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Abstract: The nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor crucial
in regulating cellular homeostasis and apoptosis. The NRF2 gene has been implicated in various
biological activities, including antioxidant, anti-inflammatory, and anticancer properties. NRF2
can be regulated genetically and epigenetically at the transcriptional, post-transcriptional, and
translational levels. Although DNA methylation is one of the critical biological processes vital for
gene expression, sometimes, anomalous methylation patterns result in the dysregulation of genes
and consequent diseases and disorders. Several studies have reported promoter hypermethylation
downregulated NRF2 expression and its downstream targets. In contrast to the unalterable nature
of genetic patterns, epigenetic changes can be reversed, opening up new possibilities in developing
therapies for various metabolic disorders and diseases. This review discusses the current state of
the NRF2-mediated antioxidative and chemopreventive activities of several natural phytochemicals,
including sulforaphane, resveratrol, curcumin, luteolin, corosolic acid, apigenin, and most other
compounds that have been found to activate NRF2. This epigenetic reversal of hypermethylated
NRF2 states provides new opportunities for research into dietary phytochemistry that affects the
human epigenome and the possibility for cutting-edge approaches to target NRF2-mediated signaling
to prevent chronic disorders.

Keywords: hypomethylation; hypermethylation; epigenetics; nuclear factor erythroid 2-related factor
2; DNMTs; dietary polyphenols; phytochemicals

1. Introduction

Nuclear factor erythroid 2-related factor 2 (NRF2), a member of the basic leucine zipper
family and cap “n” collar family (CNC), plays a vital role in maintaining cellular protection
against oxidative stress and inflammation. NRF2 regulates inducible and constitutive
resistance to electrophiles and oxidative components [1]. Oxidative stress occurs when
cells and tissues produce excessive reactive oxygen species (ROSs), and the endogenous
antioxidant system cannot neutralize them [2]. In normal conditions, the mitochondrial
oxidative mechanism produces ROSs and peroxides during cell respiration. Under hypoxia
conditions, the cells generate excessive ROSs and reactive nitrogen species, which upon
prolonged exposure, can cause injury to cellular structure and functions [3,4]. While many
mechanisms quench or weaken the cellular ROSs in the cells, the need for a master controller
involving a set of regulatory mechanisms with antioxidant properties is increasing. This
cellular defense mechanism by NRF2 transcriptionally activates a series of antioxidant
genes such as NADPH quinone oxidoreductase (NQO1), heme oxygenase (HO-1), catalases
(CAT), and glutathione peroxidase (GPx). Furthermore, NRF2 regulates the inflammation
genes such as transforming growth factor (TGF-β) and nuclear factor kappa (NF-kB) [5].
Studies have revealed that increased oxidative stress in renal disease impairs NRF2 function
and leads to mitochondrial dysfunction and lipid damage [6]. In type 2 diabetes mellitus,
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the activation of NRF2 regulates oxidative stress by suppressing intracellular ROS formation
and inhibiting pancreatic β-cell apoptosis [7]. This review discusses the impact of dietary
polyphenols on the DNA methylation patterns of NRF2, along with how these changes
aid in avoiding diseases and enhancing overall health. It provides a summary of the many
phytochemicals that control NRF2 via demethylating DNA.

2. Structure and Regulation of NRF2

In normal conditions, Kelch-like ECH-associated protein 1 (Keap1) actin cytoskeleton-
associated adapter protein of Cullin3 (Cul3-) binds to NRF2, leading to its proteasomal
degradation via ubiquitination [6,8]. In NRF2, six domains show high conservation of
homology (Neh1–Neh6), where Neh2 regulates the cytoplasmic localization of NRF2 and
the Neh4 and Neh5 domains facilitate the recruitment of canonical protein and transcription
factors responsible for expression [9]. By associating with Neh2 and Neh6 (domains of
NRF2), Keap1 and β-transducin repeats containing proteins regulate NRF2 intracellularly
by recruiting E3 ubiquitin ligases. The conformational modifications caused by ectopic and
endogenous electrophiles in Keap1 prevent NRF2 from being degraded by Keap1. Further,
the presence of 20 cysteine residues in the Keap1 protein has been shown to facilitate the
redox-based stimulation of NRF2 [10], in which the cys288 and cys273 residues play a
critical role in Keap1-mediated NRF2 inhibition. The mutations in these residues activate
NRF2 by inhibiting the Cul3/E3/Keap1-mediated degradation.

Translocation of stabilized NRF2 interacts with small Maf (sMaf) and other proteins in
the nucleus. It transcribes a battery of ARE-driven antioxidant genes such as glutathione
peroxidase (GPx), NAD(P)H quinone oxidoreductase 1 (NQO1), superoxide dismutase
(SOD), heme oxygenase-1 (HO-1), and catalases (CATs) responsible for cellular homeostasis.
As an essential redox homeostatic regulator, NRF2 controls the expression of these enzymes
involved in NADPH regeneration, ROS detoxification, and heme metabolism (Figure 1) [11].

Figure 1. Genetic and epigenetic regulation of NRF2. Genetic regulation of NRF2 is achieved by the
interaction of various transcriptional, post-transcriptional, and translation regulations, including
inhibiting Keap1-mediated ubiquitination, NRF2 promoter binding by counteract molecules such as
NF-kB, AhR receptor binding, and by sMafs, wherein epigenetic regulation of NRF2 involves the
action of DNMTs, HDACs, and HATS, potent epigenetic markers.
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2.1. Genetic Regulation of NRF2

NRF2 can be regulated at the genetic level by controlling the cellular process at the
transcriptional and post-transcriptional levels. Various mechanisms regulating NRF2
include mRNA processing, transcriptional regulation, translation, protein stability, and
sub-cellular localization.

2.1.1. Transcriptional Level Regulation of NRF2

Transcriptional activation of NRF2 is regulated by factors such as xenobiotics, hyper-
methylation, and single-nucleotide polymorphisms (SNPs). One such genetic activation
of NRF2 is through the aryl hydrocarbon receptor (AhR), which binds to the NFE2L2
promoter xenobiotics response element as a heterodimer with nuclear translocator of AhR,
thereby activating its transcriptional regulation [12]. An AhR-deficient mouse hepatoma
cell line showed a loss of the mRNA expression of NRF2, thereby implying that the ARE-
NRF2 element is located downstream of the AhR-ARE pathway [12]. Similarly, the NRF2
promoter has the binding site of another transcription factor, NF-kB, which induces transac-
tivation through the siRNA knockdown of p50 and p65, NF-kB subunits in acute myeloid
leukemia [13]. The knockout of p65 helps promote the NRF2-CREB-binding protein (CBP),
thereby decreasing the expression of NF-kB target genes such as iNOS [14]. The tumor
suppressor BRCA1, a potent NRF2 binding protein, restores the stability of and activates
NRF2 by inhibiting the Keap1-mediated NRF2 ubiquitination. Reports have suggested
that NF-kB inhibition by NRF2 activators regulates the expression of NRF2 via PI3K/AKT
signaling [15,16]. Along with this, protein kinase C (PKC) also phosphorylates the Ser40
present in the Neh2 domain of NRF2, disturbs the NRF2-Keap1 association, and enhances
NRF2 expression [17,18].

MafF, MafG, and MafK are members of the bZIP transcription factor family, which bind
to DNA and help regulate gene function. The sMaf protein itself lacks a transactivation
domain and represses the transcription in homodimer form [19]. sMaf interacts with
other CNC family proteins and NRF2, forms heterodimers, and activates downstream
targets such as NQO1, HO-1, SOD, and CAT through ARE/EpRE [20]. Additionally, it has
been shown that ATF4 can transcriptionally activate NRF2 by forming heterodimers and
recognizing the ARE elements in the genome [21,22].

2.1.2. Post-Transcriptional Regulation of NRF2

In addition to the transcription regulation, the post-transcriptional and translational
regulation of NRF2 also give a critical insight into translocation and activation. One such
important regulator of NRF2 is mRNA—the binding protein called HuR, whose ubiquitous
nature endorses the maturation of NRF2-mRNA and promotes nuclear translocation [22].
On the other hand, along with HuR, AUF1 stabilizes the expression of NRF2 upon binding
to the AU-rich elements [23,24]. On the other hand, microRNAs, short non-coding RNAs,
also regulate the expression of NRF2. A study by Carolyn et al., stated that the expression
of miR-144 was inversely correlated with NRF2 expression in erythrocyte cells of sickle
cell disease [25]. Furthermore, a few other miRNAs, such as miR-142-5p and miR-27a,
negatively affect the NRF2 levels, leading to ineffective transactivation of ARE enzymes [26].
On the other hand, miR28 decreases the expression of NRF2 by targeting the 3′UTR in
breast epithelial cells [27].

2.1.3. Translational Level of the Regulation of NRF2

Translation regulations of NRF2 are mediated by Keap1-Cul3 E3 proteasomal ubiq-
uitination. Reports on the knockdown state that a decrease in the level of Keap1 protein
expression results in the accumulation of NRF2 [28]. Few cytoplasmic proteins interact
with NRF2-Keap1 to increase the stabilization of the protein p62, known as sequestosome
protein-1, whose STGE motif is similar to the NRF2 ETGE motif, which competes with the
NRF2 to bind with Keap1 [29]. The overexpression of the p62 protein in the cytoplasm
increases, leading to the breakdown of Keap1, consequently activating and stabilizing the
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nuclear translocation of NRF2 [30,31]. Similarly, p21, a cyclin-dependent kinase inhibitor
modulated by p53, interacts with Keap1 by competing with NRF2 for the DLG motif,
stabilizing the transactivation and promoting NRF2-mediated antioxidant response [15].

2.2. Epigenetic Regulation of NRF2

In addition to genetic alterations in NFE2L2/Keap1, epigenetic changes have recently
expanded the scope of NRF2 signaling. Histone modifications, DNA methylation, and mi-
croRNAs are believed to be the epigenetic mechanisms responsible for regulating NFE2L2
and Keap1. In contrast to genetic changes affecting the DNA sequence, epigenetic alter-
ations are reversible, which makes them an attractive avenue for disease management [32].

DNA Methylation and NRF2

In addition to histone modification, DNA methylation plays a vital role in regulat-
ing gene expression. DNA methylation involves the transfer of the methyl group from
universal donor 5-methylcytosine to the fifth position of cytosine [33]. The pattern of
DNA methylation in the genome changes during development due to the result of both de
novo and demethylation processes. DNA methylation is mainly controlled by the DNA
methyltransferase enzymes (DNMTs), namely DNMT1, DNMT3a, and DNMT3b. The
pattern of DNA methylation is determined by de novo DNMT3a and DNMT3b during
embryogenesis and development and then maintained by the de novo DNMT1 during
DNA replication in mammalian cells [34]. In human genes, almost 60% is clustered with
CpG islands in their promoter region, whose expression can be altered epigenetically by
DNMTs. In addition, DNMTs can act along with histone deacetylases (HDACs) and histone
methyltransferase (HMTs) to regulate the gene expression of potent transcription factors in
preventing diseases [35]. Hypermethylation of these CpG islands in the promoter region
tends to lower the expression of NRF2, which is associated with disease progression [35].
Several studies have reported that the altered DNA methylation pattern in the NRF2 pro-
moter corresponds to oxidative-stress-induced disease pathogenesis. For instance, studies
conducted by Zhao et al., stated that the expression of NRF2 in the Alzheimer’s disease
model was reduced due to the action of the DNA methyltransferase enzyme [36].

On the other hand, DNMT1 and DNMT3a potentially methylate the first 15 CpG sites
in the Nfe2l2 promoter region, reducing the expression of NRF2 in mouse skin epidermal
cell JB6P [37]. Antioxidant compounds often modulate DNA methylation at CpG sites in
the promoter region to regulate NRF2 and its downstream target expression (Figure 2) [38].
Epigenetic regulation during disease pathogenesis can be reversed or prevented by NRF2
modulators, unlike genetic mutations [39]. As a result, pharmacologically targeting epige-
netic events has emerged as a promising method for treating or preventing a wide range
of diseases. One possible target is using dietary phytochemicals acting at various tran-
scription levels, post-transcription, and post-translation, which could lead to novel disease
prevention approaches [40,41].
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Figure 2. Linear graphical map of NRF2 promoter region. The human NRF2 gene is located in
chromosome 2 at cytogenic band 2q31.2 spanning 178,095,031 bp to 178,129,859 bp. NRF2 has
2 promoter regions where promoter 1 has a length of 1461 bp and promoter 2 a length of 620 bp. The
only region to study DNA methylation CpG island encompassing the transcriptions’ start site serves
as the potential target in epigenetics. CpG island 1 of the NRF2 promoter spans around 314 bp, and
CpG island 2 spans around 167 bp, which are potent targets in unraveling DNA methylation, an
epigenetic target.

3. Role of NRF2 in Diseases

A wide range of experimental and observational studies have established the in-
contestable role of NRF2 in the prevention and treatment of various diseases. Growing
evidence indicates that decreased NRF2 activity contributes to oxidative stress, favoring the
pathophysiology of multiple diseases, including cardiovascular disorders (CVDs) in obesity,
diabetes mellitus, and atherosclerosis [42]. The systemic administration of specific NRF2
inducers benefits cardiovascular diseases. Cardiovascular health depends on the condition
of vascular tone [43]. The endothelium, the main regulator of vascular homeostasis, has
proven to be dysregulated in diseases such as CVDs and atherosclerosis [44]. Endothelium
dysfunction is characterized by several factors, such as an imbalanced production of factors
responsible for vasodilation, vasoconstriction, and elevated ROSs [45]. In this line, Amin
et al., identified a lessened expression of NRF2 on human endothelial cells exposed to
Thapsigargin, which stimulates endoplasmic reticulum (ER) stress. Rosolic acid, a potential
NRF2 activator, was demonstrated to alleviate ROSs, which triggers the increased accu-
mulation of ROSs in human endothelial cells under ER stress [46]. Further, a specific role
of NRF2 in regulating the ER stress response was established in this study using CRISPR
knockout endothelial cells. Moreover, the activation of NRF2 through Rosolic acid was
established to alleviate endothelial dysfunction under the pancreatic microenvironment
using a co-culture setup [47].

It has been described that NRF2 also plays a vital role in renal protection against
oxidative stress in renal diseases [48]. The activation of NRF2 has been shown to in-
hibit the production of pro-inflammatory cytokines and promote the generation of anti-
inflammatory molecules. This modulation of the immune response can help attenuate
the autoimmune-driven inflammation associated with these disorders. This activation of
NRF2 restores insulin expression and glycolysis, thereby inhibiting gluconeogenesis [49].
An immunomodulatory role for NRF2 has recently gained appreciation as it has been
shown to protect cells and hosts alike in various immune and inflammatory disorders [50].
It has also been reported that several activators of NRF2 are involved in improving the
prognosis of liver diseases by inhibiting the expression of pro-inflammatory cytokines,
simultaneously inhibiting the ROS production and M1 phenotype in inflammatory disor-
ders [51]. Macrophages are one of the notable players of inflammation in wound healing.
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Victor et al., recently discussed the role of NRF2 in diabetic wounds, where the incontestable
role of NRF2 in promoting impaired wound healing was reported for the activation of
NRF2 signaling [52]. Dysregulation of NRF2 in macrophages has been reported to cause
delayed healing in diabetic wounds. We provided evidence of the dysregulation of NRF2 in
macrophages under a diabetic environment in vitro [53]. Further, we evidenced the restora-
tion of NRF2 signaling and the impairment of macrophage function upon treatment with
pterostilbene, a stilbenoid pharmacological compound. In addition to this, we identified
the effect of pterostilbene on the polarization of M2 macrophages through NRF2 signaling
under a diabetic stimulus in vitro [54].

The liver, the central storage organ for vitamins and elements such as iron and copper,
plays a vital role in many physiological activities. Besides its role in bile breakdown, the
liver is involved in synthesizing and metabolizing proteins, fats, etc. [55]. The association
of NRF2 in liver homeostasis and the accumulation of ROSs in liver injury has been well
studied. Numerous molecular mechanisms such as oxidative stress are associated with
liver injury, which disturbs the balance between ROSs and antioxidant enzymes such
as glutathione [56]. For instance, Li et al., demonstrated CCl4-induced liver damage in
rats, which was found to reverse upon administration of ginsenoside Rg1 [57]. Another
study showed the progression of metabolic dysfunction associated with fatty liver diseases
(MAFLD) on the knockout of NRF2, which decreased glutathione levels. On the other hand,
pharmacological compounds such as scutellarin, apigenin, osteocalcin, and berberine were
found to improve MAFLD by activating NRF2 signaling [56].

NRF2, a double-edged sword, is foreseen to have a role as a tumor progressor in
many cancers, but a handful of evidence suggests NRF2’s role against tumorigenesis.
NRF2, activated by BRCA1, increased phase-II enzymes and abrogated tumor progression.
For instance, NRF2-deficient mice were found to have aggravated oxidative stress with
decreased levels of antioxidant enzymes such as GST and NQO1 [58]. A study by Ramos-
Gomez et al., observed a larger number of tumor development in NRF2-deficient mice
compared to the wild-type, emphasizing the importance of NRF2 in antitumor activity [59].

NRF2 deficiency increases renal injury, loss of kidney function, oxidative and reticulum
endoplasmic stress, and cell death. Several small-molecule NRF2 activators are currently
in clinical trials in different disease settings. A few reports have highlighted that NRF2
activators improve cognitive function, metabolic health, and longevity [60].

Overall, NRF2 plays a dual role in diseases. While its activation can be a benefit by
promoting antioxidant defenses and reducing inflammation, abnormal or dysregulated
NRF2 activity can also contribute to disease progression in specific contexts. Therefore,
pharmacologically activating NRF2 for combating oxidative stress and inflammation for
chemoprevention and intervention in other chronic diseases, including neurodegeneration,
diabetes, and cardiovascular disease, remains an important aspect [61]. The regulation
of the NRF2 pathway is of particular interest to better understand how the context and
mechanisms of disease affect NRF2 function. Recently, it has been found that epigenet-
ics is one important potential mechanism for regulating the NRF2 pathway, and a few
phytochemicals have been found as NRF2 epigenetic modifiers.

4. Role of Dietary Polyphenols in Epigenetic Modulation

A wide range of plant-based active compounds have been reported to possess various
disease-prevention and medicinal properties. Numerous long-term studies have shown
associations between consuming phytochemicals and lowering the risk of cardiovascular,
neurodegenerative, inflammatory, microbial infections, and metabolic diseases. For exam-
ple, according to a survey in a 2011 study, individuals in the top 20% of the study group
who regularly consumed the most vegetables seemed to have a 16% decline in all-cause
mortality than many other individuals in their age groups during the study period [62].
Studies have also found that people who consume more vegetables have a lower risk of
developing cancer [63]. These health benefits might be attributed to the enormous chemical
compounds in plant-based foods. Regular intake of bioactive compounds in plant-based
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foods, such as polyphenols, isothiocyanates, sulfur-containing compounds, and terpenoids
(such as carotenoids), has been related to disease prevention [64].

A category of compounds that provide an array of health benefits is dietary polyphe-
nols. These are bioactive compounds found in plant-based foods containing a wide range of
chemical structures derived from flavonoids, lignans, stilbenes, and phenolic acids. Dietary
polyphenols are the most-abundant antioxidants in the human diet and perform a wide
range of biologically essential tasks, including preventing oxidative stress and degenerative
illnesses. According to experimental evidence, most of these biological activities can be
linked to their innate antioxidant capacities. They are abundant in edible herbs and spices
such as star anise, celery seed, rosemary, cinnamon, and cloves. They are also widely
present in fruits, grains, and vegetables such as berries, peach, flax seeds, almonds, red
onion, and spinach [65,66]. Latterly, polyphenols have gained researchers’ interest owing
to their antioxidant properties, which protect against reactive oxygen species (ROSs) and
help to prevent oxidative stress-related pathological conditions or diseases (ROS) [67].

ROSs can cause oxidative damage to biomolecules, including lipids, proteins, and
DNA. High levels of ROSs have been linked to the development of aging and several
illnesses, including cancer, respiratory, cardiovascular, neurological, and digestive dis-
eases [68]. Polyphenols can neutralize free radicals by donating an electron or hydrogen
atom. For the antioxidant properties, there are highly conjugated systems and specific
hydroxylation patterns, such as the 3-hydroxy group in flavonols [69]. In addition to
their anti-inflammatory and antibiotic properties, polyphenols can also induce the nuclear
transcription factor NRF2, which protects against oxidative stress and inflammation [70].
Polyphenols may help moderate inflammation levels in various ways, such as targeting
signaling pathways and the reduction of reactive oxygen and reactive nitrogen species.

Even though DNA methylation is crucial for healthy physiological functions, different
and aberrant DNA methylation patterns at specific locations may silence the gene by block-
ing transcription, thereby altering the function of that specific gene [71]. In cancer cells,
the DNA methylation ratio of the NRF2 gene promoter region is inversely proportional
to the protein and mRNA expression of NRF2 and its downstream genes [72]. Therefore,
as discussed earlier, DNA methylation contributes to the suppression of NRF2 signal-
ing, which can be restored by the action of phytochemicals in demethylation (Figure 3).
Few phytochemicals have been reported to modulate NRF2 signaling by inhibiting DNA
methyltransferases (DNMTs) [73]. This epigenetic reversal of hypermethylated NRF2 states
provides new opportunities for research into dietary phytochemicals that affect the human
epigenome and the possibility for cutting-edge approaches to target NRF2 signaling to
prevent chronic disorders. Several compounds are known to activate NRF2 epigenetically;
their mechanisms and effects on NRF2 are briefly discussed below (Table 1) (Figure 4).

Table 1. List of phytocompounds and their demethylation activity.

Phytocompounds Phytocompounds
Sources Targets Demethylation Activity of the Compounds References

Sulforaphane Cruciferous vegetables

DNMT1, DNMT3a

Sulforaphane demethylates the first 5 CpGs in
the NRF2 promoter region, decreases DNMT1

and DNMT3a proteins, and increases
downstream target gene NQO-1 in TRAMP

C1 prostate cells

[74]

DNMT1,
DNMT3aDNMT3b

Sulforaphane decreases the protein levels of
DNMT1, DNMT3a, and DNMT3b, increasing
the mRNA and protein levels of NRF2, NQO1,
and HO-1 in the Alzheimer’s disease model

[36]

DNMT1
Decreases protein levels of DNMT1, increases

NRF2 levels, and prevents the neoplastic
transformation of caco-2 cells

[75]



Nutrients 2023, 15, 3347 8 of 21

Table 1. Cont.

Phytocompounds Phytocompounds
Sources Targets Demethylation Activity of the Compounds References

Delphinidin

Red fruits, some
cereals, aubergines,

beans, cabbages,
radishes, and onions

DNMT1, DNMT3a

Delphinidin decreases CpG methylation of
the NRF2 promoter region, reduces protein
expression of DNMT1 and DNMT3a, and

increases protein and mRNA expression of
HO-1, NQO-1, and SOD-1 in JB6 P+ cells

[76]

Fucoxanthin Brown seaweed DNMT1, DNMT3a

Fucoxanthin downregulates DNMT1 and
DNMT3a protein expression, increases HO-1,

NQO-1, and SOD-1 protein and mRNA
expression, and decreases CpG methylation
of the NRF2 promoter region in JB6 P+ cells

[77]

Luteolin

Celery, parsley, broccoli,
onion leaves, carrots,
peppers, cabbages,

apple skins, and
chrysanthemum

flowers

DNMT1,
DNMT3aDNMT3b

DNMT1, DNMT3a, and DNMT3b expression
is downregulated, NRF2 methylation

reduced, and increases TET1 binding to the
NRF2 promoter in HT-29 cells

[78]

DNMT1,
DNMT3aDNMT3b

DNMT1, DNMT3a, and DNMT3b protein
levels are decreased by luteolin treatment,

while NRF2, NQO1, and HO-1 mRNA and
protein levels are increased, all of which

correspond to the reduction in NRF2
promoter methylation in HCT116 cells

[79]

Pelargonidin
Berries, strawberries,

blueberries, red
radishes

DNMT1, DNMT3a

Pelargonidin increases protein and mRNA
expression of HO-1, NQO-1, and SOD-1 in JB6
P+ cells while decreasing CpG methylation of
the NRF2 promoter region and DNMT1 and
DNMT3a protein expression in JB6 P+ cells

[80]

Reserpine Rauwolfia serpentine
roots DNMT1, DNMT3a

Reserpine decreases CpG methylation of the
NRF2 promoter region and decreases the

expression of DNMT1 and DNMT3a protein
in JB6 P+ cells while increasing the protein

and mRNA expression of HO-1, NQO-1, and
SOD-1

[81]

Tanshinone IIA Salvia miltiorrhiza

DNMT1,
DNMT3aDNMT3b

Tanshinone IIA treatment decreases
methylated CpGs in the NRF2 promoter;

DNMT1, DNMT3a, and DNMT3b mRNA and
protein levels decrease in JB6 P+ cells

[82]

TET2

Ten-eleven translocation 2 (TET2) is expressed
as a result of TAN IIA, which mediates the

demethylation of NRF2 and protects against
RFP-induced cholestatic liver injury

[83]

Ursolic acid

Rosemary, marjoram,
lavender, thyme,

organum, and apple
fruit peel

DNMT1, DNMT3a

UA reduces the expression of epigenetic
modifying enzymes, including the DNA

methyltransferases DNMT1 and DNMT3a
and the histone deacetylases, reduces NRF2

promoter methylation, and increases the
expression of HO-1 and NQO-1 in JB6 P+ cells

[84]

A
γ-tocopherol-rich

mixture of
tocopherol

Nuts, seeds, and
vegetable oils

DNMT1, DNMT3a
DNMT3b

γ-tocopherol reduces DNMT1, DNMT3a, and
DNMT3b protein levels and reverses

hypermethylation of the Nfe2l2 promoter in
C57BL/TGN TRAMP mice’s prostate tissues

[85]
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Table 1. Cont.

Phytocompounds Phytocompounds
Sources Targets Demethylation Activity of the Compounds References

Resveratrol
Grapes, wine, peanuts,

and soy

DNMT1,
DNMT3aDNMT3b

Resveratrol increases mRNA and protein
expression of NRF2, HO1, NQO1, and SOD
and lowers levels of DNMT1, DNMT3a, and

DNMT3b in liver tissue and HepG2

[86]

Hypomethylates first 5 CpGs in the NRF2
pathway and induces re-expression of NRF2,

NQO-1, SOD3, and OGG1 in
estrogen-induced mammary cancer rat model

[87]

Curcumin Turmeric

CUR reverses the methylation status of the
first 5 CpGs in the promoter region of the

NRF2 gene and increases mRNA expression
levels of HO-1, NQO1, and UGT1A1; CUR
treatment does not affect both mRNA and

protein levels of DNMT1, 3A, and 3B.

[88]

Z-Ligustilide Ligusticum striatum,
Angelica sinensis

Z-Ligustilide demethylates the first five CpGs
of the NRF2 promoter, resulting in

re-expression of NRF2 and increased HO-1,
NQO1, and UGT1A1 mRNA expression in

TRAMP C1 cells; Z-Ligustilide does not affect
both mRNA and protein levels of DNMT1,

3A, and 3B.

[89]

Corosolic acid Guava, loquat, and
olive

DNMT1,
DNMT3aDNMT3b

The NRF2 gene is re-expressed, and the
expression of HO-1, NQO1, and UGT1A1

mRNA in TRAMP C1 cells is increased as a
result of corosolic acid treatment, which

reduces the protein levels of DNMT1,
DNMT3a, DNMT3b and the demethylation of

the first five CpGs in the NRF2 promoter

[90]

Apigenin
Parsley, chamomile,
celery, vine spinach,

artichokes, and oregano
DNMT1, DNMT3b

Apigenin demethylates 15 CpGs in NRF2
dose-dependently and enhances NRF2 and

NQO1 levels in the JB6 P+ cell line; at higher
doses, apigenin reduces the expression of

DNMT1 and DNMT3b

[91]

3,3-
Diindolylmethane Cruciferous vegetables DNMT1,

DNMT3aDNMT3b

3,3-Diindolylmethane reverses CpGs’
methylation for the first 5 CpGs of the NRF2

promoter, which correlates with reduced
mRNA expression of DNMT1, 3a, and 3b;

enhances NRF2 and NQO1 levels in
prostate cells

[92]

Taxifolin Olive oil, grapes, citrus
fruits, onions

DNMT1,
DNMT3aDNMT3b

Taxifolin activates the NRF2 antioxidant
pathway by inhibiting DNMT1, DNMT3a,

DNMT3b, HDAC1, HDAC3, and HDAC8 and
reversing methylation at the first 15 CpGs of
the NRF2 promoter; the expression of HO-1
and NQO1 is also increased in JB6 P+ cells

[37]
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Figure 3. Schematic overview of the role of DNA methylation in NRF2 transcription. DNA methyl-
transferase (DNMT) enzymes add methyl groups of the CpG islands in the promoter region of
NRF2. The hypermethylation of the CpG islands inhibits the binding of the transcription factor(s) to
the DNA, which transcriptionally represses the NRF2 gene. By demethylating the promoter, tran-
scription factors bind to the NRF2 sequence and initiate transcription, thereby increasing the NRF2
expression levels.

Figure 4. The activity of dietary polyphenols on NRF2 and its downstream targets. The expression
of DNA methyltransferase variants DNMT1 and DNMT3a is inhibited by SFN, Del, FX, TAX, DIM,
CRA, Res, γ-TmT, UA, TIIA, LUT, PGN, and RPN, whereas the variant DNMT3b is inhibited by SFN,
TAX, DIM, API, CRA, Res, γ-TmT, TIIA, and LUT. Inhibition of DNMTs prevents the methylation of
NRF2, thereby increasing its expression, and under conditions of excessive ROSs, NRF2 translocates
into the nucleus to initiate the transcription of its downstream targets such as HO-1, NQO-1, and
SOD, which combat oxidative stress. White circle indicates the non-methylated cytosine. Black circles
indicates methylated cytosine.
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5. DNA Hypomethylation of NRF2 by Phytochemicals
5.1. Sulforaphane

Sulforaphane (1-isothiocyanate-(4R) (methylsulfonyl)butane) (SFN) is a naturally oc-
curring isothiocyanate formed by the enzymatic action of myrosinase on glucopharanin,
a 4-methyl-sulfinyl butyl glucosinolate found in Brassica cruciferous vegetables such as
broccoli, Brussels sprouts, and cabbage. SFN stimulates the production of several cyto-
protective proteins, including antioxidant enzymes, by regulating the NRF2-antioxidant
response element pathway [74]. According to Kubo et al., 2017, SFN attenuates the loss of
Prdx6 expression caused by impaired ARE/NRF2 regulation to protect against diseases
associated with aging [93].

In a study aimed at knowing the NRF2 restoration potential in TRAMP C1 prostate
cells, SFN treatment was found to demethylate DNA in its 5 CpGs in the promoter region
of the NRF2 gene and increase the expression of the downstream target gene NQO-1 in
both mRNA and protein. SFN also reduced the levels of DNMT1 and DNMT3a proteins,
increasing NRF2 levels [94]. Another study designed to determine sulforaphane’s neuro-
protective effects in the disease model of Alzheimer’s disease revealed that sulforaphane
upregulated NRF2 expression and promoted NRF2 nuclear translocation via decreasing
DNA methylation levels of the NRF2 promoter in mouse neuroblastoma Appswe cells.
Sulforaphane and 5-Aza-dC reduced the protein levels of DNMT1, DNMT3a, and DNMT3b.
It also increased the mRNA and protein levels of NRF2, NQO1, and HO-1. Sulforaphane
inhibited oxidative stress via NRF2 upregulation in the Alzheimer’s disease cell line [36].

SFN was also reported to inhibit protein levels of DNMT1, reduce NRF2 promoter
DNA methylation, and increase mRNA and protein levels of NRF2, which resulted in the
prevention of the neoplastic transformation of TSA-induced Caco-2 cells, which suggests
that NRF2 might have a chemopreventive effect against human colon cancer.

5.2. Reserpine

Reserpine is an indole alkaloid polyphenol extracted from Rauwolfia serpentine roots.
It has been used for centuries as traditional Chinese medicine (TCM) to treat hypertension,
mental conditions, blood pressure, snake bites, inflammation, and pruritus, among other
diseases. In a study by Al-Qirim et al., it was found that Rauvolfia verticillate extract
protects mouse cardiomyocytes from oxidative free radical damage [95]. In another study,
reserpine inhibited the neoplastic transformation of JB6 P+ cells through epigenetically
activating NRF2 and its downstream targets. Treating JB6 P+ cells with reserpine decreased
the mRNA and protein levels of epigenetic enzymes such as DNMT1, DNMT3a, and
DNMT3b and increased the levels of NRF2 downstream targets HO-1, NQO1. Reserpine
reduces the proportion of methylated CpG sites in the NRF2 promoter and can alter
DNA demethylation and epigenetically boost NRF2 expression, thereby reducing redox
stress [96].

5.3. Fucoxanthin

Fucoxanthin is a carotenoid in microalgae and macroalgae, such as brown seaweeds.
According to recent research, fucoxanthin contains several physiological functions, includ-
ing antiobesity, anticancer, antidiabetes, antioxidant, anti-inflammatory, hepatoprotective
actions, and cardiovascular and cerebrovascular protective benefits [97]. As a result, fucox-
anthin can be utilized medicinally and nutritionally to prevent and arrest the progression
of chronic disorders [98]. In JB6 P+ cells, FX reduced the methylation of the NRF2 promoter
region. FX activates the NRF2 signaling pathway, causes epigenetic DNA demethylation of
CpG sites in NRF2, and increases the protein expression levels of NRF2, NQO1, HO-1, and
SOD in a concentration-dependent manner, thereby reducing oxidative stress [79].

5.4. Luteolin

Luteolin is a flavonoid in various plants, such as broccoli, pepper, thyme, and celery.
Multiple studies have shown that luteolin has neuroprotective properties both in vitro and
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in vivo. Luteolin has many biological activities, including antioxidant, anti-inflammatory,
antimicrobial, and anticancer properties [99]. Luteolin’s capacity to inhibit angiogenesis,
induce apoptosis, prevent carcinogenesis in animal models, reduce tumor growth in vivo,
and sensitize tumor cells to the cytotoxic effects of some anticancer drugs suggests that it
has cancer chemopreventive and chemotherapeutic potential. The biological activities of
luteolin also include combating high ROS levels [99]. In human colon cancer cells, HT-29, lu-
teolin promotes DNA demethylation of the NRF2 promoter, inhibits the expression of DNA
methyltransferases, and increases the levels and activity of ten-eleven translocation (TET).
Luteolin reduces the methylation of the NRF2 promoter region, increasing NRF2 mRNA
expression. Furthermore, luteolin increases TET1 binding to the NRF2 promoter [100].
In HCT116 cells, luteolin reduces the amount of methylation in the NRF2 promoter area,
following the enhanced mRNA production of NRF2, increasing the mRNA and protein
expression of NRF2, HO-1, and NQO1, which shows that luteolin subsequently induces
the downstream antioxidant pathway. It also reduces the expression of DNMT1, DNMT3a,
and DNMT3b [79].

5.5. Pelargonidin

Pelargonidin is a natural phenolic pigment found in berries, strawberries, blueber-
ries, red radishes, and other natural foods and has been shown to possess anticancer
properties [101]. In a study aimed to investigate how pelargonidin affects the cellular
transformation in JB6 cells, pelargonidin reduced DNA methylation in the NRF2 promoter
region and increased the protein and mRNA expression of the protein levels of the NRF2
target genes HO-1 and NQO1 [80].

5.6. Tanshinone IIA

Tanshinone IIA is one of the many lipophilic active ingredients in the traditional Chi-
nese herb Salviae miltiorrhiza, used to relieve pain, improve blood circulation, etc. Recently,
Tanshinone IIA has been reported to have anticancer, anti-inflammatory, and antioxidative
properties [102]. An earlier study found that NRF2 is involved in the cytoprotective effects
of Tanshinone IIA by lowering intracellular redox status and defending against oxidative
stress via the ERK and PKB signaling pathways in human aortic smooth muscle cells [103].
In a study that further tried to elucidate the mechanism by which TIIA reduced oxidative
stress in JB6 P+ cells, an epidermal cell line, it was discovered that TIIA regulates NRF2
activation epigenetically by decreasing promoter DNA methylation. TIIA-induced NRF2
targets genes in mouse epidermal JB6 cells to inhibit TPA-stimulated neoplastic transfor-
mation. TIIA increases the mRNA and protein levels of NRF2 target enzymes HO-1 and
NQO1. TIIA treatment considerably inhibits both the mRNA and protein levels of DNMTs
(DNMT1, DNMT3a, and DNMT3b). Considering that some HDACs may be involved in the
DNMT complex, which mediates DNA methylation [104], TIIA’s capacity to inhibit HDACs
could also contribute to activating NRF2. The inhibitory effect of TIIA on these epigenetic
modification enzymes induces NRF2 activity in JB6 P+ cells via DNA demethylation of
the NRF2 gene promoter, indicating a potential role in skin cancer chemoprevention [82].
The effect of Tanshinone IIA, inducing NRF2 epigenetically by increasing the expression of
TET2, was found to be beneficial in preventing RFP-induced liver injury in hepatocytes [83].

5.7. Delphinidin

Delphinidin is an anthocyanidin found in pigmented vegetables, fruits, and berries,
exhibiting intriguing antioxidant and anti-inflammatory characteristics [105]. In JB6 P+ cells,
Delphinidin decreases the CpG DNA methylation ratio in the NRF2 promoter, increases
the mRNA and protein levels of HO-1 and NQO1 and the reactive oxygen species (ROS)
scavenger SOD1, and downregulates the protein expression of DNMTs (DNMT1 and
DNMT3a) in a dose-dependent manner [76].



Nutrients 2023, 15, 3347 13 of 21

5.8. Ursolic Acid

Ursolic acid (UA), a natural pentacyclic triterpenoid carboxylic acid, is a crucial con-
stituent of several traditional medicinal herbs and is widely known to have a variety of
biological activities, including antioxidative, anti-inflammatory, and anticancer proper-
ties [106]. UA can reduce the toxic effects of reactive oxygen species (ROSs) and enhance
the activity of antioxidant enzymes. In human skin cells, ursolic acid effectively inhibits
UVA-modulated signal transduction pathways such as ROS production, lipid peroxidation,
MMP-2 expression, and DNA damage in human keratinocyte HaCaT cells [107]. Recent
research has shown that UA protects the brain from cerebral ischemia in mice via activating
the NRF2 pathway [108]. UA was also demonstrated to protect against liver fibrosis by
activating the NRF2 pathway [109]. Furthermore, in a study aimed to analyze the effect
of ursolic acid on TPA-induced mouse epidermal cells, UA reduced NRF2 promoter DNA
methylation and negatively regulated epigenetic modification enzymes such as DNMT
and HDACs. The NRF2 target enzymes HO-1 and NQO1 have their mRNA and protein
levels increased by UA. UA inhibits the TPA-induced transformation of JB6 P+ cells by
boosting anti-inflammatory and antioxidant enzymes, which is mediated by increased
NRF2 expression [84].

5.9. γ-TmT

The γ-tocopherol-rich mixture of tocopherols (γ-TmT) is a byproduct of the bio-refinery
industry in soybean oil production. It consists of 57% γ-tocopherol, 24% δ-tocopherol, 13%
α-tocopherol, and 1.5% β-tocopherol. Earlier studies have suggested that γ-TmT has anti-
inflammatory and anticancer properties against different cancers [110–112]. Moreover,
in a recent study, γ-TmT treatment reversed the methylation of the first five CpG in the
NRF2 promoter, with consequent lower DNMT protein expression, and induced the mRNA
and protein expressions of NRF2 and NQO1 in prostate tissues of C57BL/TGN TRAMP
mice, all of which contribute to increased NRF2 expression, which may play a role in the
prevention of prostate tumorigenesis through epigenetic mechanisms [85].

5.10. Resveratrol

Resveratrol is a naturally occurring polyphenolic phytoalexin in various foods such
as grapes, wine, peanuts, and soy [113]. It has many biological properties, including
antioxidant, detoxification, anti-inflammatory, and anticancer properties. It has high
anticancer activity, affecting transcription factors such as p53/p21 and IkB kinase/NF-
kB. Resveratrol inhibited the DNA-binding activity of NF-kappaB in MCF7 cells and
chemically induced rat mammary tumors [114]. Resveratrol has been demonstrated in
animal models of breast cancer to prevent drug-induced mammary cancer progression and
to change breast development and morphology [115]. Several studies that aim to reverse
aging have suggested that resveratrol acts as an epigenetic modifier [116].

In a research study on HepG2 cells subjected to high glucose and in high-fat NAFLD
models, it was found that the methylation status of the NFE2L2 gene increased, whereas that
of Keap1 decreased, resulting in reduced NRF2 expression and activity. The administration
of resveratrol led to the increased mRNA and protein expression of NRF2, HO1, NQO1,
and SOD. In HFD-fed mice, resveratrol could reverse the DNA methylation pattern in the
NRF2 promoter. Resveratrol suppressed the DNMT1, DNMT3a, and DNMT3b levels in
liver tissue and HepG2 cells. Resveratrol reduces oxidative stress and lipid accumulation
by demethylating the NRF2 signaling pathway [86]. An earlier study using an estrogen-
induced mammary cancer rat model found that resveratrol affected the DNA methylation
status of the NFE2L2 promoter. Resveratrol treatment significantly increased the mRNA
and protein expression of NRF2 and NRF2-mediated cancer-protective phase-II enzymes
such as NQO1, SOD3, and OGG1. Resveratrol inhibits cell proliferation while inhibiting
oxidative DNA damage and the carcinogenic process in the mammary gland [87].
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5.11. Curcumin

Curcumin is the biphenolic active compound present in turmeric. Curcumin is one
of the most-potent polyphenols and has been shown to have multiple molecular targets
attributed to its immense therapeutic potential. Curcumin has been found to help with
various inflammatory conditions, metabolic syndromes, pain relief, degenerative eye
conditions, and renal diseases due to its antioxidant and anti-inflammatory properties [117].
Another study reported that prolonged exposure to curcumin induces phase-II antioxidant
enzymes by activating NRF2 signaling and restores phase-II antioxidant enzymes such
as GST, GR, and NQO1 in the liver of lymphoma-bearing mice [118]. Recently, in a study
aimed at investigating the potential of curcumin to prevent the progress of prostate cancer
by epigenetically activating NRF2, it was reported that curcumin demethylated NRF2, and
it was correlated with the restoration of both the mRNA and protein levels of NRF2 and its
target gene, NQO-1, a key enzyme that combats antioxidative stress. The study concluded
that CUR may exert its prostate cancer chemopreventive effect by epigenetically modifying
the NRF2 gene, activating the NRF2-mediated antioxidative stress cellular defense pathway.
Two synthetic curcumin derivatives, E10 and F10, have been demonstrated to activate
NRF2 by reducing the rate of methylation of the CpG regions in the NRF2 promoter and
increasing protein and mRNA expression levels of NRF2 downstream targets HO-1, NQO1,
and UGT1A1 [119].

5.12. Z-Ligustilide

Z-Ligustilide is a benzoquinone, which is a naturally found active compound in
many herbs such as ginseng, Ligusticum chuanxiong Hort, Ligusticum sinense Oliv., and
Ligusticum jeholense. It possesses many therapeutic properties such as anticancer, neu-
roprotective, antihepatotoxicity, and anti-inflammatory effects. It has also been known
to relieve menstrual pain, help with postpartum blood deficiency and headaches, and
even treat coronary heart diseases [120]. Z-Ligustilide in an ethanol extract of LC rhizome
inhibited oxidative stress by acting upon the NRF2 and NF-κB pathways [121]. A study
that analyzed the effect of Z-Ligustilide in the murine prostate cancer cell line reported
that it increases NRF2 mRNA and protein expression in TRAMP C1 cells by reducing the
expression of DNMTs and demethylating the DNA in the NRF2 gene promoter. The restora-
tion induces the NRF2 downstream target genes, such as phase-II detoxifying enzymes
such as HO-1, NQO1, and UGT1A1, which help alleviate oxidative stress [89].

5.13. Corosolic Acid

Corosolic acid is a pentacyclic triterpene compound found in various sources such
as Eriobotrya japonica, Lagerstroemia speciosa L., Orthosiphon stamineus, Actinidia chinensis,
and Weigela subsessilis. This compound has been proven to be effective against a range of
ailments and metabolic disorders such as diabetes, obesity, and atherosclerosis [122–124].
In recent times, it has been gaining research due to its anti-carcinogenic properties against
several types of cancers such as lung adenocarcinoma [125], cervical cancer [126], and
hepatocellular carcinoma [127]. One study that was designed to study the effects of
corosolic acid on prostate cancer cell lines found that corosolic acid specifically induced
NRF2 transcriptionally by decreasing CpG DNA methylation in the NRF2 promoter region
and the protein levels of the epigenetic enzymes DNMTs in TRAMP-C1 cells, which led
to the increase of the mRNA and protein levels of antioxidant enzymes such as HO-1 and
NQO1. Thus, corosolic acid potentially demethylates NRF2, thereby activating it [90].

5.14. Apigenin

Apigenin, 4′,5,7-trihydroxy flavone, is among the most-abundant phenols in plants
and has been subjected to considerable scrutiny due to its therapeutic potential. Apigenin
is found in a glycosylated form in various foods such as parsley, celery, onions, chamomile,
thyme, oregano, and basil and plant-based drinks such as tea, beer, and wine [128]. Api-
genin has been demonstrated to have exceptional anti-inflammatory, antioxidant, and
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anti-carcinogenic properties and neuroprotective functions [129,130]. A recent study found
that apigenin decreased the DNA methylation status of the NRF2 promoter and inhibited
the expression of DNMTS and HDACS, which restored the NRF2 expression and increased
NQO1 expression levels in the preneoplastic JB6 P+ cell line, demonstrating its activity
against skin cancer [91].

5.15. 3,3′-Diindolylmethane

3,3′-Diindolylmethane (DIM) is an indole alkaloid derivative found in many crucif-
erous vegetables. It has been subjected to numerous studies, implying its potential as a
chemoprotective compound against many cancers [131,132]. DIM elevated NRF2 mRNA in
TRAMP-C1 prostate cancer cells by inhibiting the mRNA and protein expression of DNMT1,
DNMT3a, and DNMT3b. It reduced the proportion of DNA methylation in the first five
CpGs in the NRF2 promoter and restored NRF2 levels, thereby increasing NRF2-target
genes such as NQO1. DIM supplementation in the diet reduced the occurrence of palpable
tumors and lymph node metastasis and suppressed prostate cancer tumor progression in
TRAMP mice [92].

5.16. Taxifolin

Taxifolin, also known as dihydroquercetin, is an active flavonoid compound in various
foods, including olive oil, grapes, citrus fruits, onions, and herbs. Taxifolin demonstrated a
wide range of pharmacological and biochemical effects, including hepatoprotective, anti-
diabetic, cardioprotective, antitumor, neuroprotective, and anti-inflammatory effects, as
well as being beneficial in Alzheimer’s disease prevention [133]. A new study suggests that
taxifolin prevents skin carcinogenesis through a novel molecular mechanism, where NRF2
is activated by inhibiting the protein expression of epigenetic modification enzymes such
as DNMT1, DNMT3a, and DNMT3b, which in turn reduces DNA methylation in CpGs in
the NRF2 gene promoter region in JB6 P+ Cells [37].

6. Conclusions

Over the last few years, many studies have revealed that epigenetic mechanisms are
linked to controlling and regulating most biological processes in the body. Even though
these epigenetic regulations are required for growth and development, they may also
lead to diseases and metabolic disorders [134]. However, some epigenetic marks are
reversible, which has prompted many researchers to focus on epigenetic therapy [135].
Hypermethylation of the promoter region could significantly affect the expression of a gene
or even silence it. NRF2, a master regulator of antioxidant enzymes, helps produce phase-II
detoxification enzymes to maintain cellular redox homeostasis. The disruption of this redox
homeostasis is reported in many health conditions such as cancers, cardiovascular diseases,
diabetes, aging-related problems such as Alzheimer’s disease and other neurodegenerative
disorders, cognitive impairment, and frailty [136]. Hence, it becomes crucial to discover a
mechanism to restore the oxidative imbalance. Recently, studies have revealed that plant-
based dietary components can affect gene expression through epigenetic modifications.
Compounds such as sulforaphane, resveratrol, curcumin, luteolin, corosolic acid, apigenin,
and most other compounds discussed in this review activated NRF2 by inhibiting the
epigenetic enzymes DNMTs. All these studies focused on the ability of the polyphenolic
compound to reverse the hypermethylation states of CpGs in the NRF2 promoter, thereby
increasing NRF2 levels. With further research, this ability to reverse epigenetic changes can
be harnessed to treat various ailments where oxidative stress plays a key role.
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