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Abstract: African American adults have a higher prevalence of Alzheimer’s dementia (AD) than
non-Hispanic Whites. The impact of a Mediterranean Diet (Med Diet) and intentional weight loss
(IWL) on the gut microbiome may alter AD risk. A post hoc analysis of the Building Research in Diet
and Cognition (BRIDGE) trial was performed to determine whether participation in an 8-month Med
Diet lifestyle intervention with (n = 35) or without IWL (n = 31) was associated with changes in gut
microbiota structure, abundance, and function and whether these changes were related to changes
in cognitive performance. The results showed that family and genus alpha diversity increased
significantly in both groups combined (p = 0.0075 and p = 0.024, respectively). However, there
were no other significant microbially related within- or between-group changes over time. Also,
an increase in Med Diet adherence was significantly associated with a decrease in alpha diversity
at the phylum level only (p = 0.049). Increasing alpha diversity was associated with decreasing
cognitive performance, but this association was attenuated after controlling for Med Diet adherence.
In sum, an 8-month Med Diet lifestyle intervention with or without IWL did not appreciably alter the
gut microbiome.

Keywords: gut microbiota; cognition; Mediterranean diet; African Americans; Alzheimer’s dementia

1. Introduction

In 2022, one in nine individuals over the age of 65 in the United States had Alzheimer’s
dementia (AD), a type of dementia caused by Alzheimer’s disease (ADx) [1]. By 2060,
that proportion is expected to grow to one in seven older adults [2,3]. Moreover, African
American adults have a significantly higher 2020 US Census-adjusted prevalence of AD
than non-Hispanic Whites and Hispanics [3]. This disparity may be due in part to the
higher prevalence of risk factors for AD in African American adults compared with White
adults, including higher rates of obesity [4,5] and lower diet quality [6,7]. Efforts to reduce
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the incidence of AD have centered on detecting AD and ADx earlier, in the prodromal
phase called mild cognitive impairment (MCI); half of patients with this condition progress
to AD [1]. Because efficacious treatment for AD remains elusive [8], primary prevention
through identifying and mitigating risk factors is critical, as it may prevent or delay up to
37% of cases of ADx in the United States [4].

Two such risk factors are poor diet and excess body weight. A poor diet, such as
the Western Diet [9]—characterized by high consumption of saturated fatty acids, refined
grains, processed meats, and added sugars—is associated with increased biomarkers of
AD. For example, in middle-aged adults with intact cognition, a Western Diet, compared
with a Med Diet, was associated with higher levels of amyloid-beta, a protein that coa-
lesces to form plaques in the brain and contributes to neuronal death and symptoms of
AD [1,10]. Furthermore, in a recent randomized controlled trial, a 4-week Western Diet in
cognitively intact middle-aged adults decreased cerebral perfusion, which is associated
with an increased risk of AD [11,12]. Regarding excess body weight, of the eight modifiable
risk factors for dementia identified by several consensus groups, such as the World Health
Organization, midlife obesity was ranked number one, contributing to nearly 18% of all
cases of AD and related dementias in the U.S. [4]. Moreover, in one study, those in the
top quintile of waist circumference at midlife compared with those in the lowest quintile
had an almost threefold increased risk of dementia an average of 36 years later (hazard
ratio = 2.72, 95% confidence interval (CI) = 2.33–3.33) [13].

Several studies have concluded that consuming a Mediterranean Diet (Med Diet),
consisting of whole grains, vegetables, fruits, olive oil, and red wine, and intentional
weight loss (IWL) are associated with protection from AD and improved cognitive per-
formance [7,14–16]. Regarding the Med Diet, a meta-analysis of five longitudinal studies
(n = 6111) showed that for those highly adherent to a Med Diet, the risk of AD was almost
half of the risk for those who had low adherence (relative risk = 0.6, 95% CI = 0.48–0.77) [7].
Some of the proposed mechanisms that link a Med Diet to neuroprotection are its ability to
reduce inflammation and oxidative stress [17,18] and improve cognitive performance [19],
all of which are risk factors for AD [1,20–22]. In regard to excess body weight, the most
recent meta-analysis showed that in both longitudinal studies and randomized controlled
trials (RCTs), IWL among obese and overweight adults leads to improved cognitive perfor-
mance [16]. Specifically, in the RCTs, compared with controls, those who lost on average
2 kg/m2 of BMI through diet or physical activity had better attention (n = 326, standardized
mean difference (SMD) = 0.44, 95% CI = 0.26–0.62), memory (n = 349, SMD = 0.35, 95%
CI = 0.12–0.57), and language use (n = 326, SMD = 0.21, 95% CI = 0.05–0.37) [16]. IWL
may improve cognitive performance by reducing systemic inflammation and oxidative
stress [23].

Another mechanism by which a Med Diet and IWL may improve cognition is the
gut microbiome. A Med Diet is associated with higher microbial diversity and increased
fecal anti-inflammatory microbial metabolites, such as the short-chain fatty acid (SCFA)
butyrate [24]. Claesson and colleagues showed that cognitive performance was worse in
those with reduced gut microbial diversity [25]. Moreover, Vogt et al. revealed that those
with AD had lower gut microbial diversity compared with controls [26]. Lastly, apolipopro-
tein E4 carriers, who are at high risk for AD, had lower abundances of butyrate-producing
gut microbes [27]. Also, IWL increases the abundance of beneficial gut microbial species,
such as Akkermansia muciniphila [28], which was shown to be positively correlated with
cognitive performance in older, obese African American adults [29]. Furthermore, IWL may
promote increased fecal butyrate [30], an SCFA that is protective in the pathophysiology of
AD [31]. Hence, the effect of a Med Diet and IWL on cognitive health may be mediated by
the gut microbiome.

To our knowledge, no study has assessed the impact of a Med Diet lifestyle interven-
tion with or without IWL on the gut microbiota in African American adults with obesity or
determined whether these gut microbiota-associated changes, should they exist, correlate
with changes in cognitive performance.
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To address this gap, our group performed a post hoc analysis of the Building Research
in Diet and Cognition (BRIDGE) trial, a randomized controlled lifestyle intervention trial
that tested the effect of a Med Diet with or without IWL, compared with a usual diet
condition, on cognitive and cardiometabolic health among older, predominately African
American adults with obesity. In this post hoc analysis, we assessed whether participation
in the interventions was associated with changes in gut microbiota structure, abundance,
and butyrate production potential and whether changes in these gut microbial measures
were related to changes in cognitive performance.

2. Materials and Methods
2.1. Study Design

Data and samples for the current study were collected from the BRIDGE trial. The
BRIDGE Trial is registered at ClinicalTrials.gov (accessed on 1 June 2023) (NCT03129048).
The intervention design and post-intervention analyses of the BRIDGE trial have been
published [32,33]. Briefly, 185 participants were randomized in a 2:2:1 allocation ratio to
a lifestyle program adopting a Med Diet (MedA); a lifestyle program adopting a Med
Diet while restricting calories to generate IWL (MedWL); or a usual diet, in which partici-
pants were asked to maintain their habitual diet and physical activity level throughout the
14-month intervention. Participants were recruited in three separate cohorts of ~60 partici-
pants each between 2017 and 2019. Cardiometabolic, cognitive, dietary, anthropometric,
and lifestyle variables were assessed at baseline, 8 months (at the end of the intervention),
and 14 months (6 months after the end of the intervention). Stool was collected only from
the first two cohorts (n = 124) and only at baseline and eight months. The eligibility criteria
for the BRIDGE trial are defined elsewhere [33]. Briefly, the inclusion criteria included a
BMI of 30–50 kg/m2, an age of 55–85 years, and a score of ≥19 on the Montreal Cognitive
Assessment (MoCA) [34]. The MoCA was chosen over the Mini Mental State Exam (MMSE)
because the MoCA is more sensitive for detecting those with MCI [35], a group at high risk
for AD [1] that would, consequently, stand to benefit greatly from the intervention. The
exclusion criteria included uncontrolled diabetes (hemoglobin A1c > 9.0), the use of an
assistive walking device, adherence to a Med Diet (defined as a score of >6 on a 13-point
Med Diet Adherence scale [36]), and psychiatric disorders.

For the current analysis, the gut microbiomes of participants who were in the MedWL
and MedA groups, provided stool at baseline and eight months, and did not take oral or
intravenous antibiotics within the six weeks prior to both data collection periods (n = 68)
were analyzed. Given the exploratory nature of this post hoc analysis, a power analysis was
not conducted. Those taking antibiotics were excluded because antibiotics substantially
perturb the gut microbiome [37]. The usual diet group was also excluded (n = 11). Three
of the control participants had lost ≥5% of their body weight at 8 months, and for this
analysis, they would not have served as reliable comparators. Lastly, two individuals
were removed due to labeling errors, leaving n = 66 individuals with evaluable data. The
University of Illinois Chicago (UIC) Institutional Review Board reviewed and approved
the study procedures (IRB #2016-0258).

Intervention Description

The interventional design and content have been described elsewhere [33]. Briefly, the
MedA and MedWL groups were led by separate research dietitians. The dietitians met
one-on-one with each participant before group classes began to introduce the tenets of a
Med Diet. After this initial meeting, there were 25 one-hour group sessions held over eight
months in which the participants learned via didactic and hands-on activities how to adopt
and maintain a Med Diet pattern either with (MedWL) or without (MedA) instructions to
lose weight via caloric restriction. Accordingly, dietary recommendations that promoted
weight maintenance were implemented in the MedA arm, and recommendations that
would lead to ~7% IWL at eight months via caloric restriction were implemented in the
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MedWL arm. To further promote IWL in the MedWL arm, this group (and this group only)
was offered a half hour of supervised group exercise after each diet session.

2.2. Measures
2.2.1. Stool and Blood Collection

Participants provided a fasting blood sample (≥8 h) through venipuncture. Blood was
centrifuged at 3000 RPM at 4 ◦C to isolate the serum and plasma, which was then trans-
ported on dry ice to a −80 ◦C freezer and stored until analysis. Participants collected stool
at home 24–48 h before each data collection period and stored it in a home refrigerator until
the study visit. Participants transported the stool with an ice pack to each data collection
visit. As some gut bacterial taxa may be affected by storage time and temperature [38],
60–72 h elapsed between the time of stool production and the time the stool sample was
stored at −80◦C to standardize the holding time across samples.

2.2.2. DNA Extraction, Library Prep, and Sequencing

The Genome Research Core (GRC) at UIC extracted genomic DNA from stool samples
with the DNeasy PowerSoil Kit (Qiagen, Valencia, CA, USA) and a bead-beating procedure
using the FastPrep-24 System (MP Biomedicals, Irvine, CA, USA). The V4 region of the 16S
rRNA gene of the previously extracted genomic DNA was amplified using the polymerase
chain reaction (PCR) in a two-stage targeted amplicon sequencing (TAS) protocol [39]. In
stage one, primers CS1_515F and CS2_806R from the Earth Microbiome Project and MyTaq
HS 2X Master Mix (Bioline) were added to the PCR to target the V4 region [40]. In stage two,
a unique 10-base barcode and MyTaq were added (Fluidigm, South San Francisco, CA, USA;
Item# 100-4876). To equalize the sequencing depth between samples [41], equal volumes
from each sample were pooled with an EpMotion5075 liquid-handling robot (Eppendorf,
Hamburg, Germany) and then filtered to remove DNA less than 300 bp using an AMPure
XP cleanup protocol (0.6×, vol/vol; Agencourt, Beckmann-Coulter). An Illumina MiniSeq
flow cell with a 20% phiX spike-in was then loaded with the filtered DNA. If the number
of reads between samples was unbalanced, then the samples were re-pooled in quantities
inversely proportional to their original number of reads, purified with AMPure XP cleanup,
loaded onto a Miniseq flow cell with a 20% phiX spike-in, and then re-sequenced to generate
2 × 153 paired-end reads. Negative controls were added during DNA extraction and PCR
amplification to detect possible contamination.

2.2.3. Basic Data Processing with DADA2

PEAR v0.9.6 was used to merge forward and reverse reads [42], resulting in 9,344,697 merged
reads. Reads were subsequently removed with cutadapt v1.18 if they did not meet the
quality threshold of p = 0.01, if they had internal ambiguous nucleotides, if they lacked
a primer sequence, or if they were less than 225 base pairs [43]. Cutadapt was also used
to remove primer sequences and ambiguous nucleotides from the ends of reads. The
USEARCH v8.1.1861 algorithm was used to remove chimeric sequences, utilizing the
Silva database (v132) for comparisons [44,45]. After these quality control measures were
undertaken, a total of 693,306 reads were removed, leaving 8,651,391 reads available for
analysis. The amplicon sequence variants (ASVs) were identified and annotated with a
taxonomic assignment via the Naïve Bayesian classifier and the Silva v132 training set in
DADA2 (v1.18) [46].

2.2.4. Differential Analysis of Microbial Taxa

The software package edgeR was used to model the abundance of each taxon as a
function of the independent variables, including the change in Med Diet adherence score,
percent weight change, and change in each of the three cognitive domain scores [47]. Prior
to analysis, chloroplast or mitochondrial DNA sequences were filtered out, and taxa with
less than 100 counts summed across all samples or present in less than 25% of the samples
were removed. Data were normalized as counts per million and modeled by a negative
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binomial generalized linear model that included all independent variables listed above as
predictors and controlled for the subject. The likelihood ratio test was used to provide p-
values, which were transformed into q-values with the Benjamini–Hochberg false discovery
rate (FDR) correction [48]. The statistical significance of taxa was set at q < 0.05.

2.2.5. Alpha Diversity Analyses

Prior to alpha diversity analysis, data were rarefied to a depth of 30,000 counts per
sample. Thereafter, the vegan library in R was used to compute Shannon indices using
default parameters [49,50]. The Shannon indices were modeled as a function of each
independent variable while controlling for the subject ID. A generalized linear model
(GLM) assuming a Gaussian distribution was utilized, and the likelihood ratio test was
used to determine the statistical significance of the models. To create figures, ggplot in R
was used [51].

2.2.6. Beta Diversity/Dissimilarity Analyses

Prior to the beta-diversity analysis, normalized data were square-root transformed.
Thereafter, the vegan library in R was used to compute Bray–Curtis indices using default
parameters [49,52]. These indices were modeled as a function of each independent variable
while controlling for the subject ID. The indices were scaled via non-metric multidimen-
sional scaling (NMDS) and plotted with ggplot in R [51]. Significance tests were carried
out using the ADONIS test in the vegan package in R.

2.2.7. Butyryl-CoA CoA-Transferase Gene (BcoA)

BcoA encodes the BcoA enzyme, which is involved in the final step of microbial
butyrate production [53]. BcoA abundance was measured with real-time PCR (rt-PCR).
Integrated DNA Technologies (IDT, WI) created the BCoATscrF and BCoATscrR primers for
BcoA as well as the synthetic DNA standard of 530 base pairs (bp) following the method
of Louis et al. [54]. After optimizing primer efficiency, the microbial DNA extracted for
sequencing was amplified in triplicate by the ViiA7 rt-PCR System (Applied Biosystems,
Foster City, CA, USA) using Fast SYBR® Green Master Mix (Applied Biosystems, Foster
City, CA, USA) and the following parameters: two minutes at 50 ◦C; two minutes at 95 ◦C;
and 40 cycles of one second at 95 ◦C, 20 s at 58 ◦C, and 30 s at 72 ◦C each with data
acquisition at 72 ◦C. The melt curve data from primer optimization generated ambiguous
results, and thus a 2% agarose E-Gel (Life Technologies, Carlsbad, CA, USA) was used to
verify that there was a PCR product for each sample. The GRC at UIC performed the BcoA
analysis described above.

Systemic Inflammation. High-sensitivity C-reactive protein (hs-CRP) was chosen as a
marker of systemic inflammation; it is a potential risk factor for ADx [55] and is associated
with the gut microbiome [56]. Quest Diagnostics (Wood Dale, IL, USA) used nephelometry
to measure hs-CRP (lower limit of quantitation = 0.2 mg/L).

Glucose. Quest Diagnostics (Wood Dale, IL, USA) measured Hemoglobin A1c (HbA1c)
using immunoturbidity (CV% = 1.09) and measured fasting serum glucose using spec-
trophotometry (CV% = 1.506). These were measured because diabetes is a risk factor for
ADx [5] and is associated with gut microbial diversity [57].

Blood Pressure. An automated blood pressure monitor (Omron HEM-907 (Lake Forest,
IL, USA)) was utilized to measure the diastolic and systolic blood pressure in duplicate
with the participant in a calm environment and seated. Because midlife hypertension
increases the risk for ADx [5] and is associated with the gut microbiome [58], blood pressure
was reported.

Anthropometrics and Body Composition. A digital scale (Tanita, Arlington Heights,
IL, USA) and a fixed stadiometer (Seca, Birmingham, UK) were used to measure weight and
height, respectively. Weight was measured to the nearest 0.1 kg and height was measured
to the nearest 0.1 cm in duplicate. BMI was reported as kg/m2. Body composition was
calculated using dual-energy X-ray absorptiometry (DXA) with a Lunar iDXA machine (GE
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Healthcare, Chicago, IL, USA). Visceral adipose tissue (VAT) was calculated by the DXA
machine and reported here, as it is negatively associated with cognitive performance [59]
and is related to the gut microbiome [60].

Dietary Intake. The semi-quantitative Harvard Food Frequency Questionnaire (HFFQ)
was administered by trained staff at baseline to capture habitual diet over the past year and
then once again post-intervention to capture dietary intake during the intervention only
(i.e., during the 8 months prior) [61]. The HFFQ measures the frequency of consumption
and serving sizes of 131 foods/beverages and was processed by the Channing Lab at
Harvard University. It has been validated with 24 h diet recall data and provides a more
relevant measure of habitual diet than a 24 h recall [62].

Med Diet Adherence. A Med Diet adherence score (MED score) was derived from
the HFFQ results. The score was originally created by Panagiotakos et al. [63] and then
adapted by Tangney et al. [64] for an urban Midwestern population. To generate the
score, foods on the HFFQ were classified into one of 11 categories: (1) non-refined grains,
(2) potatoes, (3) fruit, (4) vegetables, (5) legumes and nuts, (6) fish, (7) olive oil, (8) red meat
and processed meat, (9) poultry, (10) full-fat dairy products, and (11) alcohol. For each of
these categories, a score of 0 to 5 was assigned, with 0 being minimal adherence and 5 being
maximal adherence. For categories 1–7, the following scale was used: 0 = never, 1 = rare,
2 = frequent, 3 = very frequent, 4 = weekly, and 5 = daily consumption. For categories 8–10,
the reverse of this scale was used, i.e., 0 = daily consumption, 1 = weekly consumption,
etc. For alcohol, category 11, a score of 0 was assigned to the lowest and highest levels
of consumption, with any other level varying directly with the score. Participants could
achieve a MED score ranging from 0 to 55 points.

Cognitive Performance. Research assistants trained and certified by a qualified, li-
censed neuropsychologist administered an hour-long neuropsychological testing battery
to participants at baseline and post-intervention. As recommended by the National Insti-
tute of Neurological Disorders and Stroke–Canadian Stroke Network’s Neuropsychology
working group, cognitive processes were grouped into three domains: (1) attention and
information processing (AIP), (2) executive function (EF), and (3) learning, memory, and
recognition (LMR) [34]. AIP was evaluated with Digit Span Forward and Digit Symbol
Coding subtests of the Wechsler Adult Intelligence Scale (WAIS-IV) [65], Stroop word and
color tests [66], and Trail Making Test (TMT) Part A [67]. EF was measured using the verbal
fluency letter [66,68], the Digit Span Backward and Sequencing subtests of the WAIS-IV,
TMT Part B, and Stroop Color–Word Interference. LMR was assessed with total learning
over 5 word-learning trials, delayed free recall, and recognition from the California Verbal
Learning Test Second Edition (CVLT II) [69]. A composite score for each domain was
created by generating a z-score for performance on each domain-specific test and taking
the average of those z-scores. The z-scores were multiplied by −1 when higher scores on
domain-specific tests represented worse performance.

Physical Activity. To obtain an objective measure of physical activity [70], partic-
ipants wore an accelerometer (ActigraphGT3X + monitor, Pensacola Florida) on their
non-dominant wrist for at least 4 days, 10 h per day. Sedentary time was calculated via
ActiLife v6.13.4 software (ActiGraph, Pensacola, FL, USA) and defined as <2000 counts per
minute [71]. Sedentary time was calculated as hours per valid day.

Socio-demographic and Health Variables. At baseline, participants self-reported
educational attainment, race and ethnicity, smoking status, and household income per
year. Depressive symptoms were measured with the Center for Epidemiological Studies—
Depression (CES-D) questionnaire, which is also used to identify those at high-risk for
clinical depression [72].

Medication and Supplement Use. At baseline and post-intervention, the research
team recorded medications and supplements that had been consumed in the 30 days prior
to each data collection visit, along with frequency of use and dosage. The medications
and supplements reported here are those demonstrated to have large, replicated effects
on the gut microbiome structure or composition (i.e., osmotic laxatives, statins, proton
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pump inhibitors, metformin, aspirin [73], fiber supplements [74], probiotics [75], and
prebiotics [76]) and that may introduce unwanted variability in the gut microbiome results.
Anti-inflammatory medication usage was reported to aid in the interpretation of any anti-
inflammatory effect of diet or IWL and its potential association with cognition or the
gut microbiome.

2.2.8. Statistical Analysis

To determine the significance of differences between groups for the change over
time of normal and continuous variables, a linear mixed-effects model was used (SAS
procedure MIXED). Continuous variables were log-transformed to achieve normality, if
possible. To determine the significance of differences between groups for the changes over
time of nominal variables, generalized linear mixed models were used (SAS procedure
GLIMMIX). In general, the significance of between-group differences at each time point and
within-group differences for continuous and nominal variables was determined with t-tests
using the lsmeans statement within the MIXED (for continuous variables) and GLIMMIX
(for nominal variables) procedures. The significance of between-group differences for
the change over time of any variable was determined with an F-test of the visit*variable
interaction. Furthermore, the significance of within-group changes over time was adjusted
with the Tukey–Kramer method, as these within-group changes were estimated from the
visit*group interaction. In all models, the cohort, age at randomization, and MoCA score
were controlled for. SAS 9.4 (SAS Institute Inc., Gary, NC, USA) was used for the statistical
analysis. Significance was set at an adjusted p-value of <0.05.

2.2.9. Mediation Analysis

The mediation analysis was conducted with the CAUSALMED procedure in SAS,
a procedure that uses the regression adjustment method and generalized linear models
to determine the significance and strength of the mediating effect. This was performed
to explore potential interactions between the main variables of interest to inform future
work. Specifically, we explored the mediating effect of post-intervention alpha diversity on
the relationship between post-intervention LMR scores and post-intervention MED scores,
controlling for baseline alpha diversity, LMR scores, MED scores, cohort, age, and MoCA
score. Other significant covariates, including potential confounders, were further adjusted
for more accurate analysis.

3. Results

Table 1 provides baseline characteristics of participants as well as post-intervention
results. Participants were predominantly African American females. Because subsamples
of those randomized to MedA and MedWL were used, there was some unbalance between
the groups at baseline. Usage of gut microbiome-altering and anti-inflammatory medica-
tions and fasting glucose were significantly different at baseline between groups. Weight
decreased significantly from baseline in both groups and by similar amounts: −3.0 kg in
MedA and −4.4 kg in MedWL (p = 0.13 for visit*group interaction). The MED score in-
creased significantly in both groups by similar amounts: 5.7 points in MedA and 5.9 points
in MedWL (p = 0.9 for visit*group interaction).

Gut Microbiome. Group (MedA and MedWL) was significant at the family and genus
levels for the models examining alpha diversity (p = 0.0075 and p = 0.024, respectively)
(Figure 1). Group, however, was not significantly associated with beta diversity at any
taxonomic level (Figure 2) nor with any taxon abundance. Similarly, there were no sig-
nificant within-group changes in beta diversity or taxa abundances. Lastly, the change
in BcoA abundance was not significantly associated with group assignment, but prior to
adjusting for multiple comparisons, there was a significant decrease in BcoA abundance
in the MedWL group only (Table 1). However, BcoA abundance was not significantly
associated with IWL in a mixed linear model (p = 0.11).
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Table 1. Participant characteristics at baseline and post-intervention.

Variable
MedA

Baseline
(n = 31)

MedWL
Baseline
(n = 35)

p d MedA Post
(n = 31)

MedWL Post
(n = 35) p e

Sociodemographic, Diet, and Physical Activity Variables

Age, years (mean (SD)) 65.9 (6.7) 65.3 (5.3) 0.59 N/A N/A N/A

Female (n,%) 28, 90% 29, 82% 0.38 N/A N/A N/A

African American (n, %) 29, 93.6% 33, 94.3% 0.81 N/A N/A N/A

Any college education (n, %) 30, 96.8% 32, 91.4% 0.32 N/A N/A N/A

College graduate (n, %) 16, 51.6% 19, 54.3% 0.89 N/A N/A N/A

<USD 40 K annual household income
(n, %) 12, 40% 17, 50% 0.33 N/A N/A N/A

MED Score (range 0–55) (mean (SD)) 32.9 (6.3) 32.2 (4.8) 0.56 38.6 ##,** (4.9) 38.1 ##,** (4.8) 0.9

Sedentary time (minutes/valid day)
(mean (SD)) a 877.8 (147.6) 893.3 (149.7) 0.62 870.1 (134.3) 889.7 (116.8) 0.9

Medication Use

Using microbiome-altering
medications/supplements (n, %) b 10, 32.3% 21, 60% 0.036 14, 45.2% 19, 54.3% 0.19

Using anti-inflammatory medications
(n, %) c 5, 16% 15, 43% 0.032 5, 16.1% 16, 45.7% 0.88

Clinical Variables

Weight (kg) (mean (SD)) 97.8 (13.6) 101.1 (16.4) 0.47 94.8 (12.1) ##,* 96.7 (18.6) ##,** 0.13

BMI (kg/m2) (mean (SD)) 35.9 (4.8) 37.7 (4.1) 0.13 34.8 (4.2) ##,** 36 (4.9) ##,** 0.18

Visceral fat (g)/Height (cm)
(mean (SD)) 8.8 (3.8) 10.1 (4.8) 0.63 7.8 (2.9) ##,* 9 (4.9) ##,* 0.68

Depression score from CES-D
(mean (SD)) 5.7 (5.7) 9 (6) [77] 0.068 4.3 (4.5) 8.7 (6.5) 0.18

Currently smoking (n, %) 2, 6.5% 2, 5.7% 0.53 2, 6.5% 2, 5.7% 1.0

Systolic blood pressure (mmHg)
(mean (SD)) 131.2 (17.6) 132.6 (18.1) 0.72 131.8 (17.0) 134 (20.4) 0.88

Diastolic blood pressure (mmHg)
(mean (SD)) 80.9 (12.6) 80.8 (8.3) 0.99 79.0 (10.0) 81.9 (11.9) 0.3

Type 2 diabetes (n, %) 8, 25.8% 6, 17.1% 0.48 7, 22.6% 5, 14.3% 0.98

Fasting serum glucose (mg/dL)
(mean (SD)) 93.4 (12.6) 100 (14.3) 0.026 97.5 (19.5) 97.4 (17.5) 0.08

Hemoglobin A1c (% total Hb)
(mean (SD)) 6.0 (0.7) 5.9 (0.8) 0.82 5.8 (0.8) # 5.8 (0.7) # 0.98

hs-CRP (mg/L) (mean (SD)) 4.3 (6.3) 5.0 (6.6) 0.74 6.7 (7.6) 6.4 (5.2) 0.97

Microbiome-Related Variables

BcoA abundance (cycles until
threshold) (Mean (SD)) 25.6 (3.1) 26.4 (2.6) 0.33 25.8 (3.4) 27.4 (3.2) # 0.1
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Table 1. Cont.

Variable
MedA

Baseline
(n = 31)

MedWL
Baseline
(n = 35)

p d MedA Post
(n = 31)

MedWL Post
(n = 35) p e

Cognitive Variables

MoCA Score (mean SD)) 24.5 (2.6) 25.2 (2.8) 0.33 N/A N/A N/A

Attention (AIP) (mean (SD)) 0.06 (0.5) 0.08 (0.7) 0.7 0.06 (0.6) 0.03 (0.7) 0.51

Executive Function (EF) (mean (SD)) −0.1 (0.5) 0.2 (0.6) 0.056 −0.2 0.2 (0.6) 0.81

Memory (LMR) (mean) (SD)) −0.01 (0.7) 0.03 (0.9) 0.89 −0.07 (0.8) −0.05 (0.8) 0.9

This table shows baseline characteristics of participants by group. The statistical tests described below were
used to determine significant differences within and between groups. * p < 0.05 for within-group difference,
adjusted for multiple comparisons. ** p < 0.01 for within-group difference, adjusted for multiple comparisons.
# p < 0.05 for within-group difference, not adjusted for multiple comparisons. ## p < 0.01 for within-group
difference, not adjusted for multiple comparisons. a Sedentary time was defined as <2000 counts per minute
and calculated as total number of 1 min epochs of sedentary time divided by total number of valid days
worn. b Gut microbiome-altering medications/supplements included fiber supplements, probiotics, prebiotics,
osmotic laxatives, statins, proton pump inhibitors, metformin, and aspirin. c Anti-inflammatory medication
comprised steroids, prednisone, aspirin, and NSAIDs. d p-Values for difference between groups at baseline.
e p-values for difference between groups for change over time. AIP = attention and information processing;
BcoA = Butyryl-CoA CoA-transferase Gene; BMI = body mass index; CES-D = Centers for Epidemiological Studies
Depression; Hb = hemoglobin; hsCRP = high sensitivity C-reactive protein; K = thousand; LMR = learning,
memory, and recognition; MedA = Med Diet alone; MedWL = Med Diet plus weight loss; MoCA = Montreal
cognitive assessment; SD = standard deviation.

To explore whether the MED score change and IWL were related to changes in the
gut microbiome, the MedA and MedWL groups were combined into one group, and alpha
diversity, beta diversity, and taxa as a function of MED score and IWL were modeled. The
change in MED score was significantly associated with alpha diversity, but only at the
phylum level and in an unexpected direction, with an increased MED score associated
with decreased alpha diversity (p = 0.049) (Figure 3b). IWL was not associated with alpha
diversity, beta diversity, or any taxon abundance.

Regarding cognitive performance, an increase in LMR score over time was associated
with a decrease in alpha diversity at the phylum, class, order, and family taxonomic levels
(Figure 4). EF and AIP scores were not associated with alpha diversity or beta diversity at
any taxonomic level, with any taxon abundance, or with BcoA abundance.

Mediation Analysis

Because phylum alpha diversity was associated with both the LMR score and MED
score, the significance of phylum alpha diversity as a mediator of the relationship between
the LMR score and the MED score was evaluated. The results indicated that phylum alpha
diversity was not a significant mediator of the LMR/MED score relationship (IE = −0.00029,
p = 0.49) (Table 2).
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Table 2. Results of the analysis to identify the mediating effect of phylum alpha diversity on the
relationship between MED score and the learning, memory, and recognition (LMR) score.

Mediation Analysis

Estimate Standard Error Wald 95%
Confidence Limits Z Pr > |Z|

Total Effect (MED score + Phylum
Alpha Diversity) on LMR Score 0.0454 0.0181 0.009827 0.08094 2.50 0.0124

Direct Effect (DE) (MED score) on
LMR Score 0.0483 0.0185 0.01207 0.08453 2.61 0.0090

Indirect Effect (IE) (Phylum Alpha
Diversity) on LMR Score −0.00291 0.00422 −0.01119 0.005363 −0.69 0.4903

4. Discussion

In this post hoc analysis of an eight-month Med Diet lifestyle intervention with or
without IWL among older, predominately African American, female adults with obesity,
there was little effect of the intervention on the gut microbiome. There was a group effect
for the change in alpha diversity, but there was no group effect for the change in either beta
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diversity or taxa abundance. Unexpectedly, an increase in the MED score and LMR score
over the course of the intervention was associated with a decrease in alpha diversity.

The minimal effect of the interventions on the gut microbiome coincides with several
prior studies showing that Med Diet interventions with or without IWL induce minor
to no changes in gut microbiome diversity and composition [78–95]. However, several
studies have shown an effect. Those that have demonstrated an effect either utilized a
run-in period to exclude participants who may not adhere to the diet [88], provided all
study foods [82,85,89], induced greater weight loss (i.e., mean of 8 kg) in participants [80],
or increased the Med Diet adherence score by about 30% of the score’s range [81,88]. The
significant effect of these studies on the gut microbiome may also have been due to larger
sample sizes (i.e., 90–343 participants), longer durations (i.e., 12 months) [81], and greater
changes in MED score [81] and weight [80]. In the current study, few study foods were
provided, and there was no run-in period. Furthermore, IWL was lower (i.e., ~4 kg), and
the MED score did not increase as much (i.e., 10% of the score’s range).

Improvements in LMR scores were significantly associated with decreases in alpha
diversity at all taxonomic levels except the genus level. These findings should be inter-
preted with caution for several reasons. First, the mediation analysis revealed that the
unexpected negative correlation between the LMR score and phylum alpha diversity was
non-significant when controlling for MED score. Furthermore, the linear regression model
revealed that change in LMR score accounted for less than 3% of the variation in the Shan-
non Index at the class, order, and family levels. Additionally, the Kendall tau coefficient for
class, order, and family levels indicated a weak negative correlation between LMR scores
and the Shannon index. Lastly, previous studies have reported that cognitive performance
is significantly and positively correlated with higher gut microbial diversity, not lower. For
example, Claesson and colleagues showed that cognitive performance was worse in those
with lower gut microbial diversity [25]. More prospective studies and clinical trials should
be conducted to confirm these results.

Lastly, BcoA abundance, a proxy for microbial butyrate production, was not influenced
by the interventions and was not significantly associated with MED score, IWL, or cognition.
No other studies have reported on the effect of a Med Diet with or without IWL on BcoA
abundance, yet the results of a similar study contrasted with the results of this study [30].
In that study, BcoA increased after 3 months of an IWL trial among participants on a mildly
hypocaloric diet that followed the national dietary guidelines of Germany, which promote
many of the same foods as the Med Diet, including fruit, vegetables, legumes, nuts, and
seeds [30]. More research is needed to understand how a Med Diet with or without IWL
affects BcoA and microbial butyrate production.

This study has several strengths. To our knowledge, this is the first study to explore
the impact of a Med Diet with or without IWL on the gut microbiome in African American
adults. This group faces a disproportionate burden of dementia compared with several
other groups [96]. Thus, including this high-risk group in research aiming to prevent or
reduce dementia incidence is timely and important. Another strength is the measurement
of several variables that may have unduly perturbed the gut microbiome during the
intervention, such as changes in the utilization of gut microbiota-altering medications and
supplements, including anti-, pre-, and probiotics. Lastly, the comprehensive cognitive
evaluation allowed for an investigation of the cognitive domains previously shown to
improve as a result of a Med Diet [19,97] and IWL [98,99].

This study has several limitations. First, weight loss in the MedA group and the
relatively small sample size may have made it difficult to detect between-group differences.
Second, as this was a post hoc analysis, randomization was lost. This lessened the ability to
determine the individual effects of the MedA and MedWL arms. Third, because individ-
uals who took antibiotics or who were unable to provide a stool sample were excluded,
the generalizability of the results are reduced. Fourth, dietary intake was self-reported,
which may have caused participants to provide socially desirable responses, leading to
the misreporting of diet. Another limitation was the use of the MED score, which was
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not designed to capture dietary diversity, as it coalesces all types of a particular food into
one group. However, the diversity of foods has been shown to explain variation in the
gut microbiome [24]. Thus, the MED score may have been limited in its ability to relate to
changes in the gut microbiome.

5. Conclusions

In conclusion, a Med Diet with or without IWL did not alter gut microbial diversity,
composition, or function even though statistically significant improvements in Med Diet
adherence and significant reductions in weight were observed. Future gut microbiome
studies involving a Med Diet and IWL intervention in African American adults should
consider using a larger sample size and sampling at 3 or 4 months after baseline to more
fully capture the dynamics of the gut microbiome. Such studies would help confirm
whether and how the gut microbiome mediates the effect of a Med Diet and IWL on
cognitive performance and dementia risk.
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