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Abstract: Background: Nutrition fuels optimal performance for athletes. With increased research
developments, numerous diets available, and publicity from professional athletes, a review of
dietary patterns impact on athletic performance is warranted. Results: The Mediterranean diet is
a low inflammatory diet linked to improved power and muscle endurance and body composition.
Ketogenic diets are restrictive of carbohydrates and proteins. Though both show no decrements
in weight loss, ketogenic diets, which is a more restrictive form of low-carbohydrate diets, can
be more difficult to follow. High-protein and protein-paced versions of low-carbohydrate diets
have also shown to benefit athletic performance. Plant-based diets have many variations. Vegans
are at risk of micronutrient deficiencies and decreased leucine content, and therefore, decreased
muscle protein synthesis. However, the literature has not shown decreases in performance compared
to omnivores. Intermittent fasting has many different versions, which may not suit those with
comorbidities or specific needs as well as lead to decreases in sprint speed and worsening time
to exhaustion. Conclusions: This paper critically evaluates the research on diets in relation to
athletic performance and details some of the potential risks that should be monitored. No one diet is
universally recommend for athletes; however, this article provides the information for athletes to
analyze, in conjunction with medical professional counsel, their own diet and consider sustainable
changes that can help achieve performance and body habitus goals.

Keywords: athletes; nutrition; diets; vegan; plant-based; ketogenic; Mediterranean diet; intermittent
fasting; eating disorders

1. Introduction

Nutrition and athletes are inextricably linked. Nutrition fuels the body for optimal
performance and promotes recovery efforts, as supported by the evidence-based positions
of the American Dietetic Association, Dietitians of Canada, and the American College of
Sports Medicine [1,2]. These organizations recommend selections of food and fluid that
provide athletes with adequate energy and nourishment to sustain high-intensity training,
promote recovery, and support a body habitus conducive to their sport.

Athletes of all levels, youth to professional, are turning to nutrition to improve the
trajectory of their performance. These competitors encounter a wide range of nutritional
recommendations and diet trends through exposure from social media, peers, and coaches,
among other sources [3].

The role of this review is to critically evaluate the current literature addressing these
diets, describe the content of the diet, feasibility for adherence, potential pitfalls, and impact
on performance in sport. Several of the most frequently addressed diets studied among
athletes include the Mediterranean diet, low-carbohydrate and ketogenic diets, vegetarian
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and plant-based diets, as well as intermittent fasting. In addition, when considering dietary
lifestyle changes that athletes can adopt, it is crucial to consider the possible maladaptive
changes from unhealthy versions of these diets as well as eating disorders.

2. Materials and Methods

The current study is a narrative review to address diets with the most robust research
evidence in humans regarding dietary impacts on athletic performance. While this article
does not comprehensively discuss all diets and their associations to athletic performance, it
critically evaluates the current level of evidence for the five most common diet patterns
described in the literature from the PubMed search engine. Additionally, given the concerns
to develop eating disorders among athletes following a restrictive diet, additional articles
were reviewed to describe a proposed initial risk assessment for the development of eating
disorders among athletes. The authors evaluated narrative and systematic reviews as
well as meta-analyses of these common dietary practices from 2015–2022 on PubMed, and
subsequently evaluated the primary literature that was cited within these works to develop
the evidence referenced in the current study.

3. Results and Discussion
3.1. General Recommendations for Diets for Athletes

Athletes’ dietary intake should support the demands of exercise, recovery, training
adaptations, and overall health and should, thus, provide a sufficient level of calories,
carbohydrate, protein, dietary fats, fiber, fluids, and essential vitamins and minerals [1,2].
Diets that increase risk of energy deficiency or contribute to below recommended intakes
of carbohydrates, protein, fluids, or other essential nutrients may deter athletes’ health
or performance and should be avoided [1,2]. Therefore, an overview of the diets will be
provided and evaluated based on prior evidence for either optimizing or limiting energy or
nutrient intake in athletes and subsequent potential outcomes.

Athletes in a caloric deficit or those not engaging in strength training are at risk for
losing muscle mass or limited muscle gains during resistance training; both are critical to
performance [4,5]. Caloric deficits also lead to increased risks of bone mineral disease and
overall decreased bone health in athletes [6]. Protein needs for individuals engaging in
moderate-to-high-intensity exercise exceed the RDA of 0.8 g/kg/day and typically range
from 1.2–2.0 g/kg/day [1,7]. Meeting these needs by consuming protein-rich foods at
regular intervals (every 3–4 h) throughout the day and post-exercise may optimally support
protein synthesis, recovery, and performance outcomes [1,7]. Carbohydrates serve as the
preferred energy source for moderate to high-intensity exercise with increased needs (up to
10–12 g/kg/day) for endurance or ultra-endurance athletes participating in high-volume
training [1].

Essential vitamins and minerals support exercise training and performance by facili-
tating energy metabolism (i.e., B-vitamins, magnesium), promoting bone health (calcium,
vitamin D), erythropoiesis, and oxygen delivery (i.e., iron, folate, B12), or serving an
anti-inflammatory role (i.e., antioxidants, EPA/DHA) [1,8]. Adequate hydration is key to
sustaining numerous processes affecting athletic performance [1]. Sweat loss with exercise
disrupts the fluid balance, and fluid losses ≥2% can alter performance. Thirst may not
adequately reflect fluid needs with exercise and needs largely depend on sweat rate. Given
this, while general daily fluid needed for females and males range from 2.7–3.7 L/day, for
athletes, individualized assessments and recommendations are needed [1,9].

Some popular diets may limit one or more key nutrients for athletes. Given the rela-
tionship between glycogen levels and performance outcomes, evidence does not support a
benefit of following a low-carbohydrate diet for most athletes [1]. Several carbohydrate-rich
food sources (i.e., whole grains, legumes, fruit, vegetables, milk/yogurt) contain essential
nutrients that support energy metabolism and bone health, and serve an antioxidant role.
Intermittent fasting restricts the hours of eating during the day, which can disrupt nutrient
timing goals that emphasize regular intervals of food intake during waking hours [10].
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Intermittent fasting can reduce an athlete’s overall intake of calories due to skipping meals,
which may lead to an energy deficit [10].

Diets restricting animal products (i.e., vegan/vegetarian) may be limiting in some
essential amino acids [11] and essential micronutrients that support athlete health and
performance, such as iron, zinc, calcium, and vitamin D. While these micronutrients (i.e.,
calcium and iron) can be consumed through plant-based foods, nutrients may be less
bioavailable. This could be a major consideration for those transitioning to a diet avoiding
animal products. Leucine can be provided by soy, corn, pea, brown rice or potato, though
higher quantities of these foods are needed to provide an equivalent leucine content [11].
Other considerations include the level of ultra-processed foods (UFPs), which may be
higher among individuals following a vegetarian or vegan diet, and linked to adverse
health outcomes [12,13]. Furthermore, ketogenic diets contain higher levels of red meat
and saturated fat and increased LDL cholesterol [14].

Changes to the diet can be difficult for athletes. Gradual, impactful changes with
behavioral supports such as gradual introduction or subtraction of foods or calories can
lead to longer sustained compliance and turn diet changes into lifestyle adaptations, similar
to those trying to lose weight. A recent meta-analysis showed that continued gradual
change to lifestyle lead to slowed weight regain, a common outcome from weight loss
diet strategies [15]. When making these gradual changes, it is crucial to understand what
choices are available to athletes while considering each choice’s risks and benefit.

3.2. Mediterranean Diet

The Mediterranean diet (MedDiet) consists of lean proteins, such as fish and chicken,
vegetables, berries, olive oil, and nuts, and has been practiced in Mediterranean countries
for centuries [16]. It was characterized in the 1960s by the North American biochemist and
nutritionist Ancel Keys, who lived and conducted research in the Cilento Coast of Southern
Italy for over 40 years [17]. It was originally touted in the Seven Countries Study to reduce
the risk of cardiovascular disease compared to the United States and Northern European
countries over a 25-year span [18]. While the diet has developed numerous variations
over the years, the basic tenets are the same. The Mediterranean Diet Foundation (2011)
and 1999 Greek Dietary Guidelines recommend at least 2 servings of vegetables every
meal, 1–2 servings of fruit per meal, 1–2 servings of wholegrain bread per meal, at least
2 weekly servings of legumes, 3–4 weekly servings of nuts, at least 2 weekly servings of
fish or seafood, 2–4 weekly servings of eggs, 2–4 weekly servings of poultry, 2 servings
daily of dairy, and less than 2 servings per week of sweets and red meat, with the main
added lipid being olive oil and red wine in moderation [19]. The recommended serving
sizes are 25 g of bread (~1 slice of store bought bread), 100 g potatoes (a small potato),
50–60 g of cooked pasta (1/4 cup of cooked pasta), 100 g of vegetables (a palm size of
broccoli), 80 g of apple (half an apple), 60 g of banana (half of a medium sized banana), 100 g
of orange (~1 orange), 200 g of melon (~1 cup), 30 g of grapes (~10), 1 cup of milk or yogurt,
1 egg, 60 g of meat (chicken, beef, or seafood) (~palm of your hand), and 100 g of cooked
dry beans (~half cup) [19]. The MedDiet has been shown to help with numerous chronic
diseases, cancer, and cognitive performance, and is now being studied in trained athletes
due to its low inflammatory index as well as its ability to support sustained training and
recovery. Studies show that as adherence to the MedDiet increases inflammatory markers,
such as C-reactive protein, tumor necrosis factor-A, and plasminogen activator inhibitor-1,
and decreases rates of metabolic syndrome when compared to the Western diet, which
increases inflammatory markers [20,21].

For performance, the MedDiet has been touted to help athletes from a performance
and body composition standpoint, as it provides nutritional support for their training and
athletic demands with a low inflammatory index. During an 8-week MedDiet intervention,
CrossFit athletes had significant increases in squat jump performance, power, muscular
endurance, and anaerobic power [22]. Additionally, athletes saw increases in CrossFit-
specific maneuvers and performance [22]. The athletes in the dietary group showed
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increased performance during the chin-up test to exhaustion, i.e., from 11 repetitions to
13 repetitions [22]. Similarly, after 3 months of adhering to a MedDiet, University of Sports
Center Bergamo kickboxers had statistically significant increases in squat strength and the
countermovement jump test (CMJ), a barometer for lower body power (the CMJ test is a
validated test that correlates to 1 RM maximal strength and sprinting ability [23]). In the
same study, runners’ VO2max increased [24]. Of note, neither of these studies had a control
group, but a strength of the within-subject design is that athletes saw changes relative to
their own performance after making changes to their diets.

Body composition serves as one of several factors that influences athlete’s training and
performance. The MedDiet may support the goals of the athlete in a moderate caloric deficit,
while still providing adequate nutrition to support exercise training and performance gains
while promoting weight loss if necessary. Adequate nutrition is critical to a sport such as
female gymnastics, which includes long hours of training, starting at a young age, with
high metabolic demands for growth. A study investigating adolescent gymnasts age 11–18
showed that those with a higher KIDMED score, a pediatric-adapted Mediterranean Diet
Quality Index that measures adherence to the MedDiet, had a healthier body mass index
compared to those that had lower adherence [25]. While on the MedDiet, it is crucial that
all athletes, especially those at risk for malnutrition, especially gymnasts, runners, and
dancers, where pressures exist to maintain a low body weight, consume the calories that
they need to maintain a healthy weight. This study highlights that athletes can benefit from
nutritional intervention, as it has been well documented that athletes oftentimes do not
have adequate nutrition to supply their metabolic demands and benefit from nutritional
guidance and intervention [26,27]. Secondly, the MedDiet likely can help athletes improve
performance and body composition because it provides both the nutritional support that
high-performing athletes need to sustain performance while providing a low-inflammatory
diet rich in antioxidants and essential vitamins and minerals.

While adherence to diet in research and in practical application is difficult to evaluate,
evidence supports benefits of high adherence to the MedDiet. Many different research
tools have been developed for assessment for adherence, including Medi-Lite, MDSS, and
MEDAS, as well as the KIDMED for the pediatric/adolescent population [28–31]. Through
these tools, it has been demonstrated that athletes have higher adherence then the general
population [32].

There were initial concerns that increased dietary discipline would increase the risk of
sport burnout; however, a recent study shows that there was no statistically increased risk
of sport burnout among adolescent tennis players with high adherence to the MedDiet [33].
Further studies are needed to assess risk of burnout and ability to adhere to the MedDiet
among athletes undergoing extensive training among all levels of sport.

The MedDiet covers the nutritional needs of most athletes due to its well-balanced
composition of lean proteins, complex carbohydrates, and unsaturated fats. Overall, the
strengths of this diet are that it is high in foods that can support the high energy demands
of athletes combined with a low inflammatory index that promotes recovery [34,35]. The
low inflammatory index of the MedDiet stems from its high omega-3 fatty acid content,
high antioxidant (flavonoids, polyphenols, and phytosterols) content, high amount of fruits
and vegetables, and low amount of red meat [36]. As discussed, athletes following the
MedDiet have seen increases in aerobic and anaerobic performance, suggesting this diet
provides benefits to power and endurance athletes and additionally does not contribute to
burnout, with researched adherence tools. Additionally, the MedDiet is associated with
improvements in body composition, which, along with adequate nutrition, are especially
important for peak performance capacity during long training or competitions. Finally,
the wide range of foods within the MedDiet allow for higher adherence compared to most
diets, making it an optimal choice for athletes who want increased nutritional options.
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3.3. Ketogenic and Low-Carbohydrate Diets

A ketogenic diet is very low in carbohydrate, moderate in protein, and high in fat,
with the classical ketogenic diet composed of a 3–4:1 ratio of dietary fat to carbohydrate
and protein [37]. Several variations of the ketogenic diet contain up to 10% carbohydrate,
75–90% fat and 10% protein. For some versions, this could equate to as little as 30–50 g of
carbohydrates per day [38]. While less restrictive, these versions still provide significantly
lower levels of carbohydrate as compared to sports-specific recommendations. A ketogenic
diet aims to promote a state of ketosis, a fasting state with low carbohydrate availability
promoting the formation of ketone bodies, including acetoacetate, acetone, and beta-
hydroxybutyrate [39].

The ketogenic diet was born out of an idea by Bernarr Macfadden, a physical fitness
guru/cultist in the early 20th century, that claimed fasting for 3 days to 3 weeks could cure
any disease [40]. This idea of fasting showed efficacy in decreasing the amount of seizures
in those with epilepsy as early as the 1920s [40]. The reason that this works is because
ketones are metabolized much more slowly than glucose and are not the brain’s and red
blood cells’ preferred food sources; as a result, this leads to a relatively starved state of brain
tissue, leading the brain to conserve energy and be less likely hyperactive, as is the case in a
seizure [41]. The only way that this is truly efficacious is if the primary macronutrient in the
diet is fat, as even protein needs to be limited to limit the potential for gluconeogenesis. In
1921, Dr. Wilder of the Mayo Clinic proposed a restrictive diet that acted as an alternative
to complete fasting that decreased epileptic seizures: the ketogenic diet [40]. In 1925, the
Mayo Clinic stated that the ketogenic diet consisted of 1 g of protein per kg of body weight,
10–15 g of carbohydrates per day, and the remainder of calories coming from fat, similar to
the framework of the diet today [40]. This diet became increasingly popular in the field
of athletics when Phinney et al. published his study in 1983, stating that well-trained
cyclists could sustain exercise capacity at submaximal capacity for 21–28 days while on the
ketogenic diet [42]. This work, as well as subsequent papers, suggested that the ketogenic
diet could slow the oxidation of carbohydrate stores, thereby keeping glycogen stores
higher for longer maintenance of maximum or near-maximum performance [43].

A randomized crossover study, with participants having carbohydrates ad libitum
diet and carb restricted <10% daily each for 3 months, suggested that a ketogenic diet
(<50 g or <10% carbohydrate intake/day, 20% protein) over 12 weeks could be efficacious
for sports involving weight-class, specifically powerlifting and Olympic weightlifting, by
reducing body mass and preserving baseline performance in resistance athletes. There was
a statistically significant decrease in body mass and lean mass reported for athletes on a KD
versus an ad libitum diet (>250 daily grams of carbohydrates)—presumably in the setting of
decreased glycogen storage and increased activation energy to catabolize protein—all with-
out negatively impacting lifting performance, blood glucose, and electrolyte balance [44].
Further studies defend this principle that a KD does not cause further athletic decrement
despite decreased body mass. In eight trained endurance athletes on a four-week KD (4%
carbohydrate, 78% fat, 18% protein), there was no difference in time to exhaustion (TTE) in
vigorous exercise (70% VO2 max) when compared to athletes consuming a higher carbohy-
drate diet (43% carbohydrate, 38% fat, 19% protein) [45]. When increased to near-maximal
to maximal intensity (>85% of one-repetition maximum), there was no decrement in back
squat, bench press, clean, jerk, and deadlift performance as observed in a randomized
control trial following trained athletes adhering to KD (5% carbohydrate, 75% fat, 20%
protein) for 10–12 weeks [46].

When further assessing the role of aerobic capacity with a KD, another meta-analysis
including 10 studies found no significant difference in performance or maximum aerobic
capacity, namely VO2 max, time to exhaustion, maximum heart rate, or rating of perceived
exertion (RPE) during treadmill tests with athletes adhering to KD, though a significant
reduction in respiratory exchange ratio (RER) was observed [46]. RER is directly correlated
with carbohydrate oxidation—the higher the RER, the more carbohydrates are being
oxidized as opposed to fat, which theoretically decreases overall oxygen efficiency in
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athletes. Though this could play a small role in performance, ongoing literature suggests
KD has minimal impact on maximum aerobic capacity. Interestingly though, KD has
been shown to prolong professional athlete careers by enhancing weight loss [47] and
may have variable outcomes based on gender. In a study of 22 CrossFit athletes (11 male,
11 female) over a four-week period, a KD (>75% of daily energy from fats, up to 5% from
carbohydrates) led to increased fat oxidation in both genders and decreased oxidation of
carbohydrates in male CrossFit athletes. Specifically in males, fat oxidation was statistically
significant at lower VO2 maxes than fat oxidation in female CrossFit athletes. Compliance
to the diet had a non-significant difference, but it was noted that eight subjects (1/3 of the
participants) did not complete the study (two due to injury, six due to non-adherence to
diet or failure to achieve ketosis) [48].

It is important to note that athletes undergoing KD while concomitantly not meeting
daily caloric needs may have decreased body mass in the form of decreased muscle mass,
thereby leading to some performance decrements in strength training. In addition, KD may
also negatively impact bone health in endurance athletes. In a study assessing serologic
markers of bone health homeostasis in male and female world-class race walkers on a
KD for 3.5 weeks, carbohydrate restriction led to increased serologic markers, at rest and
after exercise, of bone breakdown (cross-linked C-terminal telopeptide of type I collagen),
formation (procollagen 1 N-terminal propeptide), and metabolism (osteocalcin) [49]. Sim-
ilar results were seen in a separate parallel group design of 28 elite racewalkers—those
allocated to the low-carbohydrate group had significantly higher serologic markers of
bone breakdown, which improved with increasing carbohydrate intake [50]. This poses
significant considerations for athletes deciding on a particular diet for performance, as KD
can have a compounded effect on damaging bone health—which can already be at high
risk in athletes with the male or female athlete triad.

As another consideration, there are possible negative physiologic sequelae from KD,
particularly in iron, immunologic, and stress responses to exercise in endurance athletes.
A study of elite male race walkers who completed a 25 km race walk highlighted this
concern—the athletes first engaged in Phase 1 of the study, where they consumed a high-
carbohydrate diet, high-energy diet (65% CHO, 15% protein, and 20% fat, target energy
availability 40 kcal·kg−1 FFM·day−1); then, athletes were randomized to Phase 2, in which
they either continued the high-carbohydrate diet, transitioned to a low-carbohydrate diet
(<50 g CHO per day), or transitioned to a low-energy-availability diet (60% of energy
from CHO, 25% of energy from protein, 15% of energy from fat, target energy availabil-
ity 15 kcal·kg−1 FFM·day−1). Those who transitioned to the low-carbohydrate diet had
higher levels of interleukin 6, white blood cell count, hepcidin, and cortisol, compared to
baseline. These serologic markers serve as surrogates for the deleterious effects of KD on
physiologic concentrations of iron metabolism (hepcidin), stress (interleukin 6, cortisol),
and inflammation (white blood cell count, interleukin 6) in the body [51].

With these decrements to health noted, it is generally recommended to avoid chronic
carbohydrate restriction during intense training periods, especially for endurance ath-
letes [52,53]. The subcellular physiologic changes that occur with severe carbohydrate
restriction manifest not only through deleterious effects in muscle strength, but also in-
crease the general oxygen cost of exercise, which can negatively impact athletic performance
in the acute phase as well as longitudinally [54,55]. Thus, there is generally lower overall
adherence to exercise, decreased exercise tolerance, higher baseline heart rates, and a higher
rate of perceived exertion in athletes on a KD given the elevated blood ketone levels and
downstream biochemical effects of increasing the stress response within the body—the
summation of these effects make it important to carefully consider the risks and benefits of
choosing this diet [56]. However, another significant factor in choosing this diet is possible
complications with compliance. Generally, it has been observed that KD compliance is
difficult given the strict carbohydrate percentage cutoffs, often leading participants to
increase daily caloric intake or deviate from the scheduled diet [57]. Landry et al. showed
that adherence to KD was statistically significantly lower than that of the MedDiet and a



Nutrients 2023, 15, 3511 7 of 22

low-fat diet that was used in his study of diabetics [58]. While this is a markedly different
population than the trained athlete, it demonstrates the difficulty of adhering to a diet with
fat as a primary fuel source [58].

Thus, athletes’ adherence to KD theoretically optimizes fatty oxidation as primary fuel
for activity by promoting a state of ketosis and has been shown to facilitate weight loss
without leading to overt decrement in athletic performance in most aerobic, endurance-
related, or resistance activities. Though this can be utilized to an athlete’s benefit, especially
those who must maintain strict weight classes, a weakness of this diet is that its restrictive
nature negatively affects overall adherence rates, and the hypothesized sequelae of long-
term adherence to KD, including dysregulation of lipid profiling/higher cardiovascular
risk factors, physiologic manifestations including bone demineralization, increased cellular
inflammatory responses, and decreased iron metabolism, can potentially increase mortality
down the line. In addition, it is important to note that data about the potential interference
of ketosis on signaling and regulation adaptation responses to exercise are currently lacking
and these areas should be a future direction of research. Further research needs to be
conducted on sport specific benefits and decrements as well as the ability for athletes to
adhere to a strict version of a high-fat, low-carbohydrate, low-protein diet.

3.4. Non-Ketogenic Low-Carbohydrate Diets

Given these stringent requirements, some athletes prefer to adopt a non-ketogenic
low-carbohydrate diet to optimize function and performance. Low-carbohydrate diets
are technically defined as carbohydrates composing <26% of total caloric intake—they
include KD but allow for more liberal carbohydrate and protein consumption [59]. Low-
carbohydrate diets such as the Atkins diet have been popularized in the media for weight
loss, entering the realm of dietary fads in the United States as early as the 1960s [60].

Similar to KD, the goal of a non-ketogenic low-carbohydrate diet is to deplete glyco-
gen stores, optimize gluconeogenesis, and increase contributions from fat oxidation to
provide a larger source of energy. From a biochemical perspective, physical exertion during
states of low glycogen increase phosphorylation of AMP kinase (AMPK), which phos-
phorylates PGC-1 α, thereby upregulating mitochondrial biogenesis [61]. However, in
practice, no differences are observed in isometric strength, power, and strength endurance
in trained gymnasts and taekwondo athletes while adhering to a low-carbohydrate, non-
ketogenic diet. These athletes were sustaining moderate to vigorous intensity (50–84%
of one-repetition maximum) on 3–4 weeks of a this diet (<25 g carbohydrates, 55% fat,
41% protein) compared to a regular Western diet (47% carbohydrates, 39% fat, 15% pro-
tein) [58,59].

An important note is that while experimental group diets in these studies are labeled as
“ketogenic”, when observing the macronutrient distributions, these diets are more reflective
of a low-carbohydrate diet. While even peer reviewed research studies are titling diets
as “ketogenic”, a true ketogenic diet is restrictive of carbohydrates and protein with a fat
content of at least 75% of the total diet. Studies that label diets as ketogenic with more liberal
protein and carbohydrate distributions than true ketogenic diets highlight the difficulty
in terminology of research regarding ketogenic vs. low-carbohydrate diets. In a study
that assessed body composition and athletic performance outcomes in ten Taekwondo
athletes randomized to a reported KD group versus ten Taekwondo athletes randomized to
a non-KD group, those adhering to carbohydrate restriction had noted improvement in a
2000-m timed run and increased weight loss, in addition to subjective reports of feeling
less fatigued [62]. Though this paper reports the outcome of a presumed KD, when looking
into details of the diet of the KD group in particular, the diet was actually limited to only
55.0% fat and had a high 40.7% protein intake, which would technically make this diet low-
carbohydrate instead of KD. Regardless, this improvement in sprint times and perceived
exhaustion was notable. Lastly, one study showed that strength-trained males who adhered
to a low-carb, high-fat diet (defined as no more than 40% carbohydrates per day, protein
level set at 2 g/1 kg of fat free mass, calorie level set at 35 kcal/kg) for 12 weeks had higher
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BMI and free fat mass than the low fat, high carbohydrate group, which has been a similar
conclusion drawn from athletes adhering to KD [63].

Though adherence rates may be improved with the low-carbohydrate diet, there
is a paucity of literature evaluating the role of a non-ketogenic, low-carbohydrate diet
in athletes. One crossover-controlled trial enrolling 24 participants (6 of whom were
controls) showed significantly lower peak performance and TTE when comparing the low
carbohydrate group to the high carbohydrate group, in addition to no difference in peak
VO2 max, heart rate, blood lactate, cholesterol (total, LDL, HDL) levels, production of
pro-inflammatory cytokines, lean body mass, skeletal mass, and resting metabolic rate.
Athletes in the low-carbohydrate arm of the study additionally had significantly increased
caloric intake and higher blood ketone levels (beta-hydroxybutyrate), thus indicating a
greater predisposition to be in ketosis and to optimize fat oxidation, but no comparison is
made to athletes on a true KD [64].

To investigate the role of carbohydrate restriction on performance, another study
divided 18 participants into a HI-HI group (consumed 195 g of carbohydrates) or a HI-
LO group (17 g carbohydrates). The carbohydrate restriction occurred during the three-
hour period in between sessions prior to the 250-kJ time trial. The low-carbohydrate
(HI-LO) athlete group had significant improvement in 250 kJ time trial compared to the
HI-HI group [65]. While performance improvements between groups varied, expression
of mitochondrial enzymes, such as citrate synthase and cytochrome c oxidase, did not
significantly differ between groups [62,66]. This was one of the first studies to support
the theory of “train low, compete high”—training while glycogen levels are low, and
competing when glycogen stores are repleted—promoting improvement in exercise capacity
in athletes by physiologically optimizing the body for performance. Though there are
proposed benefits from a low-carbohydrate diet, it is important to acknowledge uncertainty
and pitfalls as well—a long term, observational study noted higher mortality rates and
increased rate of cardiovascular risk factors in a low-carbohydrate diet with a higher-than-
recommended intake of saturated fats as well as nutrient deficiencies [67].

Furthermore, an additional non-ketogenic, low-carbohydrate diet regimen is com-
monly known as the protein-pacing diet. The protein-pacing diet is defined by intake of 1.4
to 2.0 g per kilogram of body weight protein per day (about 20–25 g of protein per meal),
for 5–6 meals per day. When combining this diet with resistance, interval, stretching, and
endurance (RISE) training over a twelve-week period, notable improvements are seen in
muscular strength/power, measured via sit-ups, push-ups, and bench throws in a group of
thirty exercise-trained women [68]. Similar improvements were seen in exercise-trained
men, namely improved core maximal strength (1-RM), power (squat jumps), aerobic per-
formance (5 km timed trials), flexibility (sit-and-reach), and overall cardiovascular health
(diastolic blood pressure and augmentation index), thus illustrating notable physical and
cardiovascular benefits from protein-pacing with RISE. These benefits were hypothesized
to be related to increased release of insulin-like growth factor (IGF-1) [69]. Since the protein-
pacing diet has known benefits in improving body weight and total abdominal fat, this
option could be a beneficial alternative for overweight or obese individuals who seek per-
formative cardiorespiratory benefits, such as improvements in VO2 max [70], in addition to
cardiometabolic benefits which promote ongoing physical activity and contribute to gains
in upper and lower body strength, endurance, flexibility, and balance [71].

In conclusion, low-carbohydrate diets do not show any changes in athletic perfor-
mance; however, they carry the additional benefit of improved chance of adherence given
its fewer restrictions. Similar to that of ketogenic diets, further research should investigate
more sport-specific alterations to performance.

3.5. Vegetarianism and Plant-Based Diets

Vegetarian diets exist on a spectrum from not eating any type of animal or animal
byproducts (veganism) to not eating any animal flesh but consuming eggs and dairy
(vegetarianism) to regularly following a vegan diet, but occasionally consuming dairy,
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meat, fowl, or fish [72,73]. In 2003, approximately 2.5% of adults in the United States
and 4% of adults in Canada follow vegetarian diets, but since then, interest in these
diets has increased, with many famous athletes turning to these diets to enhance athletic
performance.

When considering the implications of a vegetarian and vegan diets, it is important to
consider the nutrient differences between these diets and how to best mitigate the pitfalls
and maximize benefits of the vegetarian lifestyle. Overall, a large cross-sectional study
showed that compared with omnivores, vegetarians and vegans consumed less total energy,
saturated fat, cholesterol, and protein; however, they typically consumed more fiber and
iron [74,75]. Poorly planned vegan diets, in particular, predispose individuals to protein
deficiencies as well as vitamins B12 and D and iron, zinc, calcium, and iodine [72,74,76,
77]. These deficiencies can manifest as fatigue and poor injury healing, which would all
drastically impact athletic performance, recovery, and overall bone health. A recent study
showed that vegan athletes had poorer bone quality compared to omnivores and had
decreased benefit in bone quality from resistance training than omnivores as well [78].
While this study has not been further studied in additional athlete specific populations, this
reflects a similar trend in a systematic review studying the general female population [79].
Further studies on athletes and the male population need to be completed. As a result,
veganism, if not carefully monitored, can lead to suboptimal athletic performance and
adverse health outcomes.

Something to additionally consider, however, is that compared with animal sources,
plant sources of iron have less bioavailability so despite higher iron intake, individuals
following a vegetarian or vegan diet have higher rates of iron deficiency, which can lead
to fatigue and decreased athletic performance especially in endurance athletics [75,80].
Additionally, protein consumption is often a primary concern for those adopting a vegan
or vegetarian diet [11]. Many focus on quantity of protein consumption, with many
recommending at least 1.2–1.7 g/kg body weight per day (1.2–1.4 g/kg/day recommended
for endurance athletes and 1.6–1.7 g/kg/day for strength and power athletes); however,
this is not taking protein quality into account [81–84]. Despite the fact that soy can be
high in protein and appears in the bloodstream quickly, even with similar quantities,
there is conflicting evidence on the quality of soy protein. According to some studies, soy
protein does not stimulate muscle protein synthesis in the same way that whey and animal
protein sources would [75,85,86], while other suggest that many forms of soy protein
contain high-quality protein. This may be attributed to either a lower leucine content, a
key branched chain amino acid that leads to muscle protein synthesis [87,88], or different
forms of processing and post-processing [89]. For instance, soy protein concentrates
have increased protein absorption compared to soy flour due to processing. Of note,
soy protein isolate did not show significantly higher protein quality compared to soy
protein concentrate. However, some processing can increase protein quality, such as boiling
soybeans at 100 ◦C [89]. More alterations and processes that impact soy bean protein
quality can be seen in van den Berg et al.’s quantitative review [89]. Overall, it is important
to be aware that vegetarian sources of protein can have varying levels of protein quality
compared to meat protein due to both their contents and their processing.

If the source of soy or other vegetable protein were to be of lower quality, the amount of
protein density or protein per calorie is lower and would requires more calories to achieve
the same levels of muscle protein synthesis [88]. For example, obtaining 2.7 g of leucine
from potato sources requires 1.4 kg (~10 cups) of cooked potatoes (1350 calories), while for
the same amount of leucine, only roughly 300 g (11 oz) of chicken (495 calories) needs to be
consumed [88]. Of note, older adult athletes especially have increasing demands for leucine
and should aim for 2.5 g of leucine per meal to initiate muscle protein synthesis, which can
be difficult to do with an all vegetarian diet [88]. Additionally, plant-based protein sources,
such as legumes, nuts, millet, soy beans, cereals, and beans, contain additional components
such as phytates (which bind protein to keep it in the digestive tract and not absorbed)
and trypsin (which helps breakdown protein for absorption) inhibitors [90–92]. However,
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by home cooking or processing beans, the interaction of trypsin and trypsin inhibitors
decreases and through soaking, fermentation, and germination, the phytate content in
foods decreases, making plant-based proteins higher in quality [90,93]. That being said,
interventional studies investigating whey vs. soy protein derivatives have shown negligible
differences in lean mass development [94,95]. As a result of these differences in protein
quality and leucine content between animal and vegetarian sources, a recent narrative
review recommends that vegan athletes consume protein at levels of 1.4–2.0 g/kg/day [88].

Despite the practical differences in these diets, the literature to date does not suggest
that plant-based diets are inferior to omnivorous diets. One systematic review that im-
plemented a total of eight studies that studied aerobic and aerobic performance, strength
training, and power and one study that investigated immune markers among endurance
athletes suggested that there were essentially no differences in performance between the
vegetarians and omnivores [96]. A recent study demonstrated that both vegan and omni-
vores have similar rates of myofibrillar protein synthesis, which could explain the similar
output in power [97]. A more recent systematic review that included more recent studies,
however, did highlight differences between the groups in VO2max, submaximal endurance
time to exhaustion, creatine muscle content, fat-free mass, and skeletal muscle mass [98].
Among endurance athletes, there were mixed results stating vegetarians had increased
relative VO2max [99–102], and one study suggesting an increase in submaximal endurance
time to exhaustion [101]. Only Lynch (2016) et al. and Król et al.’s studies suggested an in-
crease in relative VO2max, and both concluded that this was most likely due to lower body
mass among vegetarian groups [99,100]. These studies concluded that there were addition-
ally no differences in power output as well. Regarding endurance athletes, other studies
included in the Pohl et al. review demonstrated no differences in power, power per lean
body mass, endurance performance, or trainability [98]. For strength and power athletes,
the majority of evidence shows that there was no difference in strength between omnivores
and those following plant-based diets, except for one study showing decreased upper body
strength in vegans [101] and another showing increased strength with knee extension in a
plant-based diet group [103]. Other studies showed no differences in 1-rep maximums and
power output; however, meat eaters had higher increases in skeletal muscle mass, fat-free
mass, and creatinine muscle stores [98]. This suggests that plant-based athletes may benefit
from creatine supplementation more than their omnivore counterparts. Overall, among all
athletes, the consensus is that there is not a vast difference among different diets in their
impacts on performance. The concerns among plant-based athletes are that they are at
higher risk for decreased protein quality and intake as well as micronutrient deficiencies
compared to omnivore counterparts. Both risks can be avoided through careful selection of
foods as well as dietary consultations by registered dieticians and nutritionists.

In conclusion, there are a multitude of benefits in adopting a vegan or vegetarian diet,
including decreased environmental impact or potential ethical concerns, and the purpose
of this review is to demonstrate the potential benefits and pitfalls of adopting this lifestyle.
However, without careful considerations, athletes could develop micronutrient deficiencies.
Both the likelihood of developing these micronutrient deficiencies in athletes and the effect
size that these would have on athletic performance are unclear. Further research should
investigate this matter. This review serves to underscore the path to maximize its benefits
and demonstrate that most studies show that, especially if carefully thought through in
conjunction with a nutritionist or registered dietician, a vegetarian, vegan, or plant-based
diet do not negatively impact athletic performance.

3.6. Intermittent Fasting

Intermittent fasting (IF) involves restricting eating times to certain hours of the day or
fasting for a full day or multiple days at a time. Intermittent fasting has gained popularity
among athletes due to endorsement from celebrities, professional athletes, and popular
media [104]. The inspiration behind this diet option stems from principles of biochemistry;
3–8 h into a fasting period, glycogenolysis is initiated to maintain glucose levels in the
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blood, and there is an increase in fat oxidation to supply muscles with ATP; the body uses
these as fuels for substrate until around the 36-h fasting mark, when protein catabolism
begins [10,104].

With these biochemical principles in mind, IF protocols for the athlete population can
be designed to promote glycogenolysis and increase ATP for muscles, which may have
performative benefits. IF protocols vary in the designated hours of the day or days of
the week in which an athlete restricts caloric intake. Some common examples include
time-restricted eating (TRE), or the 16/8 diet, where individuals restrict intake for 16 h
and eat ad libitum for 8 h, alternate day fasting (ADF), which involves alternating days
of eating ad libitum and either completely fasting on alternate days or eating ~25–30% of
energy needs, and whole-day fasting, or the 5:2 diet, consisting of a repeated cycle of eating
ad libitum followed by days of complete fasting (5 days ad libitum, 2 days fasting) [105].

Many studies assessing the efficacy of intermittent fasting have been conducted in
athletes observing Ramadan—one review showed a non-significant decrease in mean sprint
time in athletes who were fasting from sunrise to sunset for the religious holiday, with no
restrictions in caloric intake during the non-fasting time [106,107], while more recent data
in a crossover study showed that sprint times during the fasting period were significantly
decreased, even while controlling for other external variables, such as sleep and daily
training regimen [108]. When the fast extended to several days, there are clear decreases in
athletic performance. After a 3-day consecutive fast from dawn to sunset for 21 active males,
deficits were noted in sprint speed and vertical stiffness in repeated sprints (2 sets of 5 × 5-s
maximal sprints with 25 s of recovery, and 3 min of recovery between sets on a treadmill),
though favorable cholesterol profiling was observed [109]. This study effectively serves as
a smaller-scale fast when compared to a month-long fasting for those observing Ramadan.

A limitation to these studies involves confounders in studying athletes during Ra-
madan, including variations in sleep and variable caloric intakes when subjects can eat. A
large systematic review analyzing intermittent fasting outside of the context of Ramadan,
and involving primarily overnight fasts ranging from 8–12 h, found minimal difference
in performance outcomes for exercise sessions lasting <60 min or >60 min in a majority
of studies [110]. In a study that had athletes skip lunch, reduced TTE was noted in high-
intensity cyclers over 10 days, in addition to significantly decreased absolute peak power
output on day 2 of testing, but interestingly, there was normalization of performance by
day 4 and beyond [111]. In a crossover study looking at 2000 m rowing trials, those who
omitted breakfast (abiding by a 16:8 regimen) had significantly slower rowing times during
the evening and increased RPE than those who ate breakfast, thus highlighting the impact
of meal timing relative to activity in impacting performance [112]. When looking at a 20:4
regimen and its impact on an 8-week resistance program no significant difference was
noted in total body composition and the cross-sectional area of muscle [113]. Of note, it
is important to maintain a resistance training regimen during TRE, as a robust narrative
review conducted by Aragon and Schoenfeld demonstrated that without resistance training,
many who use TRE as a dietary strategy lose lean muscle mass over time [114]. Studies
have not assessed the specifics of the 5:2 diet in humans, but early mouse models showed
an improvement in endurance [115].

The risks of IF may outweigh the benefits in the athlete population, because a limited
timeframe for eating may increase risk of developing low energy availability and lead
to related consequences to health and performance [116–118]. It is already difficult for
most athletes to meet the required caloric intake for muscle preservation and training
performance, and it becomes much more difficult when one’s eating window is reduced.
When fasting, the body maintains its energy levels by switching its primary fuel source
from carbohydrates to fats. This increases fatty oxidation and promotes ketosis, similar to
the ketogenic diet. Thus, IF may be useful for weight loss and athletes who must maintain
a strict weight class; however, it may lead to decrements in other aspects of performance, as
seen in within-day energy deficits associated with metabolic compensation in elite collegiate
swimmers and male endurance athletes, and menstrual dysfunction in female endurance
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athletes [116–118]. The varying results seen in the athlete population suggests more studies
need to be conducted to elucidate the effect of intermittent fasting on performance. This is
complicated that many of the studies conducted are on those participating in Ramadan,
which can impact its generality. Furthermore, given the numerous variations of IF protocols,
research should be conducted on the proper protocol for athletes.

3.7. Disordered Eating and Eating Disorders in the Trained Athlete

Increased pressures to lose weight or maintain a low body weight or lean physique
for the purpose of enhancing athletic performance may increase the risk of following a
restrictive diet, disordered eating, or a clinical eating disorder, which can hinder perfor-
mance as well as be detrimental to physical and mental health. Eating disorders are clinical
conditions characterized by abnormal behaviors and attitudes toward eating and food.
Disordered eating is a descriptive phrase rather than diagnosis that describes eating be-
haviors that contain aspects of certain eating disorders; however, they do not fit all the
clinical criteria to meet a specific eating disorder. Studies indicate that a higher proportion
of athletes, compared to non-athletes, exhibit disordered eating and eating disorders, and
certain athletes are more at risk than others [119–121]. One study suggested that 13.5%
of athletes had subclinical or clinical eating disorders compared to 4.6% in a non-athlete
population [122]. Disordered eating and eating disorders exhibit the highest frequency in
sports that emphasize leanness and aesthetics, such as gymnastics and ballet, endurance
sports, as well as sports with weight classes, such as wrestling [122]. Men and women have
different rates of disordered eating and eating disorders. An overview of eating disorders
seen in athletes include:

1. Anorexia Nervosa: An eating disorder characterized by extreme food restriction and
an intense fear of gaining weight, leading to significantly low body weight [123].

2. Bulimia Nervosa: An eating disorder characterized by recurrent episodes of binge
eating followed by unhealthy compensatory behaviors to prevent weight gain [123].

3. Binge Eating Disorder: An eating disorder characterized by repeated episodes of
binge eating, or excessive food intake [123].

4. Orthorexia Nervosa: An eating disorder characterized by a fixation on healthy eating
and fear of eating foods perceived as unhealthy [124].

The effects of disordered eating on athletic performance and overall health can be
significant. Eating below one’s nutritional needs may lead to muscle weakness, fatigue,
injury, and an unusually long injury recovery time [125], which, over time, may advance
to anemia, amenorrhea, and early-onset osteoporosis. Overall, research suggests more
restrictive diets and eating patterns may increase risk of developing disordered eating
and eating disorder in athletes [126,127]. Therefore, diets that restricts one or more food
groups, such as the ketogenic diet or plant-based diets, or restrict eating windows, such
as intermittent fasting, may appeal to athletes with disordered eating attitudes or lead
athletes toward disordered eating behaviors. Less restrictive diets, such as the MedDiet,
may reduce disordered eating attitudes and behaviors; however, the research on this is
inconclusive. A 2015 study found that higher adherence to the MedDiet decreased the risk
of developing binge eating disorder in a non-athletic population [128]. However, a 2022
study among a professional athlete population found that an increased adherence to the
MedDiet was associated with a higher risk for developing orthorexia nervosa [124].

Before adopting one of the diets or eating patterns previously discussed, athletes
should evaluate their reasoning for changing their current diet and closely monitor their
health to avoid any negative impact to performance or overall health. Additionally, it
is important for athletes to work with a registered sports dietitian or nutritionist before
implementing a new diet to ensure their individual nutritional needs are adequately met.
Overall, an athlete’s diet must provide enough energy and nutrients for optimal health
and performance and should avoid any restrictive eating patterns that promote disordered
eating behaviors.
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4. Conclusions

The recent position statement from the American Dietetic Association, Dietitians of
Canada, and American College of Sports Medicine stated that physical activity, athletic
performance, and recovery from exercise are enhanced by optimal nutrition [1]. Athletes
at all levels are becoming increasingly aware of the links between nutrition and diet
and athletic performance thanks to increasing levels of research in the fields as well as
the endorsements of professional athletes. The increase in interest and prolific research
prompted a critical analysis of recommended diets for athletes to highlight the status of
research on how different diets have been shown to affect performance and potential pitfalls
of each diet. The role of this paper is not to take the place of consultation from a dietitian or
endorse wholesale change in diet, but rather highlight research on how athletes may be
able to analyze their own diets and see what alterations, if any, should be made to impact
performance.

In summation, the MedDiet has some of the most robust research on diet adherence
and improvements in performance and has been shown to lower inflammation while pro-
viding adequate nutrition to potentially help athletes with recovery and continue training.
Low-carbohydrate diets and ketogenic diets have different distributions of macronutrients,
with low-carbohydrate diets having more liberal guidelines of protein and carbohydrates,
although many conflate the two diets. Both have not been shown to be detrimental to
athletic performance, with low carbohydrate’s easier restrictions possibly leading to higher
adherence. Vegans and vegetarians are at increased risk of micronutrient deficiencies, such
as vitamins B12 and D and zinc, iron, and calcium, and may have lower leucine content,
which has been shown to be key to muscle protein synthesis. Plant-based athletes should
err on the side of increased range of protein intake compared to omnivore athletes, but
individuals on plant-based diets have not shown decreased performance. Lastly, intermit-
tent fasting, although proven to promote weight loss, has been shown to decrease athletic
performance in both endurance and aerobic sports performance. These recommendations
are highlighted in Table 1, and mock diets of each of these diets are presented in Tables 2–4.

Table 1. Definition, benefits, considerations, summary, and recommendations for popular dietary trends.

Diet Name Definition Benefits Considerations and
Risks

Research on Athletic
Performance

Summary and
Recommendations

Mediterranean diet
(MedDiet)

Emphasis on intact
grains, lean protein,

olive oil, nuts,
vegetables,
and berries.

Anti-inflammatory,
well-balanced, varied
energy sources, low

micronutrient
deficiency risk,

decreases risk of
chronic diseases.

Overall healthy
dietary pattern high
in antioxidants and

polyphenolic
compounds, with an
emphasis on whole
foods rather than
processed foods.

Higher adherence
correlates with

healthy body mass,
increases in squat

jump, power, muscle
endurance, CMJ tests,
Crossfit performance,
VO2max, and better
body composition.

Adherence does not
increase burnout, the

literature backs
improvements in

performance,
balances

improvements in
body composition

with adequate
nutrition for training.

Researched
adherence

assessment tools.

Ketogenic diet (KD)

Very low in
carbohydrate,

moderate protein,
and high in fat.

Classic is a 3-4:1 ratio
of fat to carb +

protein. Variations
include up to 10%
carbs, 75–90% fats,

and 10% protein and
allowing a state of

ketosis. The literature
often calls

low-carbohydrate
diets ketogenic.

Anti-inflammatory,
weight

loss/decreased body
mass, improved

cholesterol profile,
decreased

epileptic seizures,
improvements in car-
diovascular health.

Poor rates of
adherence, potential
decrease in muscle
mass given overall

decreased body mass,
differences in effect

of diet based
on gender.

Efficacy in sports
involving

maintenance of
weight classes by not

leading to a
decrement in

resistance athletes,
improvement in

2000 m run,
reduction in
respiratory

exchange ratio.

Definitions in
research varies, very
difficult to adhere to

in reality.
Generally, no
decrement in

physical performance
despite decrease in
overall body mass.
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Table 1. Cont.

Diet Name Definition Benefits Considerations and
Risks

Research on Athletic
Performance

Summary and
Recommendations

Low carbohydrate
Defined as <26%

carbohydrate intake
per day

Anti-inflammatory,
weight loss, higher
blood ketone levels

for presumed
increase in

fat oxidation.

Definition of
low-carbohydrate
diets in research is
extremely variable
and often includes
ketogenic diets in
study population.

Can include highly
processed “low carb”

options with
unhealthy levels of
saturated fat and
sugar substitutes;

while “training low”
may have

some support,
carbohydrates are an
integral fuel source
and performance

factor for endurance
athletic events.

Improvements in
time to exhaustion,

improvement in
high-intensity

interval training
(faster 250 kJ

trial time).

Difficult to isolate
from the pure

ketogenic diet in
the literature.

Similar outcomes to
the ketogenic diet,
but with improved

adherence, proposed
slight benefit in high-

intensity exercise.

Vegetarian/vegan
Plant-based diet

Primary energy
source is plant-based

with varied
restrictions on animal
products. Vegan are
more restrictive and

do not eat any animal
biproducts, such as
milk or eggs, while
vegetarians do not

eat any
animal proteins.

A plant-based diet
decreases the risk of

chronic diseases,
cholesterol, and

saturated fat, and is
higher in iron

and fiber.

Deficiencies in
vitamins B12 and D

and potential
deficiencies in iron,
zinc, calcium, and

iodine. Lower
leucine content and
protein density than
omnivores. Healthy

plant-based diets
have high levels of

healthy plant
chemicals

(polyphenolic
compounds) and

protective chemicals
(e.g., resveratrol,

which is a natural
pesticide), shown

to have
health properties.

Possible increase in
VO2max,

submaximal
endurance, no

statistically
significant decreases

in performance
compared

to omnivores.

Intermixing
vegetables high in

possible deficiencies.
Processing and

post-processing as
well as cooking

techniques can affect
protein quality in

vegetarian sources
such as beans and

soy. Protein:
1.2–1.4 g/kg/day

for endurance
athletes and

1.6–1.7 g/kg/day for
strength and power

athletes.

Intermittent fasting

Restricted periods of
eating to certain

hours of the day or
days of the week.
Time Restricted

Eating (TRE): Fasting
for 16 h each day, 8 h

eating ad libitum.
Alternative Day
Fasting (ADF):

Fasting for 24 h at a
time every other day.
Whole-Day Fasting
(WDF): Scheduled
days of ad libitum
eating and fasting.

Weight loss,
anti-inflammatory

properties, improved
cholesterol profile,
decreased blood

pressure, improves
insulin resistance.

Wide variety in the
literature based on
interval of fasting

(hours to days), may
not be suitable for

those with
underlying

comorbidities (e.g.,
diabetes mellitus).
Many studies in

athletes observing
Ramadan, which

poses other external
confounding

variables in data.

Decrease in sprint
speed and vertical

stiffness in repeated
sprints, reduced time

to exhaustion in
high-intensity cyclers,

decreased rowing
times and increased

subjective
fatiguability in

rowers.

Generally, a decrease
in athletic

performance is noted
in endurance sports,
specifically in sprint

speed, vertical
stiffness, and rowing

times.
If doing TRE and

wanting to avoid or
minimize loss of

muscle mass, ensure
adequate protein and

calories with
resistance training.

Many studies in
athletes observing

Ramadan
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Table 2. Plant-based sample diet. Aim for a minimum of 2000 calories per day.

Breakfast:
Tofu scramble (6 oz) with vegetables (1 cup)
2 slices whole-grain toast
Fresh fruit (1 cup)

Total: 500 calories, 27 g protein, 14 g fat, 60 g carbs, 13 g fiber

Morning Snack:
Peanut Butter and Jelly Sandwich

Total: 380 calories, 13 g protein, 15 g fat, 47 g carbs, 5 g fiber

Lunch:
Grilled tempeh or tofu (4 oz) with mixed vegetables (1 cup)
Hummus (1/4 cup) and 6 whole-grain crackers
1 cup fresh fruit

Total: 456 calories, 22 g protein, 23 g fat, 36 g carbs, 11 g fiber

Afternoon Snack:
Carrot sticks (1 cup) and hummus (2 tbsp)

Total: 105 calories, 3 g protein, 6 g fat, 11 g carbs, 4 g fiber

Dinner:
Brown rice (1.5 cup)
Black bean soup (1 cup)
Green salad with mixed vegetables (2 cups) and a vinaigrette dressing (2 tbsp)

Total: 745 calories, 24 g protein, 18 g fat, 126 g carbs, 19 g fiber

Dessert:
Non-dairy yogurt (1 cup) with peanut butter (2 tbsp) and granola (1/4 cup)

Total: 400 calories, 16 g protein, 22 g fat, 42 g carbs, 5 g fiber

Total for the day: 2586 calories, 105 g protein, 98 g fat, 322 g carbs, 57 g fiber

Table 3. Mediterranean Mock Diet. Aim for a minimum of 2000 calories per day.

Breakfast:
Omelet with 2 eggs, spinach (1/2 cup), chopped tomatoes (1/4 cup), and feta cheese (1/4 cup)

Total: 420 calories, 21 g protein, 31 g fat, 18 g carbs, 4 g fiber

Morning Snack:
Handful of nuts
1 Banana

Total: 275 calories, 7 g protein, 14 g fat, 32 g carbs, 6 g fiber

Lunch:
Greek salad (4 cups) with grilled chicken (3 oz) and quinoa (1/2 cup)
Olive oil and balsamic vinegar dressing (2 tbsp)

Total: 450 calories, 30 g protein, 20 g fat, 37 g carbs, 6 g fiber

Afternoon Snack:
Hummus (1/4 cup) with 1 whole grain pita bread and carrot sticks (1 cup)

Total: 282 calories, 9 g protein, 8 g fat, 46 g carbs, 11 g fiber

Dinner:
Grilled salmon (4 oz)
Grilled vegetables (2 cups)
Whole-grain pasta (1 cup)
Roasted Chickpeas (1/2 cup)

Total: 756 calories, 45 g protein, 14 g fat, 106 g carbs, 27 g fiber
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Table 3. Cont.

Dessert:
Whole milk Greek yogurt (1 cup) with Fresh Berries (1/2 cup) and Honey (1 tbsp)

Total: 236 calories, 24 g protein, 11 g fat, 36 g carbs, 3 g fiber

Total for day: 2419 calories, 136 g protein, 98 g fat, 275 g carbs, 57 g fiber

Table 4. Low-Carbohydrate Diet. Aim for a minimum of 2000 calories per day.

Breakfast:
2 eggs cooked in 1 tbsp coconut oil
3 slices bacon
1 avocado

Total: 588 calories, 24 g protein, 48 g fat, 14 g carbs, 11 g fiber

Lunch:
Grilled Chicken Thigh (6 oz)
Mixed greens salad (1 cup) with vinaigrette dressing (2 Tbsp)

Total: 531 calories, 39 g protein, 36 g fat, 18 g carbs, 3 g fiber

Afternoon Snack:
1 oz almonds

Total: 164 calories, 6 g protein, 14 g fat, 6 g carbs, 3 g fiber

Dinner:
Grilled sirloin steak (8 oz)
One cup of steamed asparagus with 1 Tbsp butter
One baked sweet potato with 1 Tbsp butter

Total: 723 calories, 53 g protein, 47 g fat, 20 g carbs, 5 g fiber

Dessert:
1 cup full-fat yogurt with 1/2 cup berries, 1/4 cup nuts, and 1/4 cup unsweetened coconut flakes

Total: 452 calories, 17 g protein, 35 g fat, 22 g carbs, 9 g fiber

Total for the day: 2458 calories, 139 g protein, 180 g fat, 80 g carbs, 31 g fiber

Whatever the diet an athlete subscribes to, we recommend that athletes consume 6
to 10 g·kg−1 body weight·d−1 (2.7–4.5 g·lb−1 body weight·d−1) of carbohydrates, 1.2 to
1.7 g·kg−1 body weight·d−1 (0.5–0.8 g·lb−1 body weight·d−1) of protein (1.2–1.4 g/kg/day
for endurance athletes and 1.6–1.7 g/kg/day for strength and power athletes), and fat intake
should range from 20 to 35% of total energy intake for optimal performance [1]. Ultimately,
consultation with a registered dietitian and other medical training staff is the proper way
to highlight room for improvement in diet and providing appropriate recommendations
that promote sustainable, actionable changes that can improve athletic performance.
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