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Abstract: The exploration of non-toxic and cost-effective dietary components, such as epigallocate-
chin 3-gallate and myricetin, for health improvement and disease treatment has recently attracted
substantial research attention. The recent COVID-19 pandemic has provided a unique opportunity for
the investigation and identification of dietary components capable of treating viral infections, as well
as gathering the evidence needed to address the major challenges presented by public health emer-
gencies. Dietary components hold great potential as a starting point for further drug development for
the treatment and prevention of SARS-CoV-2 infection owing to their good safety, broad-spectrum
antiviral activities, and multi-organ protective capacity. Here, we review current knowledge of the
characteristics—chemical composition, bioactive properties, and putative mechanisms of action—of
natural bioactive dietary flavonoids with the potential for targeting SARS-CoV-2 and its variants.
Notably, we present promising strategies (combination therapy, lead optimization, and drug delivery)
to overcome the inherent deficiencies of natural dietary flavonoids, such as limited bioavailability
and poor stability.

Keywords: COVID-19; SARS-CoV-2; natural dietary flavonoids; broad-spectrum antiviral activities;
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1. Introduction

The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2), the deadliest virus since the 1918 influenza
virus, has posed a serious threat to global health security [1]. Tremendous research efforts
have been undertaken, aiming at controlling and/or treating SARS-CoV-2 infection [2–4].
To date, several small-molecule antivirals (remdesivir, ritonavir-boosted nirmatrelvir, and
molnupiravir), vaccines, and monoclonal antibodies have been approved or authorized by
the Food and Drug Administration (FDA) of the United States of America for the treatment
of COVID-19 [5–8]. Although the pandemic appears to be on a downward trend, the po-
tential emergence of new SARS-CoV-2 variants still represents a threat to humans, given
their intrinsic transmissibility, immune escape, virulence, and susceptibility to available
treatments [9–11]. Taking virulence as an example, if it is assumed that the mortality rate
among SARS-CoV-2-infected individuals is similar to that for seasonal influenza, we can
expect the annual burden of future influenza to be twice that of previous influenza. The
additional burden associated with “long COVID” (e.g., respiratory symptoms and cognitive
dysfunction) may also be non-negligible [12,13]. Accordingly, an inexpensive, convenient,
and rapidly up-scalable response model is required to address future coronavirus pandemics.
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Natural products (including herbal medicine) play an irreplaceable role in the treat-
ment of SARS-CoV-2 infection [14,15]. Increasing evidence supports that many functional
foods and nutraceuticals have potential for use in the prevention and treatment of viral
infections [16]. In recent years, flavonoids have attracted much attention from pharma-
ceutical chemists and organic chemists due to their efficiency and low toxicity for health
improvement and disease treatment. Their active components, such as epigallocatechin
3-gallate (EGCG) and myricetin (Figure 1), have drawn considerable attention as potential
agents for COVID-19 treatment owing to their multitargeting potential (SARS-CoV-2 Mpro,
angiotensin-converting enzyme 2 [ACE2, the primary target of SARS-CoV-2 in host cells],
and RNA-dependent RNA polymerase [RdRp, an essential enzyme in RNA viruses, which
is a key player driving the viral replication and transcription machinery], among other
targets), broad-spectrum activities, and low toxicity [17,18]. In this review, we summarize
the characteristics of natural dietary flavonoids, including their bioactive properties and
potential mechanisms of action, associated with the prevention and treatment of COVID-19,
and discuss strategies aiming at improving their bioavailability, chemical stability, and
delivery. Finally, we present promising strategies (combination therapy and lead optimiza-
tion) for overcoming the inherent shortcomings (limited bioavailability and poor chemical
stability) of natural dietary flavonoids as therapeutics for SARS-CoV-2 infection.
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Figure 1. The chemical structures of epigallocatechin 3-gallate (EGCG) and myricetin.

2. Epigallocatechin 3-Gallate—A Green Tea-Derived, Multitargeting,
Anti-SARS-CoV-2 Therapeutic Candidate

Epigallocatechin 3-gallate (EGCG), a nutritional supplement with promising health-
beneficial effects isolated from green tea (Camellia sinensis) (Figure 2a), has long been inves-
tigated for its potential as supplementation therapy for the prevention of numerous disor-
ders, including cancer [19] and cardiovascular [20], metabolic [21], neurodegenerative [22],
and infectious diseases [23]. For instance, Polyphenon E®, comprising >65% EGCG, is
a standardized preparation of green tea catechins approved by the US FDA in 2006 for
the treatment of external genital and perianal warts [24]. Polyphenon E has an excellent
safety and tolerability profile, an essential characteristic allowing for the extensive use
of EGCG [24]. The green tea catechin palmitate (comprising 50% EGCG), an oil-soluble
green tea extract, was approved by the US FDA in 2019 as a safe dietary ingredient [25].
In vitro, EGCG has highly promising broad-spectrum antiviral activity, including against
Zika virus (half-maximal effective concentration [EC50] = 21.4 µM) [26], hepatitis B virus
(half-maximal inhibitory concentration [IC50] = 0.11 µM) [27], Japanese encephalitis virus
(IC50 = 7.0 µM) [28], human coronavirus (HCoV) 229E (IC50 = 0.77 µM) [29], human
coronavirus OC43 (IC50 = 0.49 µM) [29], Middle East respiratory syndrome (MERS)-CoV
(IC50 = 8.4 µM) [30], and SARS-CoV (IC50 = 1.5 µM) [30]. Given its excellent safety and
broad-spectrum antiviral activities, EGCG may contribute to immediate clinical solutions
for COVID-19 treatment.

Many studies have reported the impressive effects of EGCG against SARS-CoV-2
in vitro (Figure 2b). For example, Hurst et al. [17] demonstrated that EGCG blocks SARS-
CoV-2 infection in Vero 76 cells (EC50 = 0.59 µM), while displaying only mild toxicity
(selectivity index [SI] = 8.5). The 3C-like protease (3CLpro, also known as Mpro) is highly
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conserved among coronaviruses, including SARS-CoV-2 [31,32]. Given its essential role in
viral replication and transcription, Mpro represents a promising therapeutic target against
coronavirus infection [33]. Du et al. [34] showed that EGCG is a potent inhibitor of Mpro,
with an IC50 of 0.87 µM. Surface plasmon resonance binding experiments demonstrated that
EGCG has a high binding affinity for Mpro, with a dissociation constant (KD) of 6.17 µM.
Similarly, Zhu et al. [35] reported that EGCG inhibits Mpro activity, with an IC50 value
of 7.51 µM. Furthermore, Ngwe Tun et al. [36] indicated that EGCG is highly effective
at inhibiting SARS-CoV-2 replication (IC50 = 6.5 µM) in Vero E6 cells and with minimal
toxicity (SI >154). Mechanistically, the authors further demonstrated that EGCG blocks
SARS-CoV-2 replication at both the entry and post-entry stages of infection, and also
inhibits SARS-CoV-2 Mpro activity.
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Figure 2. Epigallocatechin 3-gallate is a green tea-derived, multitargeting, anti-SARS-CoV-2 therapeu-
tic candidate. (a) Epigallocatechin 3-gallate (EGCG), isolated from Camellia sinensis, has potential for
development as a therapeutic throat spray for Omicron infection. (b) Important discoveries relating
to the multi-target effects of EGCG against SARS-CoV-2. Data from references [17,34,35,37–43].

Meanwhile, Kato et al. [37] showed that EGCG strongly inhibits the activity of Mpro

(IC50 = 0.4 µM) via the formation of a covalent bond between Cys145 of the enzyme and the
2′-position of EGCG (Figure 3). Tsvetkov et al. [38] showed that partial EGCG treatment is
highly effective at suppressing viral replication (IC50 = 4.0 µM, SI = 6) by interfering with
the binding between ACE2 and SARS-CoV-2 spike (S) protein. Similarly, Henss et al. [39]
reported that EGCG inhibits SARS-CoV-2 infection (IC50 = 3.1 µM, SI > 11.6) in Vero E6
cells through binding at the SARS-CoV-2 S–ACE2 interface. SARS-CoV-2 endoribonuclease
NendoU (NSP15), a uridine-specific endoribonuclease used by the virus to avoid the innate
immune response, is considered a compelling drug target [44]. Hong et al. [40] showed that
EGCG strongly inhibits the activity of NSP15, with an IC50 value of 1.6 µM. In the same
study, the authors investigated the neutralizing effect of EGCG against SARS-CoV-2 and
obtained a promising result (half neutralization effect concentration [PRNT50] = 0.2 µM).
The above findings regarding the efficacy of EGCG appear to be generalized, indicative of
the therapeutic potential of EGCG for the treatment of COVID-19. Meanwhile, combination
drug therapy may offer additional advantages [45]. Rabezanahary et al. [41] revealed that
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the combination of EGCG (15.6 µM) and remdesivir (1.25 µM), the first FDA-approved
inhibitor of SARS-CoV-2 RdRp, exerts a significant synergistic effect (3.1-fold reduction in
the EC50 of EGCG for RdRp) in Vero E6 cells through multitargeting activity.
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Figure 3. Proposed multi-target (S protein, Nsp15, and Mpro) mechanism of action of EGCG against
SARS-CoV-2: inhibition of oxidative stress, cytokine storm, lung fibrosis, thrombosis, and sepsis
injury in SARS-CoV-2 infection. Oxidized EGCG is first recognized by the catalytic site of Mpro,
which is followed by the covalent bonding between the α,β-unsaturated carbonyl moiety of EGCG
(serves as an electrophile) and Cys145 of Mpro (serves as a nucleophile).

Bettuzzi et al. [42] conducted a 15-day, proof-of-principle study to evaluate the anti-
SARS-CoV-2 efficacy of EGCG and catechins (two sessions of inhalation plus three capsules
daily; total EGCG: 595 mg; total catechins: 840 mg) in 10 non-hospitalized SARS-CoV-2
swab-positive patients. All patients were asymptomatic within 7 to 15 days of starting
treatment, while the levels of inflammation markers significantly decreased. No observ-
able adverse events with the EGCG treatment were reported. Additionally, compared
with wild-type or Delta strains, Omicron strains have greater replicative capacity in the
upper respiratory tract, increasing the likelihood of viral release during breathing; this
characteristic may help explain the enhanced transmission of Omicron strains via airborne
routes [46]. Yang et al. [47] demonstrated that after drinking two to three cups of green
tea, the levels of EGCG in saliva ranged from 4.8 to 22 µg/mL (equivalent to 8.7–39.9 µM),
which was two orders of magnitude higher than those in plasma. For cancer prevention, it
is recommended that humans consume six cups of green tea daily [47]; accordingly, high
doses of EGCG (up to 79.8 µM in saliva) are likely to be safe and may prove highly effective
in controlling Omicron infection. Similarly, Furushima et al. [48] investigated the oral
retention of catechins in healthy adults after the intake of a beverage (40 mL) containing
73.4 mg of catechins. They found that the average concentrations of EGCG in the oral cavity
were approximately 156.3, 58.4, and 50.5 µM at 10, 40, and 60 min, respectively. These
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findings support the potential value of EGCG as a supplementation therapy for patients
infected with an Omicron variant.

SARS-CoV-2 infection can have long-term effects on the lungs as well as on multiple
extrapulmonary tissues and organs, while EGCG exerts unique multi-organ protective
effects. For example, EGCG plays an important neuroprotective role following traumatic
brain injury (through the activation of the adenosine monophosphate-activated protein
kinase pathway), [49] ameliorates liver injury secondary to Pseudomonas aeruginosa pneu-
monia (via upregulating nuclear receptor activation), [50] protects cardiomyocytes against
hypoxia–reperfusion injury (via potently inhibiting the self-cleavage of OMA1), [51] and
alleviates SARS-CoV-2-triggered cytokine storm, sepsis, thrombosis, and lung fibrosis [52]
(Figure 3). In addition, EGCG decreases the severity of Omicron-related COVID-19 symp-
toms in both elderly patients and patients with metabolic syndrome by downregulating
GRP78 expression or promoting hyperinsulinemia remission [43].

Despite its broad-spectrum antiviral activity, favorable safety profile, and multi-organ
protective effects, EGCG demonstrated poor oral bioavailability (F) in both rats (F = 0.1%)
and humans (F = 0.3%) [53]. Accordingly, the development of an EGCG throat spray as a
potential therapeutic strategy targeting Omicron infection should be further explored in
the clinical setting.

3. Myricetin—A Waxberry-Derived Covalent Mpro Inhibitor Suitable for
Lead Optimization

Myricetin is a well-known nutritional supplement that can be isolated from “medicine
food homology” plants, such as Myrica rubra, Ampelopsis grossedentata, Malus domestica, and
Cistus monspeliensis [54]. Specifically, vine tea (A. grossedentata), which has myricetin as the
main bioactive ingredient, received approval as a functional food ingredient in 2013 and is
traditionally consumed worldwide owing to its health-promoting effects and pleasurable
taste [55]. Myricetin, a natural dietary flavonol, has numerous pharmacological effects, in-
cluding improving bleomycin-induced pulmonary fibrosis via the targeting of HSP90β [56],
combating methicillin-resistant Staphylococcus aureus-related lethal pneumonia by inhibit-
ing caseinolytic peptidase P [57], ameliorating brain injury and neurological deficits via
nuclear factor erythroid 2-related factor 2 activation [58], enhancing immunomodulatory
functions [59], and mitigating hepatic fibrosis via the inhibition of the TREM-1-TLR2/4-
MyD88 signaling pathway [60]. Myricetin is also an antiviral drug with low toxicity that can
treat a wide variety of viral infections in vitro, including Ebola virus (IC50 = 2.7 µM) [61],
Marburg virus (IC50 = 25.5 µM) [62], infectious bronchitis virus (IC50 = 10.6 µM) [63], HIV-1
virus (IC50 = 7.6 µM) [64], African swine fever virus (IC50 = 8.4 µM) [65], Bourbon virus
(IC50 = 2.2 µM) [66], and herpes simplex virus (IC50 = 1.6 µM) infections [67].

Myricetin is an ideal candidate for research targeting SARS-CoV-2 infection. SARS-
CoV-2 helicase (NSP13), a highly conserved non-structural protein possessing RNA heli-
case and 5′-triphosphatase activities, is a promising target for the development of novel
anti-SARS-CoV-2 drugs [68]. Corona et al. [69] showed that myricetin inhibits NSP13
helicase-associated activity, with an IC50 value of 0.41 µM. Moreover, Xiao et al. [70] re-
ported that myricetin effectively inhibits SARS-CoV-2 replication in vitro by targeting Mpro

(IC50 = 3.68 µM; no cytotoxicity was detected with concentrations of up to 50 µM). Fur-
ther analysis revealed that the 3′- and 4′-hydroxyl groups of myricetin form hydrogen
bonds with Phe140 and Glu166 of Mpro, while the chromone ring of myricetin forms π–π
stacking interactions with His41, which stabilizes its binding in the catalytic center of
Mpro. COVID-19 is primarily an inflammatory disease [71]. In a different study, the same
authors [70] revealed that myricetin can effectively inhibit lung inflammation by suppress-
ing inflammatory cell infiltration and the secretion of inflammatory factors (IL-6, IL-1α,
TNF-α, and IFN-γ). Similarly, Kato et al. [37] reported that myricetin inhibits the synthesis
of SARS-CoV-2 Mpro, with an IC50 value of 0.90 µM, while Kuzikov et al. [72] revealed
that myricetin displays excellent anti-SARS-CoV-2 potency in vitro (IC50 = 0.22 µM). The
authors [72] further reported the X-ray crystal structure of Mpro complexed with myricetin
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at a resolution of 1.77 Å (PDB ID: 7B3E), which unambiguously revealed that the mech-
anism of action involves the formation of a covalent bond between Cys145 and the 2′

position of myricetin.
Although myricetin has broad-spectrum antiviral potential without serious adverse

effects, its use is limited due to its poor solubility and low oral bioavailability (<10%) [73,74].
Consequently, the development of myricetin prodrugs or oral derivatives, with enhanced
bioavailability and membrane permeability, has been proposed as an alternative tactic
for drug design (Figure 4). The pyrogallol group of the myricetin B ring, acting as an
electrophile, is covalently bound to Cys145, helping to maintain a strong anti-SARS-CoV-2
potential [18]. Chaves et al. [75] evaluated a series of structurally similar natural flavonoids,
including myricetin, and found that the presence of fewer hydroxyl groups in ring B of
these flavonols (myricetin, three hydroxyl groups; quercetin, two hydroxyl groups; and
kaempferol, one hydroxyl group) was correlated with reduced anti-SARS-CoV-2 activity
in Calu-3 cells, with EC50 values of approximately 0.91, 2.40, and 3.02 µM, respectively.
Notably, when the pyrogallol group of the myricetin B ring was transferred to the A ring,
the binding mode of myricetin to Mpro was fundamentally changed.
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Myricetin and another Mpro inhibitor, baicalein, possess pyrogallol groups, but their
modes of action and their structural determinants of protease binding are different [18]. An
examination of the crystal structure of the myricetin-Mpro complex (2.1 Å, PDB ID: 7DPP)
revealed the presence of a covalent bond between the sulfur atom of Cys145 of Mpro and
the C6′ atom of the pyrogallol group of myricetin (Figure 4) [18]. Several other interactions
were identified, such as hydrogen bonding between the hydroxyl groups of myricetin and
Gly143, Ser144, Cys145, and Thr26; π–π stacking interactions between the chromone moiety
of myricetin and His41; and the formation of hydrogen bonds between the chromone
moiety and Glu189, His164, His41, and Asp187 of Mpro. In contrast, observation of the
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crystal structure of baicalein complexed with Mpro (2.2 Å, PDB ID: 6M2N) revealed that
baicalein forms multiple interactions (π–π stacking, hydrogen bonds, and hydrophobic
interactions) with specific residues of Mpro, rather than covalently blocking the catalytic
Cys145 residue (Figure 4) [18].

In terms of structure, the pyrogallol group of the B rings of flavanols can be easily oxi-
dized to form orthoquinone, which covalently binds to Cys145 of Mpro (Figure 5) [73]. These
studies present a starting point for structure-based lead identification and optimization of
flavanol-based compounds.
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Furthermore, Xiong et al. [76] found that myricetin (IC50 = 1.2 µM) and its glycoside
myricitrin (IC50 = 14.2 µM) can inhibit SARS-CoV-2 replication by covalently binding to the
biothiols of Mpro in a dose- and time-dependent manner. Nevertheless, the antiviral activity
of myricitrin (IC50 = 14.2 µM) is 11.8-fold weaker than that of myricetin (IC50 = 1.2 µM),
which demonstrates the pivotal role of the free C3 hydroxyl group in promoting the binding
of myricetin to Mpro through hydrogen bonding. Besides that, dihydromyricetin, a trans-
conformation of myricetin (hydrogenation of its C2=C3 double bond), displays weaker
inhibitory activity compared to that of myricetin (IC50: 1.14 vs. 0.63 µM; EC50: 13.56 vs.
8.00 µM) [18]. This is likely because the presence of the C2=C3 bond increases electron
delocalization in the A–C ring of myricetin and enhances the stability of π-conjugation
with His41. Together, these results demonstrate that the 3-OH and 3′,4′,5′-OH moieties of
myricetin are essential for its potent anti-SARS-CoV-2 activity (Figure 6) [18].
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Lipophilicity (cLogP) is an important physicochemical parameter influencing oral
absorption and pharmacokinetic properties [77,78]. Su et al. [18] found that the addition of
an alkyl group (methyl, ethyl, isoamyl, or cyclopentylmethyl) to the 7-OH of myricetin can
increase the lipophilicity of the resulting compound relative to that of myricetin, thereby
enhancing the inhibition of the enzymatic activity of SARS-CoV-2 Mpro. An analysis of the
structure–activity relationship of the derived compounds suggested that the smaller methyl
group may bind more strongly to a specific but small sub-pocket within Mpro compared
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to the other, larger alkyl groups. Subsequently, a methyl group was introduced to the
7-OH of dihydromyricetin, yielding compound 7, which could significantly inhibit viral
replication (IC50, 0.26 µM; EC50, 11.5 µM) (Figure 4) [18]. When administered orally to mice
(30 mg/kg compound 7 per day), this compound showed an improved pharmacokinetic
profile compared to that of myricetin (Tmax, 1.74 vs. 0.50 h; Cmax, 724 vs. 8.59 ng/mL;
AUClast, 510 vs. 6.07 ng·h/mL; MRT, 1.89 vs. 0.84 h; and T1/2, 1.74 vs. 0.44 h for compound
7 and myricetin, respectively). Compound 7 displayed acceptable oral bioavailability
(F = 18.1%), given that compounds with an oral bioavailability greater than 10% have
potential for development as oral drugs [18]. The current data support the further opti-
mization of 7-O-methylmyricetin-based oral inhibitors for COVID-19 treatment. Prodrugs
have better pharmacokinetic properties, and their hidden pharmacological activities can
be recovered after biotransformation in vivo, thereby representing an excellent option for
the design of COVID-19-targeting drugs [79,80]. To improve the aqueous solubility and
the membrane permeability of myricetin, compound 9 was produced via the introduction
of diphenyl phosphate at the 7-OH moiety of myricetin (Figure 4) [18]. Compared to
myricetin, compound 9 displayed significantly increased lipophilicity (cLogP, 3.89 vs. 0.84)
and better inhibitory activity against SARS-CoV-2 replication (EC50, 3.15 vs. 8.00 µM).
Similarly, the same diphenyl phosphate group was added to the 7-OH of dihydromyricetin,
yielding compound 10, with an EC50 against SARS-CoV-2 replication superior to that of
dihydromyricetin (EC50, 9.03 vs. 13.6 µM) [18]. Myricetin prodrugs are still experimental,
and further studies are needed to demonstrate their safety and efficacy.

4. Other Anti-SARS-CoV-2 Natural Dietary Flavonoids in Development for Treating
SARS-CoV-2 Infection

Natural dietary flavonoids can make a substantial contribution to mitigating the
effects of the COVID-19 pandemic given their good safety profile and antiviral activities. In
addition to the abovementioned bioactive compounds, other natural dietary flavonoids,
shown in Table 1, have demonstrated strong anti-SARS-CoV-2 activity in vitro, and thus
can serve as a starting point for further drug development for the treatment of COVID-19.

Table 1. Other natural dietary flavonoids for treating SARS-CoV-2 infection in vitro.

No. Name Species Structure EC50 or
IC50 (µM)

Target or
Mechanism Refs.

1 Hesperidin Citrus sinensis
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Table 1. Cont.

No. Name Species Structure EC50 or
IC50 (µM)

Target or
Mechanism Refs.
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5. Conclusions and Future Directions

The COVID-19 pandemic represented an unprecedented global health crisis. Func-
tional foods and nutritional supplements are excellent complements to vaccines and thera-
peutics. They encompass a large and rich library of natural bioactive products, some of
which are likely to exhibit anti-COVID-19 therapeutic potential. Natural dietary flavonoids
are conceptually attractive as treatment options in response to outbreaks; however, their
implementation is challenging. To obtain maximal benefits, several aspects should be
considered to facilitate the development of natural dietary-bioactive-product-based drugs.

First, additional research directly related to SARS-CoV-2 and its variants is urgently
needed to clarify the effectiveness of the above-mentioned flavonoids. Natural dietary
bioactive flavonoids must be rigorously evaluated in in vitro, animal model, and clinical
studies rather than relying only on virtual screening, network pharmacological prediction,
or machine learning models, especially when their targets or mechanisms of action are un-
known. For instance, designing controlled clinical trials may help elucidate any additional
effects of these compounds. Natural dietary flavonoids may make a marked contribution
toward controlling hyperinflammatory responses and preventing lung injury. Nevertheless,
the underlying mechanisms require further exploration and systematic clarification.

Secondly, combination therapy could contribute to addressing potential drug resis-
tance associated with emerging variants. Evolution and the associated increase in selection
pressures may yield SARS-CoV-2 variants that are resistant to antiviral therapies. While
resistant viruses could rapidly emerge in the presence of a single agent, the appearance of
escape mutations against a combination of compounds, displaying different mechanisms
of action and resistance profiles, is less likely. Multi-target therapeutic modalities (mixtures
of natural dietary flavonoids, similar to drug cocktails) with broad variant activity could
further improve the effectiveness against globally circulating SARS-CoV-2 variants and mit-
igate the emergence of new escape mutants. Importantly, however, monitoring for potential
drug–drug interactions is essential in the development of combination therapies. In parallel,
lead optimization of multi-target dietary compounds (e.g., EGCG targeting SARS-CoV-2
NSP15, S protein, and Mpro) could potentially provide candidates for COVID-19 treatment.

Thirdly, alternative routes of administration (e.g., oral or inhalation) have the potential
to maximize clinical benefit. Compared to the intravenous route, oral or inhalation admin-
istration can help address compliance issues given that the associated medications are less
likely to require refrigeration, while also avoiding the use of needles. Oral administration
can maximize clinical benefits by shortening the duration of COVID-19 and reducing acute
post-sequelae symptoms of SARS-CoV-2 infection. Inhalation administration facilitates
the direct delivery of antiviral agents to the primary site of infection, reducing systemic
exposure to drugs and their metabolites, thereby minimizing systemic side effects.

In summary, to address current limitations associated with the use of dietary compo-
nents for the treatment of SARS-CoV-2 infection, a mixture of factors, including combination
therapy, lead optimization, and drug delivery, must be considered.
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