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Abstract: In chronic kidney disease (CKD), metabolic derangements resulting from the interplay
between decreasing renal excretory capacity and impaired gut function contribute to accelerating
disease progression and enhancing the risk of complications. To protect residual kidney function
and improve quality of life in conservatively managed predialysis CKD patients, current guidelines
recommend protein-restricted diets supplemented with essential amino acids (EAAs) and their
ketoanalogues (KAs). In clinical studies, such an approach improved nitrogen balance and other
secondary metabolic disturbances, translating to clinical benefits, mainly the delayed initiation of
dialysis. There is also increasing evidence that a protein-restricted diet supplemented with KAs
slows down disease progression. In the present review article, recent insights into the role of
KA/EAA-supplemented protein-restricted diets in delaying CKD progression are summarized, and
possible mechanistic underpinnings, such as protein carbamylation and gut dysbiosis, are elucidated.
Emerging evidence suggests that lowering urea levels may reduce protein carbamylation, which
might contribute to decreased morbidity and mortality. Protein restriction, alone or in combination
with KA/EAA supplementation, modulates gut dysbiosis and decreases the generation of gut-derived
uremic toxins associated, e.g., with cardiovascular disease, inflammation, protein energy wasting,
and disease progression. Future studies are warranted to assess the effects on the gut microbiome,
the generation of uremic toxins, as well as markers of carbamylation.

Keywords: chronic kidney disease; diet; protein restricted; microbiome; dysbiosis; uremic toxin; urea;
carbamylation; posttranslational protein modification

1. Introduction

Chronic kidney disease (CKD) is a devastating condition characterized by progressive,
irreversible loss of kidney function over time [1]. CKD affects approximately 9% of the
population worldwide, accounting for 1.2 million deaths in 2017, thus representing a
substantial global health burden [2]. Since 1990, the prevalence of CKD has increased by
29.3%. The burden of CKD is disproportionately higher among the developing countries
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and among individuals in the lower socio-demographic Index [2]. It is expected that CKD
will represent the 5th major cause of death worldwide by 2040 [3].

There are five progressive stages of CKD, which are assigned based on the decrease
in patient’s glomerular filtration rate (GFR) and levels of albuminuria [1]. The signs and
symptoms of CKD, affecting virtually all body systems and organs, are most often attributed
to the accumulation of urea and uremic toxins, partially derived from protein and amino
acid metabolism [4,5]. With progressive decline in GFR and associated accumulation of
retention solutes, quality of life deteriorates and healthcare costs rise [6,7]. Ultimately,
patients proceed to irreversible kidney failure, also referred to as end-stage kidney disease
(ESKD), a condition requiring renal replacement therapy (RRT), either as maintenance
dialysis or kidney transplantation to preserve life [8]. Dialysis treatment in turn is associated
with a high risk of relevant complications, including cardiovascular disease (CVD), anemia,
mineral bone disorder (MBD), chronic metabolic acidosis, and protein energy wasting
(PEW) [1,5,9]. In light of the associated high morbidity and mortality, a major goal of CKD
treatment is to slow its progression and delay the onset of dialysis [8,10].

If detected early, the progression of CKD to ESKD can be delayed or prevented through
appropriate interventions [1]. To protect residual renal function and improve quality of
life in predialysis CKD patients (stages 3–5), experts in the field recommend a dietary
protein restriction to reduce uremia and the formation of uremic toxins, and to slow CKD
progression, along with lowering the cardiovascular risk [8]. According to the National
Kidney Foundation’s Kidney Disease Outcomes Quality Initiative (KDOQI) guidelines,
either a low-protein diet (LPD) providing 0.55–0.60 g dietary protein/kg body weight/day,
or a supplemented very low protein diet (sVLPD) providing 0.28–0.43 g dietary protein/kg
body weight/day with the addition of a mixture of essential amino acids (EAAs) and
ketoanalogues (KAs) to meet protein requirements (0.55–0.60 g/kg body weight/day) is
recommended [11].

KAs serve as the precursors of the corresponding EAAs via conversion by transamina-
tion, i.e., the transfer of an amino group. This process uses amino groups from circulating
AA, thus preventing their incorporation into urea or other potentially toxic nitrogenous
waste products. KA can thus contribute to maintaining an adequate supply of EAAs for
protein synthesis and other metabolic pathways and reduce nitrogen load without an
associated adverse effect on azotemia [12].

The present review article summarizes recent insights into the role of protein-restricted
diets supplemented with KAs in delaying CKD progression in predialysis CKD patients as
well as elucidates possible mechanistic underpinnings.

2. Protein-Restricted Diets with KAs/EAAs: Effects on CKD Progression

Garneata et al. (2016) [13] conducted a randomized controlled trial (RCT) with non-
diabetic adults suffering from progressed CKD (stages 4–5; eGFR < 30 mL/min) to compare
a vegetarian KA/EAA-supplemented sVLPD with an LPD on the progression of CKD
and requirement for RRT (composite endpoint of need for RRT or halving of the initial
eGFR at any timepoint during the study). The results showed that patients on sVLPD
had higher adjusted event-free survival rates, a slower decline in estimated GFR (eGFR),
and less need for RRT compared to those on LPD. Moreover, there was no difference in
any of the parameters of nutritional status versus baseline or versus LPD, and no adverse
reactions to VLPD or Kas were noted. Importantly, the achieved protein intake was closely
monitored and remained very close to prescription throughout the study and remained
stable throughout the study (median 0.29 and 0.59 g/kg per day, respectively, at the
end of the study). Only 3% of patients dropped out of the study prematurely, without
any difference between groups. The authors thus concluded that a vegetarian VLPD
supplemented with KAs was nutritionally safe and delayed dialysis initiation in patients
with eGFR < 20 mL/min by ameliorating CKD-associated metabolic disturbances [13].
Long-term follow-up of these patients (median time of follow-up was 10.5 years) showed
that patient survival was higher among those following sVLPD compared to the LPD
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(96% vs. 82%). Only the type of nutritional intervention was associated with the survival
advantage. Moreover, significantly less patients in the sVLPD group required KRT at
follow-up (51% versus 93%). In patients (still) not on RRT, the adherence to the nutritional
intervention remained very good throughout the follow-up in both groups, and there were
no changes in the nutritional status in any arm [14]. A recent meta-analysis confirmed
that interventions combining protein restriction with KA/EAA supplementation had a
significant role in delaying CKD progression [15].

Bellizzi et al. [16] reported results from the pragmatic, randomized ERIKA study that
aimed to compare effects of an sVLPD supplemented with EAAs and KAs versus a LPD
on outcome in patients with chronic kidney disease (CKD) and concluded that neither
the primary outcome, time to renal death, nor mortality risk differed between treatment
groups. However, the poor adherence to the prescribed protein restriction should be noted
since the achieved protein intake was higher than the prescribed one throughout the study,
raising concerns about the dietary monitoring. It is also noteworthy that approximately
25% of patients in the ERIKA study were moderately or severely malnourished. It has been
suggested that severely malnourished patients should not receive an sVLDP due to the
probable lack of appetite and consequent risk of exacerbating malnutrition [17]. Clinically
stable patients with CKD stages 3–5 can efficiently adapt their muscle protein turnover to
an LPD containing 0.55–0.6 g protein/kg or a supplemented very low protein diet (VLPD)
by decreasing muscle protein degradation and increasing the efficiency of muscle protein
turnover [18].

Overall, the majority of the available evidence underpins that protein-restricted diets
supplemented with KAs are an effective strategy to delay CKD progression while main-
taining nutritional status in predialysis patients (Table 1). In the following sections, we will
shed more light on the underlying mechanisms of action.

Table 1. Studies investigating effects of KA/EAA-supplemented protein-restricted diets on disease
progression in patients with predialysis CKD.

Study Design Population Intervention Main Outcomes

Garneata,
2016 [13]

RCT,
open-label

CKD stages 3–4,
non-diabetic

sVLPD
(0.3 g/kg IBW/day)
+ KA/EAA
(0.125 g/kg IBW/day)
vs.
LPD (0.6 g/kg IBW/day)
15 months

sVLPD vs. LPD:

• Higher adjusted event-free
survival rates;

• Fewer patients required KRT;
• eGFR declined less;
• Urea and uric acid serum

levels were lowered;
• No difference in markers of

nutritional status.

Very good compliance

Garneata,
2019 [14]

RCT, open-label,
long-term
follow-up

CKD stages 3–4,
non-diabetic

sVLPD
(0.3 g/kg IBW/day) +
KA/EAA
(0.125 g/kg IBW/day)
vs.
LPD (0.6 g/kg IBW/day)
5 years

sVLPD vs. LPD:

• Improved 5-year survival
(96% vs. 82%);

• Fewer patients required KRT
at follow-up;

• No difference in markers of
nutritional status.

Very good compliance
Only the type of nutritional
intervention was associated with
the survival advantage
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Table 1. Cont.

Study Design Population Intervention Main Outcomes

Bellizzi et al.,
2021 [16] RCT, multicentre CKD stages 4–5

sVLPD
(prescribed 0.3 g protein/kg
IBW/day)
+ KA/EAA
(0.125 g/kg IBW/day)
vs. LPD (prescribed: 0.6 g
protein/kg IBW/day)

sVLPD vs. LPD:

• Similar time to renal death
(primary outcome);

• No significant difference in
risk of renal death, risks of
ESKD or time to
fatal/nonfatal cardiovascular
events;

• Similar eGFR decline from
baseline to 36 months;

• No changes in nutritional
status in any group;

• Low patient compliance to
diet: actual median protein
intake was 0.60 g/kg IBW/d
vs. 0.83 g/kg IBW/d.

RCT: randomized controlled trial, CKD: chronic kidney disease, LPD: low-protein diet, FD: free diet, MD:
Mediterranean diet, s: supplemented, (e)GFR: (estimated) glomerular filtration rate, BW: body weight, IBW: ideal
body weight, KA: ketoanalogue, EAA: essential amino acid, IS: indoxyl sulfate, PS: para-cresol sulfate, ESKD:
end-stage kidney disease.

3. Impact of Urea on CKD

As CKD progresses, increasing retention and accumulation of urea is observed due
to the decreasing ability of the kidneys to excrete metabolites from protein breakdown.
Increasing evidence suggests a range of direct toxic effects of urea which have been linked to
cardiovascular damage. These include, but are not restricted to, the induction of molecular
changes related to insulin resistance, increased production of radical oxygen species (ROS)
and other inflammatory mediators, the induction of apoptosis, the disruption of intestinal
barrier function, and the increased generation of carbamylated compounds [19–21]. In a
large prospective cohort study in predialysis CKD patients, higher serum urea levels were
found to be associated with a higher risk of fatal and non-fatal cardiovascular events as
well as with a higher risk of death before RRT initiation, indicating that urea could be a key
factor predicting cardiovascular risk in patients with CKD [22].

Studies showing benefits of KA/EAA-supplemented protein-restricted diets in predial-
ysis CKD patients have also shown considerable reductions in serum urea levels [13,23–27]
(Figure 1). In the study by Bellizzi et al. (2018) [28] that examined the metabolic effects of
an sLPD among CKD patients (non-dialysis, stages 3–5, N = 197), serum urea significantly
decreased after 6 months both among patients with (from 131 ± 58 to 105 ± 49 mg/dL,
p < 0.05) and without diabetes (from 115 ± 52 to 88 ± 36 mg/dL, p < 0.05). In a meta-
analysis by Rhee et al. (2018) [29], 1-year serum urea values trended lower in those patients
who received Ketosteril-sVLPD vs. LPD (three studies, weighted mean difference (WMD)
−55.30, 95% confidence interval (CI) −117.54 to 6.95).

Apart from the direct toxic effects of urea, its degradation products cyanate and ammo-
nia can interfere with biochemical and organ functions (Figure 2). Due to the accumulation
of urea, levels of its dissociation product cyanate are elevated in CKD [19,30]. High levels
of cyanate increase CVD risk by inducing endothelial dysfunction in CKD patients [31].
Moreover, cyanate induces the generation of carbamylated compounds that interfere with
organ and body function [19]. As reported by di Iorio et al., a considerable reduction in urea
levels (up to 61%) with the use of an sVLPD was accompanied by a reduction in cyanates
of about 20–30% [27]. Accordingly, it is conceivable that the observed benefits of s(V)LPDs
in CKD patients are closely linked to the associated decrease in urea, thereby reducing
cyanate generation and protein carbamylation.
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4. Impact of Protein Carbamylation on CKD Progression
4.1. Carbamylation—Definitions and Pathophysiological Mechanisms

Carbamylation refers to the nonenzymatic posttranslational modification of proteins
in the blood through the transfer of a carbamoyl group from cyanate, driven by a variety
of factors, e.g., inflammation, kidney disease, diet, smoking, and air pollution [27,32,33].
In CKD, carbamylation is mainly due to the exposure to cyanate derived from the dis-
sociation of urea [32]. Under physiological conditions, a small amount of urea (<1%)
spontaneously dissociates into ammonium ions and cyanate. As kidney function declines,
urea accumulates in the blood, so the burden of carbamylation rises [19,33].
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Carbamylation affects the functionality of numerous organs and tissues in the human
body and has been associated with memory deficits, aging, impaired vision, atherosclerosis,
congestive heart failure, disturbed hematopoiesis and coagulation, autoimmune disease,
and kidney fibrosis [32]. Carbamylated proteins interfere with organ and body functions
through multiple mechanisms [19,32]. Carbamylated lipoproteins, collagen, fibrin, pro-
teoglycans, and fibronectin contribute to atherosclerosis and cardiovascular risk [32–34].
Carbamylation of collagen or enzymes involved in extracellular matrix remodeling may
accelerate the progression of CKD by enhancing urea-associated fibrosis, leading to a
detrimental positive feedback loop [32]. Carbamylation of erythropoietin deactivates its
erythropoietic activity, and therefore, carbamylation contributes to the pathophysiology of
anemia in CKD [32,35]. Moreover, carbamylation has been proposed to be involved in the
pathogenesis of CKD, CVD, and other chronic diseases such as rheumatoid arthritis via the
induction of an autoantibody response through the formation of anti-carbamylated protein
(anti-CarP) antibodies [36,37].

4.2. Carbamylation Is Associated with CKD Progression and Mortality in CKD Patients

Patients in the advanced stages of CKD have a high risk of major cardiovascular events,
and the excess cardiovascular mortality cannot entirely be explained by traditional risk
factors [38]. Besides oxidative stress and systemic inflammation, mechanisms to explain
the excess CVD burden associated with CKD include uremic toxins and increased carbamy-
lation [38]. It is currently assumed that protein carbamylation and cyanate compounds
represent an important link between CKD and CVD [27]. Several studies revealing a link
between carbamylation and cardiovascular mortality are summarized in Table 2. While the
majority of epidemiological carbamylation studies have focused on ESKD patients [39–42],
Kalim et al. investigated the association between carbamylation load and CKD progression
and mortality in pre-dialysis CKD patients. In two studies, levels of carbamylated albumin
were found to be predictive of CKD progression and mortality independent of established
predictors such as eGFR and proteinuria [43,44].

Table 2. Studies linking carbamylation to mortality.

Study Design Carbamylated
Compound

Population Associated Outcomes

Wang, 2007 [34] Case–control Protein-bound
homocitrulline

Subjects undergoing cardiac
catheterization

Risk of coronary artery
disease, future myocardial
infarction, stroke, and death

Koeth, 2013 [39] Observational
cohort

Protein-bound
homocitrulline

ESKD patients on
hemodialysis 5-year risk of death

Berg, 2013 [42] Observational
cohort Carbamylated albumin

ESKD patients on
hemodialysis with and
without diabetes

1-year risk of death

Drechsler,
2015 [41]

Observational
cohort Carbamylated albumin ESKD patients on

hemodialysis with diabetes

1-year adjusted risk of
overall and cardiovascular
mortality, and sudden
cardiac death
at 4 years, with additional
risk of death from congestive
heart failure

Kalim, 2016 [40] Observational
cohort Carbamylated albumin ESKD patients on

hemodialysis 1-year risk of death

Kalim, 2021 [43]
Two nested
case–control
studies

Carbamylated albumin Nondialysis CKD patients CKD progression
1-year risk of death (trend)

CKD: chronic kidney disease, ESKD: end-stage kidney disease.
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4.3. Protein-Restricted Diets with KAs/EAAs Reduce Carbamylation in CKD Patients

Di Iorio et al. (2018) [27] conducted a crossover RCT in adult patients with moderate
CKD (stages 3B–4) to verify the hypothesis that carbamylation is enhanced in patients with
higher urea levels and that protein-restricted diets, either a Mediterranean diet (MD) or
KA/EAA-supplemented sVLPD, are able to reduce carbamylation (Table 3). Compared
to a free diet (FD), both dietary interventions significantly reduced the serum level of
homocitrulline, a marker of overall carbamylation. Importantly, homocitrulline and pro-
tein carbamylation levels were significantly correlated with serum urea levels (R2 = 0.5;
p < 0.0001). The authors concluded that decreasing urea levels, e.g., with an sVLPD, can
reduce protein carbamylation as well as cyanate production from urea. Notably, however,
bolstering serum free amino acids also appears to reduce carbamylation, as was demon-
strated in hemodialysis patients receiving intradialytic amino acid therapy on dialysis [45].
In this study, over an 8-week period, nutritionally intact hemodialysis patients receiving
intradialytic amino acids showed a significant reduction in their carbamylated albumin
levels when compared to controls undergoing routine care [45].

Table 3. Studies investigating effects of KA/EAA-supplemented protein-restricted diets on uremic
toxins, gut microbiota, and/or carbamylation in patients with predialysis CKD.

Study Design Population Intervention Main Outcomes

Di Iorio,
2018 [27] RCT, crossover CKD stages 3B–4

sVLPD (0.3 g protein/kg BW/day)
vs.
Mediterranean diet (MD,
0.7–0.8 g protein/kg BW/d
Vs. Free diet (FD, 1 g protein/kg
BW/day)
6 months

sVLPD vs. MD and FD

- Lowered serum urea levels;
- Lowered homocitrulline

levels and
homocitrulline/lysine
ratios

Homocitrulline and protein
carbamylation levels were
significantly correlated with
serum urea levels.

Di Iorio
2019 [46] RCT, crossover CKD stages 3B–4

sVLPD (0.3 g protein/kg BW/day)
vs.
Mediterranean diet (MD,
0.7–0.8 g protein/kg BW/d
Vs. Free diet (FD, 1 g protein/kg
BW/day)
6 months

With the sVLPD vs. MD and FD:

- Reduced Proteobacteria
and increased
Actinobacteria;

- Reduction in intestinal
permeability (associated
with the decrease in BUN).

With MD and sVLPD vs. FD:

- Increase in
Lachnospiraceae,
Ruminococcaceae,
Prevotellaceae, and
Bifidobacteriaceae;

- Reduced levels of total and
free IS and PCS.
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Table 3. Cont.

Study Design Population Intervention Main Outcomes

Rocchetti
2021 [47] RCT, crossover CKD stages 3B–4

sVLPD (0.3 g protein/kg BW/day)
vs.
Mediterranean diet (MD,
0.7–0.8 g protein/kg BW/d
vs.
Supplemented Mediterranean diet
(sMD,
0.7–0.8 g protein/kg BW/d
Vs. Free diet (FD, 1 g protein/kg
BW/day)
6 months

With the sMD vs. MD:

- Decrease in Clostridiaceae,
Methanobacteriaceae,
Prevotellaceae and
Lactobacillaceae, and an
increase in Bacteroidaceae
and Lachnospiraceae;

Levels of total and free IS and
PCS were significantly lower
after sMD than after FD.
The reduction in uremic toxins
with sMD was greater, but not
significant, vs. MD, and smaller
compared to sVLPD.
Intestinal permeability was not
reduced any further with the
supplemented compared to the
unsupplemented MD.

RCT: randomized controlled trial, CKD: chronic kidney disease, LPD: low-protein diet, FD: free diet, MD:
Mediterranean diet, s: supplemented, (e)GFR: (estimated) glomerular filtration rate, BW: body weight, IBW: ideal
body weight, KA: ketoanalogue, EAA: essential amino acid, IS: indoxyl sulfate, PS: para-cresol sulfate, ESKD:
end-stage kidney disease.

5. Role of the Gut Microbiome in CKD Patients

Nephrologists have explored the intestine as a “substitute kidney”. It is well known
that gut assumes an increasing role in nitrogen waste excretion to compensate for the
loss of kidney function. Now, it is becoming evident that gut microbiota contributes to
protein and energy metabolism. The degradation of urea by urease-expressing colonic
bacteria gives rise to increased ammonia concentrations in the gut, contributing to in-
testinal barrier dysfunction and increased inflammation (Figure 2) [19,48]. Moreover, the
implications of a dysregulated gut microbiome in the pathophysiology and progression of
CKD, an interrelation that has been designated as the “gut-kidney axis”, are increasingly
recognized [49,50].

5.1. The Gut Microbiome in CKD—Why We Should Care

The human gut comprises approximately 1014 microorganisms that play a pivotal role
in human health and disease [50–54]. These commensal microorganisms perform several
physiological functions such as modulating immunity, protecting against pathobionts,
regulating endogenous metabolism of carbohydrates, lipids, and proteins, and biosynthesis
of vitamins and amino acids, thus contributing to nutritional balance [50,55]. Containing
at least 100 times more genes than the human genome, the gut microbiome has been
designated as the “second genome” [53,56,57]. Abundance and diversity of bacteria increase
from the proximal to the distal regions of the intestine. While the proximal colon is
predominantly colonized by saccharolytic bacteria, proteolytic bacteria are most abundant
in the distal part [58]. Since proteolysis can result in the generation of toxic compounds,
this distribution has physiological significance in minimizing the intestinal contact time
with these substances, thereby reducing the capacity for absorption. Emerging data also
indicate that the microbiota may also be involved in the post-translational modification of
proteins and amino acid [59,60].

5.2. The Interrelation between Gut Dysbiosis and CKD

Gut dysbiosis has been broadly defined as an “imbalance in the intestinal microbial
community with quantitative and qualitative changes in the composition and metabolic
activities of the gut microbiota” [54]. Dysregulation of the gut microbiota in CKD patients
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appears to promote CKD progression through alterations in immune response, blood
pressure regulation, and metabolic changes [61–64]. In this context, Gao et al. found
that, with increasing CKD stage, butyrate producers decreased, whereas Methanobacteria
and several Collinsella species associated with atherosclerosis risk increased. In addition,
an inverse association with kidney function was found for microbial genera linked to
the production of SCFAs and bile acid deconjugation. These factors, in turn, have been
inversely related to CVD risk [63].

The main contributing factors to gut dysbiosis in patients with CKD include slow
intestinal transit time, impaired protein digestion and absorption, decreased consumption
of dietary fiber, iron therapy, and frequent use of antibiotics [53]. When reviewing the
above studies together, it appears reasonable that initial adaptive changes in gut microbiota
become maladaptive in later stages of CKD, exacerbating CKD-related complications [54].

5.3. Gut Dysbiosis Is Associated with Increased Production of Uremic Toxins

Diet remains the single most important modulator of gut microbiome in health, which
adaptively changes their community structure and function [62,65]. In uremia, due to im-
paired protein digestion and absorption, increased amounts of undigested protein reach the
distal part of the colon, favoring the proliferation of proteolytic bacteria [53]. Enhanced pro-
teolysis in the colon significantly contributes to the generation of uremic toxins [49,50,66,67].
Several well-described uremic toxins are derived from the metabolism of phenolic com-
pounds or aromatic AAs by gut bacteria, including indoles such as indoxyl sulfate (IS) and
indole acetic acid (IAA), phenols such as para-cresol sulfate (PCS), phenylacetylglutamine
(PAG) and hippurate, and polyamines such as putrescine, agmatine, cadaverine, tyramine,
and histamine [53]. Moreover, metabolism of dietary phosphatidylcholine results in the
formation of choline, betaine, and trimethylamine (TMA), a precursor for the hepatic syn-
thesis of trimethylamine-N oxide (TMAO) [68]. Impaired intestinal barrier function in CKD
permits the translocation of gut-derived uremic toxins into the systemic circulation [53].
While under normal conditions uremic toxins are largely excreted by healthy kidneys, they
are retained when renal clearance decreases in CKD [20,69].

5.4. Uremic Toxins Are Associated with Disease Progression and Cardiovascular Risk in CKD

Clinical manifestations of increased levels of gut-derived uremic toxins include CVD,
inflammation, fibrosis, endocrine, metabolic and neurologic disorders, protein energy
wasting (PEW), and the progression of CKD [20,53]. An increasing body of evidence
suggests that uremic toxins generated by a dysbiotic gut microbiome contribute to the
progression to CKD and associated cardiovascular complications [67,70]. In nondialysis
CKD patients, serum levels of IS and PCS were shown to be predictive of CKD progression,
and PCS was also associated with all-cause mortality [71]. IS and PCS are considered critical
factors in the pathophysiology of CKD-associated immune dysfunction, accounting for the
increased risk of bacterial infections and damage to endothelial cells [72]. Among older
patients with advanced CKD, IS and PCS were shown to be associated with inflammatory
cytokines that may influence nutritional status, and PCS was positively associated with
PEW [73]. TMAO has been linked to end-organ dysfunction, increased CVD risk, and
mortality in CKD [67,68,74,75]. Moreover, several investigators have found associations
between increased CVD risk and levels of TMAO [68,74].

5.5. Dietary Interventions with Protein Restricetd Diets and/or KA/EAA Supplementation: Effects
on Gut Microbiota and Generation of Uremic Toxins

Protein restriction is currently discussed as a suitable therapeutic approach to ben-
eficially modulate the gut microbiota in CKD patients [76]. The quantity and quality
of dietary protein strongly influence the microbial diversity and abundance of selected
bacterial genera and species in the gut [52]. Notably, a high dietary protein intake has
been linked to the dysregulation of saccharolytic bacteria and increased abundance of
proteolytic bacteria, resulting in an increased microbial production of proteolysis-derived
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uremic toxins such as PCS, IS, and TMAO [62,77]. Moreover, the source of protein intake
should also be considered. A diet high in animal protein, especially red meat and eggs, can
contribute to an increase in TMAO production, as it provides high amounts of the TMAO
precursors choline and L-carnitine [77].

Mice fed with a diet low in protein content, but rich in fiber, had a preponderance
of short-chain fatty acid (SCFA)-producing saccharolytic bacteria. SCFA are involved
in energy homeostasis, maintaining gut barrier, blood pressure control, and immune
regulation. Furthermore, mice consuming a high-protein/low-fiber diet were enriched for
proteolytic bacteria and exhibited a decrease in Th17 polarization and an increase in Treg
cell commitment compared to mice fed with an HP-LF diet [78].

A longitudinal study in stage 3–4 CKD patients evaluated the effects of an LPD on
the serum levels of uremic toxins and the gut microbiota profile [79]. The study showed a
significant decrease in serum levels of PCS after 6 months in patients, with good adherence
to the LPD as compared to nonadherent patients. A change in the gut microbiota profile
was observed after nutritional intervention in both groups. The average number of bands
was positively associated with protein intake, suggesting that the amount of protein present
in the diet modulates the composition of the gut microbiota. In addition, total and LDL
cholesterol levels were reduced in adherent patients, while there was no deleterious effect
on nutritional status due to protein restriction [79]. It is thus conceivable that protein
restriction represents a viable strategy to reduce the production of uremic toxins by the gut
microbiota in predialysis CKD patients (Figure 3).

In a rat model of CKD, treatment with KAs/EAAs (1.6 g/kg/day by intragastric
administration) resulted in a beneficial modification of the gut microbiota associated with
less intestinal barrier injury and decreased serum concentrations of IS, betaine, choline,
and cholesterol. Moreover, KA/EAA treatment reduced serum creatinine and blood urea
nitrogen (BUN), reduced proteinuria, and alleviated histological damage to the kidneys [80].
These findings suggest that KAs may exert marked effects on gut microbiota and barrier
function in CKD, which could translate into improved serum metabolic profiles and reduced
kidney injury [80].

The effects of a KA/EAA-supplemented sVLPD compared to a Mediterranean diet
(MD) on the modulation of gut microbiota, intestinal permeability, and levels of uremic
toxins were investigated by di Iorio et al. (2019) in a cross-over RCT in adult patients with
moderate CKD (stages 3B–4) (Table 3) [46]. With the sVLPD, a beneficial modulation of the
gut microbiota was seen. The abundance of Proteobacteria associated with inflammation
was reduced, whereas butyrate-producing species were increased. Reduced levels of
serum lactate compared to FD and MD, respectively, indicated a reduction in intestinal
permeability, and lactate levels were positively correlated with BUN [46]. Moreover, with
the sVLPD, levels of total and free IS and PCS were significantly reduced after 6 months,
both compared to the MD and the FD [46].

Two years later, Rochetti et al. [47] investigated the specific effect of the added KAs by
adding a further treatment group receiving a KA/EAA-supplemented MD to the above
study design. Compared to an unsupplemented MD, KA/EAA supplementation resulted in
a profound modulation of the intestinal microbiota (Table 1). Levels of total and free IS and
PCS were significantly lower after the supplemented MD than after the FD. The reduction
in uremic toxins was also greater, but not significant, compared to unsupplemented MD,
and smaller compared to sVLPD. Intestinal permeability was not reduced any further with
the supplemented compared to the unsupplemented MD, and it was positively correlated
with BUN levels. These findings underpin the driving role of urea reduction in restoring
gut integrity. Overall, the findings indicate that KAs/EAAs and protein restriction act
synergistically in the modulation of gut microbiota.
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6. Conclusions

The gut microbiome plays a key role in many metabolic processes that have a decisive
influence on the course of CKD progression. Since gut dysbiosis contributes to the pro-
gression of CKD and the occurrence of cardiovascular complications, the microbiome has
emerged as a promising therapeutic target in predialysis CKD patients. Emerging evidence
indicates that protein-restricted diets supplemented with combinations of KAs and EAAs
are effective in modulating the gut microbiota, restoring intestinal integrity, and reducing
the production of uremic toxins (Table 3). Apparently, these effects are mediated via a
reduction in urea load, mainly due to protein restriction.

A further mechanistic underpinning related to CKD progression and its associated
complications, e.g., anemia, and increased cardiovascular risk, is increased protein carbamy-
lation. There is evidence from an RCT [27] that lowering azotemia by means of an sVLPD
can reduce cyanate production and protein carbamylation in predialysis CKD patients
(Table 3). This suggests that indicators of protein carbamylation could serve as a sensitive
biomarker to assess adherence to and benefits of protein-restricted diets supplemented
with KAs/EAAs.

Future studies are warranted to investigate the role of protein-restricted diets supple-
mented with KAs/EAAS on the gut microbiome, generation of uremic toxins, and markers
of carbamylation in predialytic CKD patients.
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