterial
blood from

umbilical cord
250 µL Targeted Confocal

microscopy

Centre for Environmental
Sciences, Hasselt University,

Belgium

[73,74] (Saenen et al., 2017;
Bové et al., 2019)

Mycotoxins Capillary whole
blood 20 µL VAMS Targeted LC-MS/MS

Centre of Excellence in
Mycotoxicology and Public

Health,
Faculty of Pharmaceutical
Sciences, Ghent University,

Belgium

[23] (Vidal et al., 2021)

Pesticides
Urine 4 mL

Targeted LC-MS/MS Toxicological Centre,
University of Antwerp,

Belgium

[75,76] (Gys et al., 2020;
Caballero-Casero et al., 2021)New/emerging

contaminants Untargeted LC-HRMS

Multiple Infection
Targets Feces 1.8 mL Targeted TAC analysis

Institut de Recherche en
Sciences de la Santé,

Bobo-Dioulasso, Burkina
Faso

[77,78] (Liu et al., 2014;
Deboer et al., 2018)

Calprotectin Feces 1.8 mL Targeted ELISA

Institut de Recherche en
Sciences de la Santé,

Bobo-Dioulasso,
Burkina Faso

[79] (Whitehead et al., 2013)

Short-chain fatty
acids Feces 1.8 mL Targeted GC-FID

Faculty of Bioscience
Engineering,

Ghent University,
Ghent,

Belgium

[80] (Toe et al., 2020)

ELISA, enzyme-linked immunosorbent assay; GC-FID, gas chromatography coupled with a flame ionization
detector; LC-MS/MS, liquid chromatography–tandem mass spectrometry; LC-HRMS: liquid chromatography–
high-resolution mass spectrometry; PCR, polymerase chain reaction; TAC, TaqMan array card; VAMS, volumetric
absorptive microsampling.

2.5.1. Telomere Length and Mitochondrial DNA

Telomeres protect DNA coding sequences from degradation and prevent the aberrant
fusion of chromosomes [81] (Blackburn, Epel and Lin, 2015). In somatic cells, telomeres
shorten after each cell division due to the incomplete replication of DNA molecules and
maintenance mechanisms that are unable to prevent telomere attrition [82] (Wang et al.,
2021). Previous research suggests that short telomeres are associated with cardiovascular
disease and mortality [83,84] (Haycock et al., 2014; Wang et al., 2018). In Ghana, prenatal
supplementation had no impact on TLs at 4–6 years of age when compared to IFA. However,
in Greece, adults receiving a daily combination of vitamin supplements for 6 to 12 months
had longer TLs compared to the control group [85] (Tsoukalas et al., 2019).

Mitochondria play a critical role in the production of energy through aerobic respi-
ration, resulting in the formation of adenosine triphosphate [86] (Roger, Muñoz-Gómez
and Kamikawa, 2017). The mtDNA is theoretically more susceptible to damage to oxida-
tive stress as it is situated close to the sites of oxidative phosphorylation (e.g., reactive
oxygen species). Additionally, mtDNA lacks protection from the histones present in nu-
clear DNA [87,88] (Tait and Green, 2013; Copeland and Longley, 2014). Mitochondrial
dysfunction during the neonatal period and infancy has been related to heart arrhythmia
and poor weight gain [89,90] (Gibson et al., 2008; Kohda et al., 2016), whereas in adulthood,
mitochondrial dysfunction has been implicated in Alzheimer’s disease and cancer [91]
(Druzhyna, Wilson and LeDoux, 2008). In Indonesia, one trial assessed the impact of
prenatal MMN supplementation on the mtDNA in venous blood of pregnant women
and reported lower post-supplementation mtDNA compared to IFA, indicating improved
mitochondrial efficiency [92] (Priliani et al., 2019).

In the scope of this study, the efficacy of a prenatal BEP supplement and an IFA
tablet on newborn relative TL and mtDNAc were compared to the efficacy of IFA alone,
and differences in relative TL and mtDNAc across adverse birth outcomes (i.e., SGA,
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LBW or preterm births) were measured via a real-time PCR method, using whole arterial
blood collected from the umbilical cord [68–72] (Cawthon, 2002, 2009; Janssen et al., 2012;
Martens et al., 2016, 2020) The results of the effect of the fortified BEP supplementation
on the newborn genome were reported in a separate manuscript [14] (Hanley-Cook et al.,
no date).

2.5.2. Air and Smoke Pollution

In Ouagadougou, the capital of Burkina Faso, 60% of households use biomass-based
fuels as their primary cooking fuel [93] (Sana et al., 2019). In 2002, it was estimated that
21,500 deaths in Burkina Faso were attributed to domestic air pollution [94] (WHO, 2007).
Exposure to particulate matter air pollution, such as BC, during early life has been linked
to adverse pregnancy outcomes, including a LBW [95] (Pedersen et al., 2013), increased
cardiovascular morbidity and mortality [96,97] (Brook et al., 2010; Nawrot et al., 2011).
In 469 mother–newborn pairs, in utero exposure to particulate matter during the third
trimester of pregnancy was linked to a lower placental iodine load, an element that is
important for fetal brain development and growth [98] (Neven et al., 2021).

In the present study, using confocal microscopy, the level of BC will be assessed
in in whole arterial blood collected from the umbilical cord [73,74] (Saenen et al., 2017;
Bové et al., 2019).

2.5.3. Mycotoxins

Mycotoxins are secondary fungal metabolites found on food and feed that can disturb
gut microbial homeostasis, metabolism and the integrity of the intestinal barrier [1,3,6,8,10,13,
15,17,19,20,26,29,39,40,43,45,46,49–53,55,62,66,70–72,74,78,80,86,88,90,92,93,95,97–113] (Hussein
and Brasel, 2001; Vidal et al., 2018). In LMICs, mycotoxins pose health risks due to their high
abundance and acute intrinsic toxicity [114] (Yacine Ware et al., 2017). Children are vulnerable
due to their lower body mass, higher metabolic rate and developing detoxification system [107]
(Peraica, Richter and Rašić, 2014). A study in Ethiopia reported a high occurrence of long-tern
maternal aflatoxin exposure and an associated risk of poorer fetal growth trajectories [111]
(Tesfamariam et al., 2022). In Burkina Faso, limited biological and toxicological food contami-
nation data are available [101] (Kpoda et al., 2022), and regulations or legislation concerning
mycotoxins are often not implemented [115,116] (FAO, 2003; Warth et al., 2012).

Maternal and infant whole blood, extracted via VAMS, will be analyzed for mycotoxins
using an adapted LC-MS/MS methodology [23] (Vidal et al., 2021).

2.5.4. Environmental Contaminants

Burkina Faso’s economy relies heavily on the agricultural sector, which provides
employment for most of the population and generates nearly half of the gross domestic
product, yet disease and animal pests cause significant damage to crops. To address this,
plant protection products are used to eradicate pests [106] (Ouedraogo et al., 2011), leading
to high levels of exposure among the Burkinabè population [117–119] (Lehmann et al., 2017,
2018; Son et al., 2018). A study by [101] Kpoda et al. (2022) reported that more than 58% of
the food samples collected from Burkinabè markets (i.e., cereals, oilseeds, vegetables and
dried fish) contained at least one pesticide. Researchers postulate that exposure to these
pesticides increases the chances of miscarriage and other adverse birth outcomes [101]
(Kpoda et al., 2022). Previous studies in India and Egypt reported that interventional
strategies reduced pesticide-induced oxidative effects [104,109] (Saad-Hussein et al., 2020;
Medithi et al., 2022).

Analyses of environmental contaminants (i.e., herbicides, insecticides and pesticides)
in maternal urine will be conducted using LC-MS/MS and LC–high resolution mass
spectrometry (LC-HRMS) [75,76] (Gys et al., 2020; Caballero-Casero et al., 2021).
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2.5.5. Gut Enteropathogens

The TaqMan array card (TAC) is a 384-well platform that uses primers and probes
specific to the targets pre-allocated on the card, allowing for the simultaneous detection of
up to 48 targets in one specimen [102,120] (Diaz et al., 2013; Liu et al., 2013). Additional
advantages of the TAC assay include its ease of use and excellent reproducibility [121,122]
(Weinberg et al., 2013; Diaz et al., 2019). TAC is an ideal platform for multi-pathogen detec-
tion in low-resource settings [103,105,121] (Diaz et al., 2019; Moore et al., 2019; Marks et al.,
2021). In Nepal, Tanzania and Bangladesh, a TAC analysis detected multiple pathogens
with high sensitivity and enhanced the understanding of mixed infections detected in one
matrix [78] (Liu et al., 2014).

In this study, a TAC analysis will be performed on maternal and infant fecal sam-
ples to assess the pathogen burden, as previously described [77,78] (Liu et al., 2014;
Deboer et al., 2018).

2.5.6. Fecal Inflammatory Markers
Calprotectin

Calprotectin is a calcium-binding protein belonging to the S100 series [123,124] (Yui,
Nakatani and Mikami, 2003; Jukic et al., 2021) that accounts for 30–60% of the protein con-
tent of neutrophils [125] (Dale et al., 1985). Calprotectin interferes in physiological behaviors
such as cell differentiation, immune regulation and inflammation [123] (Jukic et al., 2021).
The release of calprotectin in the gastrointestinal tract lumen and its excretion in feces are
consequences of an inflammatory process that prompts the migration of neutrophils into
the gastrointestinal tissue. Calprotectin is therefore a robust and noninvasive marker for
intestinal inflammation, whether acute or chronic [126] (Summerton et al., 2002).

Am enzyme-linked immunosorbent assay (ELISA) will be applied to maternal and in-
fant fecal samples to detect calprotectin since it has demonstrated acceptable intra- and inter
batch precision, good recovery and dilution linearity across different concentrations [114]
(Whitehead et al., 2013).

Short-Chain Fatty Acids

Short-chain fatty acids (SCFAs) are formed in the colon via the fermentation of pro-
teins and non-digestible carbohydrates [127] (Cummings and Macfarlane, 1997). SCFAs are
sources of energy for the epithelium and regulate differentiation and proliferation [128,129]
(Louis and Flint, 2009; Blad, Tang and Offermanns, 2012). Butyric acid, an essential SCFA,
protects against inflammatory bowel disease [130] (Berries et al., 2018), colorectal can-
cer [53,131] (Scheppach, Bartram and Richter, 1995; Gomes et al., 2018) and cardiovascular
disease [86] (Richards et al., 2016). Butyrate regulates the epithelial barrier by organizing
proteins, thus reducing the permeability of bacteria [132] (Cani et al., 2008). A study exam-
ining dietary effects on gut microbiota found that Burkinabè infants had increased bacterial
diversity and higher levels of SCFAs in their feces compared to European children [133]
(De Filippo et al., 2010).

A quantitative analysis of SCFAs will be conducted in maternal and infant fecal
samples by means of capillary gas chromatography (GC) coupled with a flame ionization
detector (FID) [80] (Toe et al., 2020).

3. Metadata

For all participants, questionnaires and lifestyle and clinical data were collected. In
addition, the participants’ dietary intakes were assessed using weekly food-group-diversity
questionnaires. Complete details on the metadata collection were described previously [113]
(Vanslambrouck et al., 2021).

4. Data Quality Control

The MISAME-III field data were collected using SurveySolutions v.21.5 on tablets and
synchronized to a cloud-based server weekly. Furthermore, generic validation codes were



Nutrients 2023, 15, 4056 13 of 20

programmed to limit the entry of implausible values and to improve data quality. Bi-weekly
data quality checks were conducted, and missing or inconsistent data were sent back to the
field for revision. To ensure the quality of the ultrasound images and the estimations of
gestational age (GA), an external gynecologist regularly evaluated 10% of the examinations
using a quality checklist and scoring sheet. The trained project workers collected daily data
on BEP and IFA compliance in both prenatal study arms via smartphone-assisted personal
interviewing programmed in CSPro v.7.3.1. Six supervisors performed monthly lot quality
assurance sampling (LQAS) schemes of each home visitor’s work on a random day [8]
(Valadez et al., 1996).

5. Ethical Considerations

The protocol of this study was approved by the ethics committee of Ghent University
Hospital in Belgium (B670201734334) and the ethics committee of the Institut de Recherche
en Sciences de la Santé in Burkina Faso (50-2020/CEIRES). An independent Data and
Safety Monitoring Board (DSMB), comprising an endocrinologist, two pediatricians, a
gynecologist and an ethicist of both Belgian and Burkinabè nationalities, was established
prior to the start of the efficacy trial. The DSMB managed remote safety reviews for adverse
and serious events at 9 and 20 months after the initiation of enrolment. The MISAME-III
trial was registered on ClinicalTrials.gov (identifier: NCT03533712).

6. Strengths and Limitations

The BioSpé sub-study of the MISAME-III project is unique in that compliance to BEP
and IFA supplementation was verified by a community-based network of home visitors,
leading to high levels of observed adherence. Moreover, quantitative 24 h dietary recalls
were conducted to assess whether the daily energy and micronutrient requirements were
met by integrating the BEP supplement with the participants’ regular diets, as well as to
eliminate the possibility of any dietary substitution [100] (de Kok, Moore, et al., 2021). Fur-
thermore, by collecting diverse biological specimens from mother–infant dyads at various
timepoints, we were able to obtain comprehensive -omics data and conduct biomonitoring
on the contaminants present in these samples. In conjunction with lifestyle data, this will
assist in evaluating the physiological effect of maternal perinatal BEP supplementation.
Additionally, it will facilitate the understanding of the intermediary role of environmental
contaminants in the relationship between BEP supplementation, maternal health, birth
outcomes and infant growth in Burkina Faso.

An additional strength of this study lies in the comprehensive characterization of
multi-omics profiles, including exogenous and endogenous exposures. Additionally, the
prospective, longitudinal collection of biospecimens minimizes the possibility of mea-
surement errors in the analysis. Our research group’s diverse expertise across numerous
disciplines enables a holistic approach to assessing exposures and biological responses.
Moreover, to avoid interlaboratory variability and ensure consistency, all laboratory experi-
mentation for each -omics and exposure analysis will be conducted in the same laboratory.

A notable limitation of this study is its sample size, which is insufficient to thoroughly
investigate rare diseases or extreme values for continuous traits unless combined with data
from other cohorts. Also, the study is monocentric, and the study population is largely
homogenous (i.e., rural and African); therefore, its generalizability to the larger population,
and other geographical regions and urban settings, is limited.

In conclusion, the BioSpé study will help generate evidence-based health prevention
and intervention strategies that improve maternal health, enhance birth outcomes, promote
healthy infant growth and address related health issues such as metabolic disorders and
accelerated biological aging. In doing so, the results will help us understand mechanistic
pathways that will provide valuable insights to inform policy decisions in public health.
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