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Abstract: Low vitamin D (VitD) level is a risk factor for preterm birth (PTB), but the results of
previous studies remained inconsistent, which may be influenced by the confounding factors and
different types of PTB. We performed Mendelian randomization (MR) to uncover the association of
25-hydroxyvitamin D (25(OH)D) with PTB, premature rupture of membranes (PROM), and preterm
premature rupture of membranes (PPROM). This study was conducted in Zhoushan Maternal and
Child Health Hospital, Zhejiang, from August 2011 to March 2022. Plasma 25(OH)D levels in
three trimesters of pregnancy were measured. We conducted an MR analysis utilizing a genetic
risk score (GRS) approach, which was based on VitD-associated single-nucleotide polymorphisms.
The prospective cohort study included 3923 pregnant women. The prevalence of PTB, PROM,
and PPROM were 6.09%, 13.18%, and 1.33%, respectively. Compared to those without vitamin D
deficiency (VDD), only vaginally delivering pregnant women with VDD had a 2.69 (1.08–6.68) times
risk of PTB. However, MR analysis did not support the association. One-unit higher GRS was not
associated with an increased risk of PTB, regardless of the trimesters (OR [95% CI]: 1.01 [0.93–1.10],
1.06 [0.96–1.18], and 0.95 [0.82–1.10], respectively). When further taking PROM and PPROM as the
outcomes, the MR analysis also showed no consistent evidence of a causal effect of VitD levels on the
risk of them. Our MR analyses did not support a causal effect of 25(OH)D concentrations in the three
trimesters on PTB, PROM, and PPROM.

Keywords: 25-hydroxyvitamin D; Mendelian randomization; preterm birth; premature rupture
of membranes

1. Introduction

Preterm birth (PTB) is defined as birth before 37 completed weeks of gestation or
fewer than 259 days from the first date of a woman’s last menstrual period [1]. The
preceding obstetric factors that contribute to PTB include: (1) medically indicated delivery;
(2) spontaneous onset of preterm labor with intact membranes; and (3) preterm premature
rupture of membranes (PPROM) [2]. For neonates, PTB is a risk factor that exerts long-term
implications on health, well-being, and overall development in later stages of life. Based
on 2010 data from 184 countries, roughly 15 million infants are born prematurely globally,
accounting for an approximate global PTB rate of 11% [3]. In China, the PTB rate increased
from 5.9% in 2012 to 6.4% in 2018 (annual rate of increase 1.3, 95% CI: 0.6–2.1) [4]. And, this
situation has also occurred in many other countries [5].
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The related factors of PTB include maternal age [6], PTB history [7], infection [8],
maternal nutritional status [9], and so on. In recent years, there have been widespread con-
cerns regarding the correlation between vitamin D deficiency (VDD) during pregnancy and
an increased risk of PTB [10]. VDD is common in different populations and is particularly
notable in pregnant women [11]. Serum 25-hydroxyvitamin D (25(OH)D) is widely recog-
nized as a biomarker for assessing vitamin D (VitD) levels in circulation among humans.
However, the protective effect of maternal 25(OH)D during pregnancy on the occurrence of
PTB remains controversial [12–14]. A meta-analysis conducted in 2017 revealed variations
in the association between vitamin D and different types of preterm birth [12]. Nevertheless,
there is limited research exploring the association between VitD levels in pregnant women
and the occurrence of premature rupture of membranes (PROM), which is one of the main
causes of PTB.

Studies on genetic variants that specifically affect the 25(OH)D concentration may
provide valuable insights into clarifying the causal association of VitD with PTB and PROM.
Therefore, we intend to utilize the Mendelian analysis (MR) to establish the association be-
tween VitD and the above outcomes. MR analysis employs genetic variants as instrumental
variables (IVs) to investigate the causality of an association, as the assignment of genes
during conception is random at the population level and thus unaffected by confounding
factors [15]. Advances in the methodology of large-scale genetic association studies have
identified some single-nucleotide polymorphisms (SNPs) from different genes that influ-
ence the 25(OH)D concentration [16,17]. The biotransformation gene CYP3A4 affects the
synthesis of 25(OH)D; the transport gene GC encodes the vitamin D-binding protein; and
the catabolism gene CYP24A1 is associated with the clearance of 25(OH)D [18].

In this study, a prospective cohort study design was used to investigate the causal
effect of 25(OH)D concentrations in the three trimesters on PTB, PROM, and PPROM using
genetic variants that are associated with the 25(OH)D concentrations as IVs in a Mendelian
randomization analysis.

2. Materials and Methods
2.1. Study Population

The participants were from a prospective cohort study in Zhoushan, China, from
August 2011 to March 2022. The Zhoushan Pregnant Women Cohort (ZPWC) study
was described in the previous study [18]. Based on the inclusion and exclusion criteria
established in the ZPWC study, we further included women who had plasma 25(OH)D
concentrations measured in the first, second, or third trimester while excluding those
who lacked delivery information, experienced post-term births, stillbirths, or multiple
pregnancies. A subset of 3923 pregnant women was selected for this study.

Information on sociodemographic characteristics, lifestyle, and personal health status
was collected by trained interviewers during a face-to-face interview. Aside from that, blood
samples for the full cohort were collected and stored for biochemical tests and genotyping.
The study protocol was approved by the Research Ethics Committee of Zhoushan Maternal
and Child Health Hospital and Zhejiang University School of Medicine.

2.2. Plasma 25(OH)D Measurement

According to the VitD testing gold standard established by the National Institute of
Standards and Technology (NIST) in the United States [19], the plasma concentrations of 25-
hydroxyvitamin D2 (25(OH)D2) and 25-hydroxyvitamin D3 (25(OH)D3) in the first, second,
or third trimester of pregnancy were measured using liquid chromatography-tandem mass
spectrometry (LC-MS ACQUITYUPLC-TQD; Waters Corporation, Milford, MA, USA), and
their sum represented the total 25(OH)D concentrations.

Based on the Endocrine Society’s clinical practice guideline [20], the 25(OH)D concen-
trations were classified into three categories: VitD deficiency (<20 ng/mL), VitD insuffi-
ciency (20–30 ng/mL), and VitD sufficiency (≥30 ng/mL). Previous research has demon-
strated a significant biological effect associated with 25(OH)D levels below 20 ng/mL [10].
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Hence, we classified VitD into two groups in the follow-up analysis: VitD deficiency
(<20 ng/mL), and VitD non-deficiency (≥20 ng/mL).

2.3. SNP Selection and Genotyping

The previous study reported the criteria for candidate genes and SNPs related to the
synthesis, transport, and catabolism of vitamin D [18]. We first selected NADSYN1/DHCR7
(rs1790349 and rs12785878), GC (rs222040, rs1155563, rs16846876, rs2298849, rs7041, and
rs4588), CYP24A1 (rs2209314), CYP2R1 (rs10741657), and VDR (rs2228570, rs7975232, and
rs757343) as candidate SNPs. Based on the Hardy–Weinberg equilibrium (r2 > 0.8) and
the genotype success rate (>95%), five transport SNPs (GC-rs1155563, GC-rs16846876, GC-
rs2298849, GC-rs7041, and GC-rs4588), and one catabolism SNP (CYP24A1-rs2209314) were
selected. SNP genotyping was performed using the Sequenom MassARRAY iPLEX Gold
platform (Sequenom, San Diego, CA, USA).

2.4. GRSs

We conducted a one-sample MR analysis utilizing a genetic risk score (GRS) approach.
Based on the correlation between the above SNPs and the 25(OH)D concentrations, we
adopted an additive genetic model. Genotypes containing 0, 1, or 2 alleles were assigned
scores of 0, 1, or 2, respectively. GRSs were the sum of scores for each SNP multiplied by
the unweighted value.

2.5. Definition of the Outcomes

All outcomes were collected from the Maternal and Child Health Information Man-
agement System of Zhoushan Maternal and Child Health Hospital. PTB is defined as births
prior to 37 completed weeks of gestation [1]. PROM refers to the rupture or breaking of the
amniotic sac and leakage of amniotic fluid before the onset of labor. When PROM occurs
before 37 completed weeks of gestation, it was defined as PPROM. Finally, spontaneous
PTB refers to PTB without any medical or surgical intervention to initiate or facilitate
the birth.

2.6. Statistical Analysis

The descriptive statistics for continuous variables were reported as mean ± standard
deviation (SD), while categorical variables were presented as frequency and percentage.
ANOVA and the χ2 test were used for continuous variables and categorical variables,
respectively, to compare the characteristics between groups (Healthy, only PTB, only PROM,
PPROM). Aside from that, the 25(OH)D concentrations, gestational week at blood sampling
and sampling season measured in the first, second, or third trimester of pregnancy were
also described.

Initially, linear regression was used to examine the association between each SNP
and the 25(OH)D concentrations in different trimesters, assuming a linear effect of each
VitD-related SNP for each additional allele on 25(OH)D. The Cragg–Donald F-statistic was
used to estimate the strength of the association, with F values greater than 10 considered
adequate for MR analysis [21]. Additionally, the potential effects of pleiotropy for the above
six SNPs were examined using MR–Egger regression, where the p-value of the intercept
provides a valid test of directional pleiotropy [22].

There were three outcomes in this study: PTB, PROM, and PPROM. The direct effect
of VitD in three trimesters on the risk for PTB, PROM, and PPROM was assessed using
multivariable logistic regression models. The effect of SNPs on the risk for PTB, PROM,
and PPROM was respectively assessed using multivariable logistic regression models. We
performed a one-sample MR analysis using two-stage least-squares (2SLS) regression using
the ivreg command from the ivreg package in R. GRS that was used as IV to estimate
the causal effect of 25(OH)D on PPROM, PROM, and PTB, and the effect estimates were
presented per 5 ng/mL increase in the 25(OH)D concentrations or VitD deficiency. Models
were adjusted for the following potential confounders: maternal age, pre-pregnancy BMI,
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educational level, parity, PTB history/gestational age, gestational week at blood sampling,
and sampling season.

To exclude medically indicated preterm birth caused by complications such as ges-
tational hypertension, further analysis was restricted to pregnant women who delivered
vaginally. This was conducted to determine a clear association between VitD and sponta-
neous PTB. All statistical analyses were performed using R 4.2.2 with statistical significance
at p < 0.05.

3. Results
3.1. Participant Characteristics

The demographic characteristics and maternal health status during pregnancy were
compared among the Healthy, only PTB, only PROM, and PPROM groups (Table 1). The
prevalence of PTB, PROM, and PPROM in the 3923 participants was 6.09%, 13.18%, and
1.33%, respectively. PTB women without PROM had the highest pre-pregnancy BMI and
prevalence of cesarean section and PTB history. No significant difference in maternal age,
educational level, gravidity, and parity was observed among the four groups.

Table 1. Characteristics of study participants (n = 3923).

Variables Healthy Group
(n = 3219)

Only PTB Group
(n = 187)

Only PROM Group
(n = 465)

PPROM Group
(n = 52) p

Maternal age, years 29.31 ± 3.88 29.74 ± 3.95 29.40 ± 3.94 29.67 ± 4.64 0.460
Pre-pregnancy BMI, kg/m2 21.10 ± 2.72 21.85 ± 2.96 21.32 ± 2.73 21.81 ± 2.85 <0.001
Educational level 0.198

Junior high school or below 244 (7.58) 20 (10.70) 35 (7.53) 6 (11.54)
High school 574 (17.83) 33 (17.65) 65 (13.98) 11 (21.15)
College or above 2401 (74.59) 134 (71.66) 365 (78.49) 35 (67.31)

Gravidity 0.168
1 1502 (46.66) 86 (45.99) 232 (49.89) 29 (55.77)
2 904 (28.08) 49 (26.20) 134 (28.82) 6 (11.54)
3 499 (15.50) 31 (16.58) 55 (11.83) 11 (21.15)
≥4 314 (9.75) 21 (11.23) 44 (9.46) 6 (11.54)

Parity 0.278
Primipara 2383 (74.03) 145 (77.54) 360 (77.42) 41 (78.85)
Multipara 836 (25.97) 42 (22.46) 105 (22.58) 11 (21.15)

Delivery mode <0.001
Vaginal delivery 1799 (55.89) 72 (38.50) 346 (74.41) 32 (61.54)
Cesarean 1420 (44.11) 115 (61.50) 119 (25.59) 20 (38.46)

PTB history 0.003
No 3173 (98.57) 178 (95.19) 456 (98.06) 50 (96.15)
Yes 46 (1.43) 9 (4.81) 9 (1.94) 2 (3.85)

Abbreviations: PTB, preterm birth; PROM, premature rupture of membranes; PPROM, preterm premature rupture
of membranes; BMI, body mass index.

The mean 25(OH)D concentrations were 18.01± 8.17, 27.44± 10.57, and 28.57± 11.98 ng/mL
in three trimesters, respectively. Despite the fact that the 25(OH)D concentrations in-
creased as gestational weeks progressed, VDD remained prevalent among pregnant women.
The prevalence of VDD was 64.56%, 26.30%, and 27.05% in three trimesters, respectively.
25(OH)D levels in the first and second trimesters were not significantly different among
Healthy, only PTB, only PROM, and PPROM groups (Table 2). In the third trimester, PROM
women without PTB had the highest 25(OH)D concentration and the lowest prevalence
of VDD.
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Table 2. Comparison of 25(OH)D concentrations and related information in three trimesters among
different groups.

Variables Healthy Group Only PTB Group Only PROM Group PPROM Group p

First trimester (n = 3626)
25(OH)D, ng/mL 17.92 ± 8.13 17.87 ± 7.81 18.51 ± 8.39 19.58 ± 10.06 0.284
Vitamin D deficiency 0.294

No 1040 (34.89) 61 (34.27) 164 (39.33) 20 (40.00)
Yes 1941 (65.11) 117 (65.73) 253 (60.67) 30 (60.00)

Gestational week at blood
sampling 11.91 ± 0.90 11.78 ± 0.96 11.98 ± 0.75 12.08 ± 0.79 0.052

Sampling season 0.565
Summer/Autumn 1513 (50.75) 95 (53.37) 221 (53.00) 29 (58.00)
Spring/Winter 1468 (49.25) 83 (46.63) 196 (47.00) 21 (42.00)

Second trimester (n = 1840)
25(OH)D, ng/mL 27.39 ± 10.55 28.13 ± 10.30 27.49 ± 10.55 28.01 ± 13.00 0.943
Vitamin D deficiency 0.883

No 1097 (73.87) 50 (74.63) 191 (72.08) 18 (78.26)
Yes 388 (26.13) 17 (25.37) 74 (27.92) 5 (21.74)

Gestational week at blood
sampling 24.10 ± 3.51 23.89 ± 3.41 23.92 ± 3.41 24.34 ± 2.33 0.830

Sampling season 0.306
Summer/Autumn 766 (51.58) 31 (46.27) 141 (53.21) 8 (34.78)
Spring/Winter 719 (48.42) 36 (53.73) 124 (46.79) 15 (65.22)

Third trimester (n = 2044)
25(OH)D, ng/mL 28.33 ± 12.10 25.07 ± 12.82 30.81 ± 10.75 27.65 ± 11.23 0.007
Vitamin D deficiency 0.012

No 1270 (72.41) 18 (54.55) 195 (79.27) 8 (72.73)
Yes 484 (27.59) 15 (45.45) 51 (20.73) 3 (27.27)

Gestational week at blood
sampling 33.42 ± 3.73 31.13 ± 3.59 34.39 ± 3.40 32.51 ± 3.87 <0.001

Sampling season 0.303
Summer/Autumn 802 (45.72) 17 (51.52) 127 (51.63) 6 (54.55)
Spring/Winter 952 (54.28) 16 (48.48) 119 (48.37) 5 (45.45)

3.2. Association of 25(OH)D Level with PTB

Table S1 presented the association of 25(OH)D concentrations in the three trimesters
with PTB in pregnant women. There was no association between VitD levels and the risk of
PTB. However, when restricted to pregnant women who delivered vaginally, there was a
higher risk of PTB among those with VDD in the third trimester of pregnancy (Table S2).
Compared to those without VDD, vaginally delivering pregnant women with VDD had a
2.69 (1.08–6.68) times risk of PTB.

Table 3 showed the causal coefficients from the MR analysis for the association of
PTB with VitD-determined GRS. However, one-unit higher GRS was not associated with
an increased risk of PTB, regardless of the trimesters (OR [95% CI]: 1.01 [0.93–1.10] in the
first trimester, 1.06 [0.96–1.18] in the second trimester, and 0.95 [0.82–1.10] in the third
trimester, respectively). The above results remained consistent among pregnant women
who delivered vaginally (Table S3).
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Table 3. Association of 25(OH)D concentrations in three trimesters with PTB from MR analysis.

Variables n (%)
Model 1 * Model 2 †

OR (95% CI) p OR (95% CI) p

First trimester
25(OH)D, ng/mL 228 (6.29) 1.00 (0.95, 1.05) 0.979 1.00 (0.96, 1.05) 0.945
Vitamin D deficiency

No 81 (6.30) ref. - ref. -
Yes 147 (6.28) 1.00 (0.79, 1.27) 0.979 0.99 (0.80, 1.23) 0.945

Second trimester
25(OH)D, ng/mL 90 (4.89) 1.01 (0.97, 1.05) 0.700 1.01 (0.97, 1.06) 0.636
Vitamin D deficiency

No 68 (5.01) ref. - ref. -
Yes 22 (4.55) 0.95 (0.75, 1.21) 0.701 0.94 (0.72, 1.22) 0.637

Third trimester
25(OH)D, ng/mL 44 (2.15) 1.01 (0.99, 1.04) 0.261 1.01 (0.99, 1.03) 0.326
Vitamin D deficiency

No 26 (1.74) ref. - ref. -
Yes 18 (3.25) 0.91 (0.76, 1.08) 0.270 0.93 (0.80, 1.08) 0.332

* Model 1: Crude model. † Model 2: Adjusted for maternal age, pre-pregnancy BMI, educational level, parity, PTB
history, gestational week at blood sampling, and sampling season.

3.3. Association of 25(OH)D Levels with PROM

When PROM was considered as the outcome, in the crude model, only the 25(OH)D
concentration in the third trimester was found to be associated with PROM (Table S4).
However, after adjusting for covariates, there was no significant association between them.
The MR analysis also showed no consistent evidence of a causal effect of VitD levels on
the risk of PROM (Table 4). The odds ratio for PROM was 1.05 (95% CI: 0.99–1.12), 1.01
(95% CI: 0.95–1.08), and 1.06 (95% CI: 1.00–1.12) per 5 ng/mL increase in the 25(OH)D
concentrations in three trimesters, respectively.

Table 4. Association of 25(OH)D concentrations in three trimesters with PROM from MR analysis.

Variables n (%)
Model 1 * Model 2 †

OR (95% CI) p OR (95% CI) p

First trimester

25(OH)D, ng/mL 467 (12.88) 1.01 (0.94, 1.08) 0.784 1.01 (0.95, 1.08) 0.690
Vitamin D deficiency

No 184 (14.32) ref. - ref. -
Yes 283 (12.09) 0.96 (0.69, 1.32) 0.784 0.94 (0.70, 1.26) 0.691

Second trimester
25(OH)D, ng/mL 288 (15.65) 1.01 (0.95, 1.09) 0.687 1.02 (0.95, 1.10) 0.641
Vitamin D deficiency

No 209 (15.41) ref. - ref. -
Yes 79 (16.32) 0.92 (0.62, 1.37) 0.688 0.90 (0.58, 1.40) 0.642

Third trimester
25(OH)D, ng/mL 257 (12.57) 1.00 (0.95, 1.06) 0.939 1.01 (0.96, 1.06) 0.827
Vitamin D deficiency

No 203 (13.62) ref. - ref. -
Yes 54 (9.76) 0.99 (0.68, 1.43) 0.939 0.96 (0.69, 1.35) 0.827

* Model 1: Crude model. † Model 2: Adjusted for maternal age, pre-pregnancy BMI, educational level, parity,
gestational age, gestational week at blood sampling, and sampling season.

3.4. Association of 25(OH)D Levels with PPROM

Taking into account the different classifications of PTB, we also conducted an analysis
specifically focusing on PPROM. We did not find evidence of any association between
25(OH)D levels and PPROM in the multivariable analysis (Table S5). The MR analysis
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also showed no consistent evidence of a causal effect of VitD levels on the risk of PPROM
(Table 5). The odds ratio for PPROM was 1.10 (95% CI: 0.94–1.30), 1.05 (95% CI: 0.86–1.29),
and 0.99 (95% CI: 0.75–1.30) per 5 ng/mL increase in the 25(OH)D concentrations in three
trimesters, respectively.

Table 5. Association of 25(OH)D concentrations in three trimesters with PPROM from MR analysis.

Variables n (%)
Model 1 * Model 2 †

OR (95% CI) p OR (95% CI) p

First trimester
25(OH)D, ng/mL 50 (1.38) 1.00 (0.97, 1.02) 0.795 1.00 (0.98, 1.02) 0.863
Vitamin D deficiency

No 20 (1.56) ref. - ref. -
Yes 30 (1.28) 1.01 (0.91, 1.14) 0.796 1.01 (0.91, 1.12) 0.863

Second trimester
25(OH)D, ng/mL 23 (1.25) 1.00 (0.98, 1.02) 0.937 1.00 (0.98, 1.02) 0.989
Vitamin D deficiency

No 18 (1.33) ref. - ref. -
Yes 5 (1.03) 1.00 (0.89, 1.13) 0.937 1.00 (0.88, 1.14) 0.989

Third trimester
25(OH)D, ng/mL 11 (0.54) 1.00 (0.99, 1.02) 0.634 1.00 (0.99, 1.01) 0.697
Vitamin D deficiency

No 8 (0.54) ref. - ref. -
Yes 3 (0.54) 0.98 (0.90, 1.06) 0.635 0.99 (0.91, 1.06) 0.698

* Model 1: Crude model. † Model 2: Adjusted for maternal age, pre-pregnancy BMI, educational level, parity, PTB
history, gestational week at blood sampling, and sampling season.

4. Discussion

Previous studies found that the VitD levels might influence birth outcomes as well
as maternal and child health, such as PTB and PROM, but the results of the studies
remained inconsistent, and the causality of the association has been uncertain. In our
study, no evidence was found of the association of 25(OH)D concentrations in the three
trimesters with PTB, PROM, or PPROM in the one-sample MR analysis, nor did we find
any appreciable evidence of a causal effect of 25(OH)D concentrations that are less than
20 ng/mL on the risk of the outcomes.

Currently, there is a lack of consensus in the study results regarding the association
between VitD levels in three trimesters and the risk of PTB. In a prospective cohort study
involving 2327 pregnant women, it was observed that a low maternal serum concentration
of 25(OH)D (<20 ng/mL) before 20 weeks of gestation significantly elevated the incidence
of PTB (OR = 1.8, 95% CI: 1.3–2.6). This association remained consistent when considering
cases that were medically indicated or occurred spontaneously [23]. However, the results
from another prospective cohort study in Europe did not provide support for an association
between maternal first-trimester VDD (<30 ng/mL) and the risk of PTB [24]. And our
previous studies also did not find a significant association between them [10]. A study in
China even found a reverse association between VDD in the second trimester and the risk
of PTB (OR = 1.04, 95% CI: 1.02–1.06) [25].

Our previous study has indicated that the 25(OH)D concentrations increased notably
with gestational week [26]. Therefore, it is critical to differentiate the association between
VitD levels and PTB across the different trimesters of pregnancy. Our study found that only
VD status in the third trimester was associated with PTB in pregnant women undergoing
vaginal delivery. Wagner et al. [27] also found that women with 25(OH)D levels greater
than 40 ng/mL had a 47% lower risk of PTB compared to those with 25(OH)D levels below
40 ng/mL. In the aforementioned analysis on the association of VitD with PTB, there were
variations in the gestational weeks at which VitD was measured [23–25]. Therefore, the
association between them may differ across the different trimesters of pregnancy. Further
studies are needed to validate this hypothesis.
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Considering possible risk factors for PTB, including adverse lifestyle, psychological
stress, younger or older age during pregnancy, and so on, the inconsistency among different
studies may be influenced by various confounding factors [28]. Therefore, using genetic
variants as instrumental variables to reduce the possibility of confounding is critical. To our
knowledge, this is the first study to examine the association between VitD and PTB using
MR analysis. We found that there was a null association between genetically determined
25(OH)D concentrations in the three trimesters and PTB, which is consistent with our
previous observational study [10]. Aside from that, our study found that VDD in the
third trimester increased the risk of spontaneous PTB (OR = 2.69, 95% CI: 1.08–6.68).
However, when using MR analysis, the association of VitD with spontaneous PTB was
not significant. The difference between these two results further confirms the necessity of
utilizing MR analysis.

In addition to the influence of confounding factors, the diverse pathogenesis of PTB
may also contribute to potential variations in the association between VitD and different
types of PTB [12]. PROM accounts for 30% of PTB [29]. Therefore, we also investigated
the causal effect of 25(OH)D concentrations in the three trimesters on PROM and PPROM.
The main causes of PPROM are infection and inflammation. The previous study has found
that when pregnant women experience acute chorioamnionitis, there is an increase in
inflammation-related proteases, the activation of cytokines, and a significant reduction in
the tensile strength and elasticity of the fetal membranes, leading to membrane rupture and
subsequent preterm birth [30,31]. It can not be ignored that VitD plays an important role in
regulating immune responses [32]. Therefore, we speculated that vitamin D levels might
be associated with PPROM. However, there were only a few studies that analyzed the
association between VitD levels and PROM. Ni et al. [33] found that 25(OH)D status in the
first trimester did not influence the incidence rate of PROM in Chinese pregnant women.
Results from a prospective observational study also showed that the incidence rate of
PROM was not significantly different between the three groups (≤20 ng/mL, 21–29 ng/mL,
and ≥30 ng/mL) [25]. Our study confirmed that there was no association between the
25(OH)D concentrations and PROM whether using regression models or MR analysis.
When we further combined the outcomes of PROM and PTB, we also did not find any
significant association between genetically determined VitD and PPROM. Additionally,
even when considering only pregnant women who delivered vaginally, the association
between VitD and PTB remained non-significant. These results suggested that the negative
association between 25(OH)D concentrations in the three trimesters and PTB was not
influenced by the type of PTB. However, considering that this is the first study analyzing
the association of VitD with PTB, PROM, and PPROM using a one-sample MR analysis,
further similar studies are needed to provide additional support.

Our study is characterized by several notable strengths, with one being the utiliza-
tion of genetic variants as IVs to mitigate the potential impact of confounding factors. In
addition, as VitD levels fluctuate throughout pregnancy, we assessed the 25(OH)D con-
centrations in three trimesters, which was less commonly observed in previous studies.
Some limitations of our study should also be noted. First, the cases of the PPROM were
small, which limited the credibility of the results. More larger sample size studies are
needed to analyze the association between VitD and the different types of PTB. Second,
the composition of women with plasma 25(OH)D concentrations in the first, second, and
third trimesters was not identical, which could potentially introduce selection bias. Third,
the absence of 25(OH)D GWAS data in Asian populations, which would facilitate the
construction of an ethnicity-specific GRS, restricts the application of MR. Additionally,
the six identified SNPs could only account for approximately 2–3% of the variation in the
25(OH)D phenotype.

5. Conclusions

In conclusion, our MR analyses did not support a causal effect of 25(OH)D concentra-
tions in the three trimesters on PTB. When further considering the association between the
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different types of PTB and VitD, there was still no evidence to support the association of
VitD with PROM and PPROM.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu15163593/s1, Table S1: Association of 25(OH)D concentrations
in three trimesters with PTB; Table S2: Association of 25(OH)D concentrations in three trimesters
with spontaneous PTB; Table S3: Association of 25(OH)D concentrations in three trimesters with
spontaneous PTB from MR analysis; Table S4: Association of 25(OH)D concentrations in three
trimesters with PROM; Table S5: Association of 25(OH)D concentrations in three trimesters with
PPROM; Table S6: Association of single SNP with PTB; Table S7: Association of single SNP with
spontaneous PTB; Table S8: Association of single SNP with PROM; and Table S9: Association of
single SNP with PPROM.
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