
Citation: Cuttica, C.M.; Briata, I.M.;

DeCensi, A. Novel Treatments for

Obesity: Implications for Cancer

Prevention and Treatment. Nutrients

2023, 15, 3737. https://doi.org/

10.3390/nu15173737

Academic Editor: Li Jiao

Received: 8 August 2023

Revised: 23 August 2023

Accepted: 24 August 2023

Published: 25 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nutrients

Review

Novel Treatments for Obesity: Implications for Cancer Prevention
and Treatment
Carla Micaela Cuttica 1,*, Irene Maria Briata 2 and Andrea DeCensi 2,3

1 Endocrine Unit, E.O. Ospedali Galliera, 16128 Genoa, Italy
2 Division of Medical Oncology, E.O. Ospedali Galliera, 16128 Genoa, Italy; irene.maria.briata@galliera.it (I.M.B.);

andrea.decensi@galliera.it (A.D.)
3 Wolfson Institute of Population Health, Barts and the London School of Medicine and Dentistry, Queen Mary

University of London, London E1 2AD, UK
* Correspondence: carla.cuttica@galliera.it

Abstract: It is now established that obesity is related to a higher incidence of cancer during a
lifespan. The effective treatment of obesity opens up new perspectives in the treatment of a relevant
modifiable cancer risk factor. The present narrative review summarizes the correlations between
weight loss in obesity and cancer. The current knowledge between obesity treatment and cancer
was explored, highlighting the greatest potential for its use in the treatment of cancer in the clinical
setting. Evidence for the effects of obesity therapy on proliferation, apoptosis, and response to
chemotherapy is summarized. While more studies, including large, long-term clinical trials, are
needed to adequately evaluate the relationship and durability between anti-obesity treatment and
cancer, collaboration between oncologists and obesity treatment experts is increasingly important.
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1. Introduction

The obesity pandemic is on the rise around the world; by 2030, it is expected that
1 in 5 women and 1 in 7 men will live with obesity, equal to over 1 billion people globally,
producing a considerable impact on the number of years of life lost due to disease and
premature death [1].

Obesity is a chronic, relapsing and multifactorial disease linked to excessive adiposity
that predisposes individuals to other non-communicable diseases (NCDs) and medical
complications, such as type 2 diabetes (T2DM), cardiovascular disease, chronic kidney
disease, gallbladder disease, non-alcoholic fatty liver disease, gout, obstructive sleep apnea,
osteoarthritis and cancer [2]. It is now known that obesity can increase the risk of different
types of cancer, including cancers of the breast in postmenopausal women, colorectum,
endometrium, kidney, liver, gallbladder, ovary, pancreas, gastric cardia, esophagus, thyroid,
multiple myeloma and meningioma, and may worsen the survival of patients with cancer,
especially for breast, bladder, colorectal, prostate and liver cancers. Obesity is estimated to
overtake smoking as the main risk factor for cancer in many countries in the coming decades,
making obesity treatment a new challenge in cancer control strategies [3,4]. Obesity often
starts early in life and may influence the likelihood of developing one of the related NCDs in
adulthood. Furer et al., in a large population-based cohort of 2.3 million Israeli adolescents,
found that a high body mass index (BMI) in adolescence is positively associated with an
increased risk of mortality after 10 years for all types of cancer in both sexes [5]. In addition,
other authors have found an association between shorter survival and cumulative exposure
to a higher BMI during early to mid-adulthood in patients with breast and colorectal cancer,
irrespective of the presence of cardiometabolic disease prior to cancer diagnosis, pointing
out how effective early life intervention strategies on BMI can become an important target
of preventive intervention [6].
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It is important to point out how reductive it is to talk about obesity based only on BMI.
It is the excess of adiposity that gives rise to complications that compromise health and
confer increased morbidity and mortality; therefore, the preferable term today is adiposity-
based chronic disease (ABCD), which motivates the importance of excessive distribution
of fat [7]. Adipose tissue distribution is of increasing interest due to its role in cancer
development, as shown in a recent study of postmenopausal women with breast cancer
with a normal BMI but high body fat evidenced with dual-energy X-ray absorptiometry
(DXA) [8]. Adipose tissue can be classified into several different subtypes by function and
anatomical location: white, brown and beige adipose tissue. Brown and beige adipose tissue
deal with thermoregulation, whereas white adipose tissue is responsible for the energy
storage of lipids (triacylglycerides) and is further divided into different compartments:
subcutaneous adipose tissue and visceral adipose tissue. Visceral adipose tissue is more
lipolytically active, contributing to the increase in free fatty acids and thus resulting in
insulin resistance and to a more pro-cancer secretome than subcutaneous adipose tissue [9].
The accumulation of visceral adipose tissue in the body, in fact, contributes to an increase in
tissue inflammation (through the infiltration of immune cells and the formation of crown-
like structures by the macrophages that surround dead or dying adipocytes) and to an
altered secretion of inflammatory factors that, in turn, are associated with the development
of insulin resistance, metabolic syndrome and increased cancer risk and worse prognosis.

Furthermore, the importance of adipose tissue in tumorigenesis is supported by the
finding that cold exposure produces a browning in adipose tissue that increases thermo-
genesis and glucose uptake while reducing glucose uptake, tumor growth, proliferation
and hypoxia in cancer cells, making adipose tissue a possible target of cancer therapy by
mediating tumor suppression through cold-impaired metabolism [10].

BMI alone does not distinguish between lean mass and fat mass, but it is inexpensive
and widely used as is waist circumference, an indirect measure of abdominal obesity
related to abdominal visceral fat. More accurate assessments of body fat distribution
(e.g., bioelectrical impedance, DXA and magnetic resonance imaging) are expensive and
limited in use in epidemiological studies [9].

Three mechanisms are mainly used to explain the relationship between obesity and
cancer: sex hormone impaired metabolism, impaired insulin signaling and an excess of pro-
inflammatory cytokines [3]. Weight gain in adulthood and increased body fat are known to
increase the risk of endometrial cancer and the risk of hormone receptor-positive breast
cancer in postmenopausal women in whom adipose tissue is the principal site for estrogen
synthesis, making estrogen production a major contributor in women with obesity. Obesity
is often characterized by hyperinsulinemia and insulin resistance, which are capable of
stimulating the growth of cancer cells directly through insulin receptors and indirectly
through insulin-like growth factor (IGF) receptors by inhibiting apoptosis and promoting
cell growth, motility and invasion. Hyperinsulinemia also reduces sex hormone binding
globulin levels (increasing free circulating estrogens that can promote estrogen-dependent
tumors), reduces IGF-binding protein by increasing free IGF and increases the production
of pro-inflammatory cytokines and adipokines, thus supporting the chronic low-grade
inflammation implicated in the development of cancer, as illustrated elsewhere [3,9]. As
far as adipokines are concerned, it is known that, in obesity, adiponectin decreases, and
leptin increases. Leptin appears to be a pro-oncogenic factor: it is able to promote systemic
inflammation, cell proliferation, angiogenesis and metastasis, also inhibiting apoptosis,
immune surveillance and cell death; however, adiponectin has opposite effects. The
imbalance between leptin and adiponectin plays an important role in the obesity–cancer
relationship [9,11].

The recent novel adipokine circulating miRNAs, acting as epigenetic regulators, are
capable of influencing adipocyte differentiation, white adipose tissue browning, lipid and
glycemic homeostasis and insulin resistance with an essential role in obesity-associated
inflammation, metabolic syndrome and predisposition to cancer. Moreover, miRNAs,
extensively produced by adipose tissue in both paracrine and endocrine signaling, are
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able to participate in oncogenic and tumor suppressor molecules, modulating the cancer
microenvironment, settlement, progression and invasion [12]. Gut hormone dysregula-
tion is also involved in the pathogenesis of obesity, and emerging data hypothesize its
implication in cancer development [3,13]. Gut hormones are secreted by entero-endocrine
cells in the gastrointestinal tract; they react to the deficit or arrival of nutrients by acting
as regulators of eating habits/appetite/satiety and regulators of energy homeostasis; they
are also able to regulate insulin secretion. The dysregulation of gut hormones present in
obesity is implicated in excessive nutrient intake, impaired insulin signaling leading to
hyperinsulinemia and T2DM and chronic low-grade inflammation arising from adipose
tissue, which are all mechanisms involved in the development of cancer [13].

The treatment of obesity, therefore, appears essential to reduce the risk of cancer.

2. Weight Loss and Cancer Risk and Prognosis

Intentional weight loss (including diet/exercise/surgery), especially if greater than
10%, is able to reverse the proinflammatory state linked to obesity, e.g., reducing the levels
of C-reactive protein, tumor necrosis factor-α, interleukin-6 and the leptin-to-adiponectin
ratio. Data are limited because adipokines and cytokines are difficult to measure due to
their low concentrations; however, although further investigation is needed in this area,
many studies suggest that weight loss among overweight or obese people is helpful in
reducing cancer risk [3,9,14,15]. Moreover, it is known that subjects with obesity/ABCD
at the time of cancer diagnosis have worse outcomes and poorer survival outcomes [3,16].
In breast cancer, obesity seems to be linked to a heightened risk of recurrence and overall
mortality with an estimated risk that ranges from 35% to 40% [16,17]. Importantly, this
correlation persists regardless of menopausal status, hormone receptor status or specific
cancer subtypes [17,18]. Also, being overweight or obese appears to be linked with the
occurrence of distant and delayed recurrences in patients with breast cancer [17].

The “obesity paradox” debate that has occurred between the association of high body
weight and cancer survival benefits and increased tolerance during some anticancer thera-
pies may be explained by the association of obesity with subtypes of less aggressive tumors
and other confounding factors, such as smoking and body composition [16]. Intervention
studies predominantly conducted in breast, endometrial and prostate cancer trials showed
positive effects of intentional weight loss based on diet composition, caloric intake and
amount and nature of physical activity [19–22]. It is also known that bariatric surgery,
achieving significant and long-term weight loss, is effective in reducing the incidence of
obesity-associated cancer and the cancer-related mortality [23].

Weight gain following a breast cancer diagnosis also seems to slightly elevate the
risk of overall mortality, and the harmful impact was most pronounced when weight gain
exceeded 10% [17]. Therefore, the evaluation of BMI at the time of diagnosis may be the
most significant predictor of breast cancer prognosis [17], and strategies aimed to control
that increase are crucial. A recent randomized trial provided evidence for the favorable
impact of a weight loss intervention through diet, physical activity and behavioral change
on outcomes among women with breast cancer [24].

In individuals with prostate cancer, an increase of 5 kg/m2 in BMI was found to
correspond to a 9% higher risk of prostate cancer-specific mortality and a 3% higher risk of
all-cause mortality [25]. Additionally, there is a moderate–consistent association between
obesity and biochemical recurrence following radical prostatectomy [26]. Despite the role
of obesity in prostate cancer, only a few prostate cancer guidelines recommend the adoption
of a healthy lifestyle, and only 7.2% provide advice on reaching or maintaining a healthy
weight [22].

It should be emphasized that weight management strategies in overweight and obese
cancer survivors may also play an important role in preventing non-cancer deaths. Diabetic
patients with cancer have reduced overall survival compared with non-diabetics, in par-
ticular, related to an increased risk of non-cancer deaths, primarily cardiovascular, which
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may be further increased by some cancer treatments, and weight loss programs have been
shown to be effective in the remission of diabetes [27].

3. Metformin and Cancer

Many studies have documented an association between metformin, a biguanide for
the treatment of T2DM, and reduced cancer incidence and mortality [28].

Among high-risk patients with operable breast cancer without diabetes, adding met-
formin versus a placebo to standard cancer treatment did not significantly improve invasive
disease-free survival in a large phase III trial [29]. However, patients with ERBB2+ breast
cancer in the metformin group vs. the placebo group had longer invasive disease–free
survival and overall survival [29]. Moreover, in vitro studies support the efficacy of met-
formin in cancer therapy and prevention, and a review of epidemiological studies on
metformin treatment showed a positive trend for benefit [30,31]. In a randomized placebo
controlled presurgical trial, metformin was able to reduce breast cancer cell proliferation in
women with insulin-resistance, suggesting a potential effect of the drug in this subgroup of
patients [32,33].

Multiple mechanisms are involved: (1) metformin indirectly reduces tumor prolif-
eration via insulin-lowering activity in subjects with hyperinsulinemia, involving the
insulin/IGF-1 pathway, which is known to contribute to cell growth and proliferation by
activating both phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt/mTOR and the
Ras/Raf/mitogen-activated protein kinase (MAPK) pathways; (2) metformin also indirectly
affects cancer cells by modulating the immune response via an anti-inflammatory effect;
(3) metformin acts directly on respiratory Complex I of the electron transport chain in the
mitochondria of pre-neoplastic and neoplastic cells, reducing the energy consumption of
cells; (4) metformin is able to inhibit the activation of matrix metalloproteinase-9, blocking
the invasion of cancer cells, and to activate growth suppressants through phosphorylation
of the retinoblastoma protein [34,35]. Metformin, acting through suppression of the mito-
chondrial electron transport chain complex I, reduces mitochondrial ATP, which increases
the adenosine monophosphate (AMP): ATP ratio; as a result, AMP-activated protein kinase
is activated, which inhibits hepatic lipogenesis and gluconeogenesis [36]. Metformin-
induced activation of the AMPK pathway is able to reduce the tumor-promoting activity of
insulin and inhibit mTOR, which is closely related to tumor cell proliferation, making met-
formin an intriguing molecule in cancer therapy [37,38]. Due to modest weight-loss effects,
metformin is not approved as a weight-loss agent, but it is often used as an off-label drug
in obese patients with prediabetes, insulin resistance, metabolic syndrome and polycystic
ovary syndrome, especially in the absence of lifestyle changes or when other anti-obesity
drugs cannot be used [39]. The Diabetes Prevention Study has shown that metformin is
able to reduce the incidence of diabetes and produce a slight but persistent reduction in
body weight (approximately 2–3 kg), BMI and waist circumference in subjects with a high
risk of T2DM [40]. The metformin-induced weight change is not attributed to an increase in
energy expenditure but rather to a reduction in caloric intake via appetite suppression. One
hypothesis is that metformin, by suppressing the mitochondrial complex I of the electron
transport chain, reduces mitochondrial production of ATP and diverts glucose to anaerobic
respiration, inducing mild metabolic acidosis by the production of lactate (particularly in
the postprandial period) and thus inducing appetite suppression [41]. Metformin crosses
the blood–brain barrier, acting in areas associated with food–reward relationships and
acting in the hypothalamus by reducing orexigenic peptides, neuropeptide Y and agouti-
related protein, possibly by increasing the signal transducer and activator of transcription 3
(STAT3) that is identified as a key mediator of feeding [42]. Metformin is also capable of
acting on the suppression of appetite, promoting, through a direct local gastro-intestinal
action, the secretion of the anorexic intestinal incretin hormone glucagon-like peptide 1
(GLP-1), and also through the inhibition of dipeptidyl peptidase-IV (DPP-IV), an enzyme
that degrades GLP-1 [43,44].
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4. Obesity Therapy and Cancer Treatment and Prevention

Novel specific therapeutic strategies are currently present to address the global obe-
sity epidemic and its comorbidities, and several promising drug targets are under study.
The medications currently approved in Europe for the treatment of obesity are orlistat,
naltrexone/bupropion, liraglutide and semaglutide and, in the United States, short-term
phentermine and a combination of phentermine/topiramate (in 2020, the US Food and
Drug Administration ordered the withdrawal of lorcaserin from the market since a drug
safety clinical trial showed an increased risk of cancer [45,46].

Orlistat (tetrahydrolipstatin, a synthetic derivative of lipstatin produced by Strepto-
myces toxytricini) is a pancreatic and gastric lipase inhibitor, which reduces the absorption
of dietary fat, developed as an anti-obesity drug. Orlistat inhibiting fatty acid synthase, a li-
pogenic enzyme that catalyzes fatty acid synthesis, has been shown to decrease proliferation
and increase apoptosis in various tumor cell lines [47–51].

There are currently very few studies on the effects of the combination of naltrex-
one/bupropion, short-term phentermine and phentermine/topiramate focused on cancer
effects in obesity. In an 8-week intervention study of the effects of the Mediterranean
diet and naltrexone/bupropion therapy, a fixed-dose combination product containing
naltrexone, an opioid antagonist, and bupropion, an aminoketone antidepressant, in breast
cancer survivors overweight or obese did not show superior effects when compared to the
Mediterranean diet alone [52,53].

Liraglutide and semaglutide are two GLP-1 receptor agonists (GLP-1RAs) formerly
known as antidiabetic drugs for the treatment of T2DM and currently approved, in higher
dosages, for chronic weight management in addition to diet and physical activity in patients
with obesity (BMI ≥ 30 kg/m2) or who are overweight (BMI ≥ 27 kg/m2) with at least one
weight-related comorbidity (such as hypertension, T2DM, dyslipidemia): liraglutide 3 mg
subcutaneous daily (approved for obesity in adults and adolescents 12 years and older)
and semaglutide 2.4 mg subcutaneous weekly [54–57].

GLP-1 is an incretin hormone secreted by gastrointestinal L cells in response to nu-
trients in the lumen; it accounts for up to 70% of insulin secretion in response to nutrient
intake, and it also lowers glucagone secretion while minimizing hypoglycemia. GLP-1 is
capable of suppressing appetite and delaying gastric emptying, both of which are responsi-
ble for its slimming effects [58]. GLP-1 inhibits food intake, mediating appetite suppression
by directly stimulating POMC/CART neurons and indirectly inhibiting neurotransmission
in neurons expressing neuropeptide Y and agouti-related peptide via GABA-dependent
signaling [59]. GLP-1 half-life is very short (less than 2 min), and it is rapidly degraded
by enzymes (DPP-IV and neutral endopeptidase -NEP). Semaglutide and liraglutide are
modified long-acting analogues of native GLP-1 (Aib 8, Arg 34 and Arg 34 substitutions, re-
spectively). With the addition of an albumin-binding C16 fatty acid side chain, the half-life
of liraglutide is 13–15 h. The half-life of Semaglutide is 165 h, resulting from an amino acid
replacement (preventing DPP-IV degradation) and the addition of a C18 fatty diacid. Addi-
tionally, semaglutide has positive effects on hedonic aspects and reward-related behaviors
of food intake (e.g., reducing cravings and lowering altered food preference) [45,56,60].
However, they are costly and may have adverse effects in some individuals, the most
common mainly at the beginning of the treatment cycle and consisting of gastrointesti-
nal disturbances (including nausea, diarrhea, vomiting, constipation), which are mostly
mild, transient and dose-dependent but may lead to discontinuation of treatment in some
patients [58].

In addition to diet and physical activity, liraglutide is capable of producing at least
5–10% weight loss compared to the placebo, and semaglutide is capable of producing a
mean reduction of 14.9% in body weight from baseline, semaglutide being more effective
than liraglutide in weight loss (10% or more: 70.9% of participants vs. 25.6%, 15% or more:
55.6% vs. 12.0% and 20% or more: 38.5% vs. 6.0% respectively; all p < 0.001) [61–63].

GLP1-receptors (GLP-1Rs) are widely distributed in the body, and in addition to the
effects mentioned above, they have multiple biological effects: cardioprotective, neuro-
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protective, reduction in neuroinflammation and fat deposition, appetite suppression and
gastric emptying delay [64].

Notably, liraglutide compared to the placebo in patients at high risk of cardiovas-
cular disease and without T2DM was able to significantly reduce visceral adipose tissue
(−12.5% vs. placebo −1.6%) and levels of CRP (−38%) [65].

Semaglutide, on the other hand, appears to have positive effects on skeletal mus-
cle; can significantly reduce body weight and intramuscular fat accumulation; promote
muscle protein synthesis; increase the relative proportion of skeletal muscle and improve
muscle function in obese mice by decreasing the levels of triglycerides, serum cholesterol,
low-density lipoprotein, high-density lipoprotein, TNF-α, IL-6, IL-1β and fasting insulin
resistance index (HOMA-IR) and significantly improving type I/type II muscle fiber ratio,
total muscle fiber area, muscle fiber density, sarcomere length and mitochondrial number
and area [66].

GLP1-RAs (receptor agonists) also show interesting perspectives on tumor develop-
ment and prognosis. Meta-analyses and systematic review of clinical trials demonstrated
that, in obese patients (with or without T2DM), GLP-1RAs do not increase the risk of breast
cancer, pancreatic cancer, thyroid cancer and malignancies in general [67–69], although
some authors underscore concerns about potential tumor-related adverse effects when
combining GLP-1RAs with DPP-IV inhibitors [70].

Furthermore, there is still controversy regarding the possible association between
GLP1-RAs and thyroid cancer risk: some authors showed correlations while others showed
no correlation, also pointing out potential surveillance bias [71–73]. However, although
there is no clear evidence of the development of c-cell malignancies, it should be noted that
GLP-1RAs are currently not recommended in patients with family or personal history of
medullary thyroid cancer, as well as multiple endocrine neoplasia syndrome type 2 [74,75].
Further data are expected in the coming years from targeted clinical trials [76].

Randomized clinical trials reported the incidence of malignant neoplasms in over-
weight or obese adults as 0.7% (3/407; basal cell carcinoma, breast cancer and papillary
thyroid cancer) and 1.1% (6/535; breast neoplasms, endometrial adenocarcinoma, marginal
zone lymphoma and melanoma) in the semaglutide group and 0.5% (1/204; invasive
lobular breast carcinoma) and 0.4% (1/268; metastatic lung cancer) in the control group,
respectively [77,78]. In a recent randomized clinical trial comparing liraglutide to semaglu-
tide, malignancies occurred in 2.4% with semaglutide (3/126; basal cell carcinoma, clear
cell renal cell carcinoma and invasive ductal breast carcinoma) in 2.4% with liraglutide
(3/127; basal cell carcinoma, invasive ductal BC and invasive lobular breast cancer) and
1.2% with placebo (1/85; invasive ductal breast cancer) [63].

4.1. GLP-1 Receptor Agonists and Breast Cancer

Experimental studies investigated the effects of GLP-1 RAs on breast cancer. GLP-1R
is expressed in human breast cancer tissue and cell lines. By inhibiting nuclear translocation
of NF-κB and target gene expression, GLP-1RA exenadin-4 dose-dependently reduced
the growth of breast cancer cell lines in vitro as well as in vivo in transplanted athymic
nude mice. In contrast, a DPP-IV inhibitor (linagliptin) did not affect breast cancer cell
proliferation, suggesting that GLP-1 might attenuate cell proliferation through GLP-1R
activation [79].

Liraglutide in breast cancer cell lines is able to modulate epigenetics, reducing cell
viability, migration, DNA methyltransferase activity, decreasing the DNA methylation
profile for CDH1, ESR1 and ADAM33 gene promoter regions and, consequently, increasing
their expression. Furthermore, liraglutide and the combination treatment of liraglutide and
paclitaxel or methotrexate was shown to be effective in reducing tumor growth in in vivo
studies by modulating CDH1 and ADAM33 gene expression in mice, suggesting liraglutide
as a possible treatment for breast cancer [80].

Liraglutide, in a dose-dependent manner, was able to reduce proliferation and increase
apoptosis in human breast cancer cell line MCF 7 cells compared with the control group
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by inhibiting the expression of miRNA-27a, which subsequently increases the expression
of adenosine monophosphate-activated protein kinase (AMPKα2 protein), the authors
suggest the experimental basis for clinical breast cancer treatment strategies [81].

Liraglutide has been shown to have anti-proliferative effects on MCF-7 human breast
cancer cells cultured in obese adipose tissue-derived stem cells-conditioned medium
(ADSCs-CM -the multipotent mesenchymal lineage implicated in breast cancer devel-
opment, invasion and metastasis, by the secretion of cytokines, adipokines, interleukins,
tumor necrosis factor-alpha and growth factors that promote growth, migration and in-
vasion of breast cancer cells). The drug was able to decrease the levels of inflammatory
mediators, suppress the pro-proliferative effects of leptin and enhance the anti-proliferative
effects of adiponectin in ADSCs-CMs. Therefore, the authors suggest that liraglutide could
mitigate breast cancer cell growth in obese subjects [82].

However, liraglutide at higher concentrations in an approximate toxicological context
in human triple negative breast cancer cells (MDA-MB-231 and MDA-MB-468) and in
transplanted tumors was shown to be able to promote progression through the signal
NOX4/ROS/VEGF pathway after GLP-1R activation, suggesting attention to dosages and
breast cancer phenotype [83].

In the SCALE trials evaluating the effect of liraglutide in the treatment of obesity, a
non-significant higher incidence of breast cancer was observed in the treatment group
(15 vs. 3 events; incidence, 4.36 vs. 1.80 events for 1000 person-years) in women who had
greater weight loss in the first year of treatment and thus partially attributed to detection
bias due to facilitation of mass detection during breast exams [61]. In the UK Clinical
Practice Research Datalink national database, the use of GLP-1RAs was not associated with
an increased risk of breast cancer over an average follow-up of 3.5 years [84]. A recent
systematic review and meta-analysis assessing the incidence of breast cancer in subjects
treated with GLP-1RAs found no increased risk [67].

4.2. GLP-1 Receptor Agonists and Prostate Cancer

Interesting perspectives between GLP1-RAs use and prostate cancer are emerging.
The randomized, double-blind, controlled LEADER study (Liraglutide Effect and Action
in Diabetes: Evaluation of Cardiovascular Outcome Results) in a secondary outcome
analysis showed a lower incidence of prostate cancer in the liraglutide group (n = 26)
compared to the placebo (n = 47) with HR 0.54 (95% CI: 0.34–0.88) [85]. Lu et al., in a
large UK Clinical Practice Research Datalink patient cohort (2007 to 2019), found that
GLP-1RAs were associated with a reduced risk of prostate cancer compared with sulfony-
lurea use (rates incidence = 156.4 vs. 232.0 per 100,000 person-years, respectively, HR = 0.65,
95% CI = 0.43, 0.99) [86].

Interestingly, GLP-1Rs are expressed in human prostate cancer tissue obtained by
radical prostatectomy from patients with nondiabetic prostate cancer; they are co-located
with P504S/α-methylacyl-CoA racemase, a cytoplasmic protein identified as a sensitive
and specific positive marker for prostate carcinoma. GLP1-RA Exenedin-4 (Ex-4), in a dose-
dependent manner, significantly reduced prostate cancer proliferation in in vitro cell lines,
androgen dependent LNCap (the strongest effect) and androgen independent PC3 and
DU145 in accordance with the abundant expression of GLP-1R in LNCap cells. Indeed, this
anti-proliferative effect was abolished by GLP-1R antagonist or GLP-1R knockdown. Ex-4
attenuated in vivo prostate cancer growth induced by transplantation of LNCap cells into
athymic mice, significantly reducing tumor expression of P504S, Ki67 and phosphorylated
ERK-MAPK mediated by the cAMP-PKA pathway [87].

Some authors, using the GLP-1RA Ex-4, observed, via the PI3K/AKT/mTOR pathway,
a reduction in the resistance of prostate cancer cells to the androgen-receptor inhibitor
enzalutamide with a greater effect observed in advanced cancers. The increased chemosen-
sitivity of cancer cells could be due to indirect inhibition of the tumor migration, invasion
and growth [88].
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In human prostate cancer cells (PC3 and LNCap), Ex-4 is able to promote the anti-
proliferative effects of radiation via the activation of AMPK phosphorylation and the
subsequent inhibition of phosphorylated mTOR, cyclin B and p34cdc2 protein kinase
activation [89].

By binding with GLP-1R, liraglutide also significantly inhibited cell proliferation
and induced cell apoptosis in LNCap prostate cancer cell lines by regulating the P38
pathway [90]. Liraglutide, in combination with Docetaxel, a first-line chemotherapy agent
in metastatic castration-resistant prostate carcinoma, caused cell cycle arrest in LNCaP
and induced apoptosis via the ERK/MAPK and AKT/PI3K pathways, thus suggesting
new therapeutic strategies for lower therapeutic doses of docetaxel and, therefore, its
resistance and toxicity [91]. Forced overexpression of GLP-1R using a lentiviral vector
(ALVA-41-GLP-1R cells) was able to attenuate prostate cancer cell proliferation by inhibiting
cell cycle progression in vitro and in vivo; the authors concluded that GLP-1R activation
could be a potential therapy for prostate cancer [92].

4.3. GLP-1 Receptor Agonists and Pancreatic Cancer

Recent meta-analyses and reviews evaluating the association between GLP1-RAs and
pancreatic cancer have found no significant associations in the use of incretin-based thera-
pies and increased risk of pancreatic cancer [93,94]. On the contrary, it should be considered
that obesity could be a risk factor for the development of pancreatic carcinoma [95]. Indeed,
preclinical experimental data have shown beneficial effects of GLP1-RAs on pancreatic
cancer cell lines. Zhao et al. [96], in human pancreatic tumor tissues, showed lower levels
or lack of expression of GLP-1R than in pancreatic tissues adjacent to the tumor. GLP-1R
negative expression was more frequent in advanced tumors and was associated with a
poor prognosis. GLP-1R activation by liraglutide produces an antitumor effect on human
pancreatic cancer cells through inhibition of the PI3K/AKT pathway, suggesting beneficial
effects of GLP-1-based therapies in this tumor [96]. GLP-1RAs could also activate cAMP,
subsequently inhibiting AKT and ERK1/2 signaling pathways and causing apoptosis and
inhibition of proliferation in a human pancreatic cancer cell line in vitro and reducing
xenograft pancreatic tumor growth in vivo, contributing to address the long-term safety
issues of GLP-1-based therapies [97]. In addition, liraglutide, which regulates the NF-kB sig-
naling pathway and the downstream ATP-binding cassette subfamily G member 2 (ABCG2),
showed significant antiproliferative and pro-apoptotic effects in gemcitabine-resistant hu-
man pancreatic cancer cells resistant to various drugs, increasing the chemosensitivity in
both in vitro and in vivo experiments [98].

4.4. GLP-1 Receptor Agonists and Gynecological Cancers

On gynecological cancers, GLP-1RAs exert an inhibitory effect on cervical cancer
growth in T2DM; treatment with the antidiabetic GLP1-RAs attenuated hyperglycemia
might promote cancer growth by increasing proteasome alpha subunit 2 (PSMA2)
expression [99].

Upregulation of GLP1-R is able to block the growth of endometrial cancer cells
(Ishikawa and RL95-2) by activating the cAMP/PKA signaling pathway [100]. Further-
more, liraglutide was able to suppress the progression of endometrial cancer in human
Ishikawa endometrial cancer cells. GLP-1R expression is associated with estrogen and
progesterone receptors positive status. Higher GLP-1R expression may be associated with
a better prognosis in patients with endometrial cancer, and the use of liraglutide to target
autophagy in endometrial cancer cells may be a potential new treatment for endometrial
cancer [101].

GLP-1R is expressed in both human ovarian cancer tissues and cell lines. GLP1-R
activation by Ex-4 is able to produce antitumor effects in human ovarian cancer cells by
reducing growth, migration and invasion and promoting apoptosis through inhibition of
the PI3K/Akt extension. GLP-1 activation is also able to attenuate tumor formation by
ovarian cancer cells in vivo in nude mice [102].
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It is known that tumor metastases are facilitated by the remodeling of the extracellular
matrix at the tumor site and also through an alteration of the balance between metallo-
proteinases (MMPs), a family of proteolytic enzymes that contribute to the breakdown of
extracellular matrix components, and the tissue inhibitors of metalloproteinases (TIMPs),
promoting tumor growth, invasion and metastasis. MMP production also enhances the
angiogenic response by VEGF expression potentially affecting the metastatic potential of
cancer cells. In SKOV-3 and CAOV-3 human ovarian cancer cells, GLP1-RA (Ex-4) was able
to reduce the expression of the key metalloproteinases MMP-2 and MMP-9, to modulate
their inhibitors TIMP-1 and TIMP-2, to inhibit migration and induce apoptosis by reduc-
ing the production of adhesion molecules and inhibiting apoptosis in TNF-α-stimulated
endothelial cells [103,104].

4.5. GLP-1 Receptor Agonists and Colorectal Cancer

In CT26 colon cancer cells, GLP-1R activation reduces cell growth and survival, in-
creasing intracellular cAMP levels and inhibiting the activity of glycogen synthase kinase 3
and ERK1/2, a member of the mitogen activated protein kinase family; moreover, GLP-1R
activation augmented apoptosis is induced by irinotecan, a topoisomerase I inhibitor [105].

By inhibiting the PI3K/Akt/mTOR signaling pathway, liraglutide could block the
cell cycle, reducing cell proliferation, migration and invasion and promoting apoptosis
in colorectal cancer cell lines. Liraglutide reduced cyclin D1, an important protein in the
cell cycle that regulates the transition from G1 to S phase in the cell proliferation cycle,
and MMP-11, one of the matrix metalloproteinases, which is the main enzyme that causes
degradation of the basement membrane and of the extracellular matrix [106].

GLP-1R also appears to play a role in the inhibition of glioma cell survival, migration,
proliferation and invasion in a GLP-1R/SIRT3 pathway-dependent manner [107].

5. Conclusions

It is now widely known that overweight and obesity are risk factors for cancer de-
velopment and prognosis. Therefore, the prevention and treatment of obesity appears
to be of increasing value as a treatment of a modifiable factor causing cancer. Extensive
ongoing research about the effects of obesity treatment, especially focused on GLP1-RAs,
on occurrence and development of cancer have highlighted the increased potential for their
use in the clinical setting of cancer treatment, first reducing obesity/ABCD and, second,
influencing cancer cells by altering proliferation, apoptosis, extracellular matrix remodeling
and the response to chemotherapy. Further studies, including large, long term clinical trials
are needed to properly evaluate the relationship between anti-obesity treatment and cancer
risk and prognosis, and the long-term efficacy of these agents on weight control versus
lifestyle or diet changes. These studies require strong collaboration between oncologists
and experts in the treatment of obesity.
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